Peter Nonacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8622056/publications.pdf

Version: 2024-02-01

159585 144013 3,443 74 30 57 h-index citations g-index papers 75 75 75 1727 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Individual variation in tolerance of human activity by urban Dark-eyed Juncos (Junco hyemalis). Wilson Journal of Ornithology, 2022, 134, .	0.2	3
2	Age-related division of labor occurs in ants at the earliest stages of colony initiation. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	7
3	Ant foraging path use responds to different types of risk and their encounter probabilities. Insectes Sociaux, 2021, 68, 173-180.	1.2	3
4	Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer progression. Royal Society Open Science, 2021, 8, 202219.	2.4	1
5	Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
6	Exploratory behavior of Argentine Ants (Linepithema humile) encountering novel areas. Insectes Sociaux, 2019, 66, 653-656.	1.2	0
7	Hamilton's rule is essential but insufficient for understanding monogamy's role in social evolution. Royal Society Open Science, 2019, 6, 180913.	2.4	6
8	Wolbachia Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn?. Frontiers in Microbiology, 2019, 10, 296.	3.5	34
9	Reproductive skew in cooperative breeding: Environmental variability, antagonistic selection, choice, and control. Ecology and Evolution, 2019, 9, 10163-10175.	1.9	2
10	Optimists or realists? How ants allocate resources in making reproductive investments. Journal of Animal Ecology, 2018, 87, 1126-1136.	2.8	0
11	Habitat complexity and predictability effects on finding and collecting food when ants search as cooperative groups. Animal Behaviour, 2018, 141, 77-84.	1.9	5
12	Preference for straight-line paths in recruitment trail formation of the Argentine ant, Linepithema humile. Insectes Sociaux, 2016, 63, 501-505.	1.2	6
13	Ontogeny of division of labor in a facultatively eusocial sweat bee Megalopta genalis. Insectes Sociaux, 2016, 63, 185-191.	1.2	23
14	Kinship, parental manipulation and evolutionary origins of eusociality. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142886.	2.6	47
15	How (not) to review papers on inclusive fitness. Trends in Ecology and Evolution, 2015, 30, 235-237.	8.7	4
16	Cultural evolution and emergent group-level traits through social heterosis. Behavioral and Brain Sciences, 2014, 37, 266-267.	0.7	2
17	Resolving the evolution of sterile worker castes: a window on the advantages and disadvantages of monogamy. Biology Letters, 2014, 10, 20140089.	2.3	14
18	The cost of being queen: Investment across Pogonomyrmex harvester ant gynes that differ in degree of claustrality. Journal of Insect Physiology, 2014, 70, 134-142.	2.0	7

#	Article	lF	Citations
19	Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behavioral Ecology and Sociobiology, 2013, 67, 331-340.	1.4	34
20	Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1437-1446.	2.6	54
21	Modeling Disease Evolution with Multilevel Selection: HIV as a Quasispecies Social Genome. Journal of Evolutionary Medicine, 2012, 1, 1-13.	0.5	9
22	Giving them what they want: manipulating Argentine ant activity patterns with water. Journal of Applied Entomology, 2012, 136, 588-595.	1.8	3
23	Kinship, greenbeards, and runaway social selection in the evolution of social insect cooperation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10808-10815.	7.1	63
24	The past, present and future of reproductive skew theory and experiments. Biological Reviews, 2011, 86, 271-298.	10.4	114
25	Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evolutionary Biology, 2011, 11, 58.	3.2	31
26	Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae). Behavioral Ecology and Sociobiology, 2011, 65, 1179-1190.	1.4	70
27	Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evolutionary Biology, $2011,11,1$	3.2	1
28	Digging beneath the surface: incipient nest characteristics across three species of harvester ant that differ in colony founding strategy. Insectes Sociaux, 2010, 57, 115-123.	1.2	7
29	Bordered tug-of-war models are neither general nor predictive of reproductive skew. Journal of Theoretical Biology, 2010, 266, 739-741.	1.7	3
30	Ground truth is the test that counts. Nature, 2010, 467, 661-661.	27.8	4
31	Extreme Polygyny: Multi-seasonal "Hypergynous―Nesting in the Introduced Paper Wasp Polistes dominulus. Journal of Insect Behavior, 2008, 21, 72-81.	0.7	10
32	Social heterosis and the maintenance of genetic diversity at the genome level. Journal of Evolutionary Biology, 2008, 21, 631-635.	1.7	54
33	Social heterosis and the maintenance of genetic diversity. Journal of Evolutionary Biology, 2007, 20, 2253-2265.	1.7	124
34	TUG-OF-WAR HAS NO BORDERS: IT IS THE MISSING MODEL IN REPRODUCTIVE SKEW THEORY. Evolution; International Journal of Organic Evolution, 2007, 61, 1244-1250.	2.3	17
35	Nepotism and brood reliability in the suppression of worker reproduction in the eusocial Hymenoptera. Biology Letters, 2006, 2, 577-579.	2.3	17
36	INTERSPECIFIC HYBRIDIZATION IN ANTS: AT THE INTERSECTION OF ECOLOGY, EVOLUTION, AND BEHAVIOR. Ecology, 2006, 87, 2143-2147.	3.2	13

#	Article	IF	Citations
37	Testing models of parental investment strategy and offspring size in ants. Oecologia, 2006, 146, 667-674.	2.0	8
38	Kin recognition and the paradoxical patterns of aggression between colonies of a Mojave desert Pheidole ant. Insectes Sociaux, 2006, 53, 127-135.	1.2	6
39	Transactional Skew and Assured Fitness Return Models Fail to Predict Patterns of Cooperation in Wasps. American Naturalist, 2006, 167, 467-480.	2.1	40
40	Solitary nesting and reproductive success in the paper wasp Polistes aurifer. Behavioral Ecology and Sociobiology, 2005, 57, 445-456.	1.4	27
41	Optimal reproductive-skew models fail to predict aggression in wasps. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 811-817.	2.6	30
42	Foraging for Work and Age-Based Polyethism: The Roles of Age and Previous Experience on Task Choice in Ants. Ethology, 2004, 110, 863-877.	1.1	72
43	Sex Ratios and Skew Models: The Special Case of Evolution of Cooperation in Polistine Wasps. American Naturalist, 2002, 160, 103-118.	2.1	12
44	The red and the black: habituation and the dear-enemy phenomenon in two desert Pheidole ants. Behavioral Ecology and Sociobiology, 2000, 48, 285-292.	1.4	109
45	Measuring and Using Skew in the Study of Social Behavior and Evolution. American Naturalist, 2000, 156, 577-589.	2.1	187
46	Genetic support for the evolutionary theory of reproductive transactions in social wasps. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 75-79.	2.6	99
47	Patch sampling behaviour and future foraging expectations in Argentine ants,Linepithema humile. Animal Behaviour, 1998, 55, 519-527.	1.9	32
48	Dispersal of first "workers" in social wasps: Causes and implications of an alternative reproductive strategy. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13737-13742.	7.1	70
49	Within-group aggression and the value of group members: theory and a field test with social wasps. Behavioral Ecology, 1997, 8, 75-82.	2.2	58
50	Sex Ratios and Multifaceted Parental Investment. American Naturalist, 1996, 148, 501-535.	2.1	140
51	The Ecology of Cooperation in Wasps: Causes and Consequences of Alternative Reproductive Decisions. Ecology, 1995, 76, 953-967.	3.2	73
52	Weak queen or social contract?. Nature, 1993, 363, 503-503.	27.8	4
53	The role of queen pheromones in social insects: queen control or queen signal?. Animal Behaviour, 1993, 45, 787-794.	1.9	455
54	Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behavioural Processes, 1993, 30, 47-59.	1.1	31

#	Article	IF	CITATIONS
55	Male Parentage and Sexual Deception in the Social Hymenoptera. , 1993, , 384-401.		29
56	SELFISH LARVAE: DEVELOPMENT AND THE EVOLUTION OF PARASITIC BEHAVIOR IN THE HYMENOPTERA. Evolution; International Journal of Organic Evolution, 1992, 46, 1605-1620.	2.3	48
57	Social contracts in wasp societies. Nature, 1992, 359, 823-825.	27.8	95
58	Queen condition and alate density affect pleometrosis in the antLasius pallitarsis. Insectes Sociaux, 1992, 39, 3-13.	1.2	27
59	Less growth with more food: How insect-prey availability changes colony demographics in the ant, Camponotus floridanus. Journal of Insect Physiology, 1991, 37, 891-898.	2.0	31
60	Mortality risk versus food quality tradeâ€offs in ants: patch use over time. Ecological Entomology, 1991, 16, 73-80.	2.2	42
61	Alloparental Care and Eusocial Evolution: The Limits of Queller's Head-Start Advantage. Oikos, 1991, 61, 122.	2.7	26
62	Exploratory behavior of Lasius pallitarsis ants encountering novel areas. Insectes Sociaux, 1991, 38, 345-349.	1.2	11
63	When can ants discriminate the sex of brood? A new aspect of queen-worker conflict Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9670-9673.	7.1	75
64	Size and Kinship Affect Success of Co-Founding Lasius Pallitarsis Queens. Psyche: Journal of Entomology, 1990, 97, 217-228.	0.9	28
65	Mortality Risk vs. Food Quality Trade-Offs in a Common Currency: Ant Patch Preferences. Ecology, 1990, 71, 1886-1892.	3.2	172
66	Death in the Distance: Mortality Risk as Information for Foraging Ants. Behaviour, 1990, 112, 23-35.	0.8	36
67	Competition and kin discrimination in colony founding by social Hymenoptera. Evolutionary Ecology, 1989, 3, 221-235.	1.2	24
68	Foraging response of the antLasius pallitarsis to food sources with associated mortality risk. Insectes Sociaux, 1988, 35, 293-303.	1.2	40
69	QUEEN NUMBER IN COLONIES OF SOCIAL HYMENOPTERA AS A KIN-SELECTED ADAPTATION. Evolution; International Journal of Organic Evolution, 1988, 42, 566-580.	2.3	81
70	Sex-Ratio Determination Within Colonies of Ants. Evolution; International Journal of Organic Evolution, 1986, 40, 199.	2.3	23
71	Ant Reproductive Strategies and Sex Allocation Theory. Quarterly Review of Biology, 1986, 61, 1-21.	0.1	219
72	SEX-RATIO DETERMINATION WITHIN COLONIES OF ANTS. Evolution; International Journal of Organic Evolution, 1986, 40, 199-204.	2.3	59

#	Article	IF	CITATIONS
73	Go High or Go Low? Adaptive Evolution of High and Low Relatedness Societies in Social Hymenoptera. Frontiers in Ecology and Evolution, 0, 5, .	2.2	18
74	Urban junco flight initiation distances correlate with approach velocities of anthropogenic sounds. Ethology Ecology and Evolution, 0, , 1-11.	1.4	2