
Sebastian L Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ: British Medical Journal, 1995, 310, 1225-1229.	2.3	1,737
2	Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. Journal of Experimental Medicine, 2005, 201, 937-947.	8.5	1,105
3	Role of deficient type III interferon-λ production in asthma exacerbations. Nature Medicine, 2006, 12, 1023-1026.	30.7	955
4	Infections and Airway Inflammation in Chronic Obstructive Pulmonary Disease Severe Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1114-1121.	5.6	901
5	Respiratory Viruses, Symptoms, and Inflammatory Markers in Acute Exacerbations and Stable Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1618-1623.	5.6	899
6	Acute Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 662-671.	5.6	847
7	The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Respiratory Journal, 2003, 22, 470-477.	6.7	722
8	The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development. Cell Host and Microbe, 2015, 17, 704-715.	11.0	721
9	Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1105-1110.	2.9	655
10	The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis American Journal of Respiratory and Critical Care Medicine, 1996, 154, 654-660.	5.6	528
11	Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet, The, 2002, 359, 831-834.	13.7	516
12	Rhinoviruses Infect the Lower Airways. Journal of Infectious Diseases, 2000, 181, 1875-1884.	4.0	503
13	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	5.6	500
14	Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 48-55.	5.6	499
15	The Role of Bacteria in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 906-913.	5.6	453
16	Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13562-13567.	7.1	447
17	Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax, 2006, 61, 376-382.	5.6	429
18	Role of Respiratory Viruses in Acute Upper and Lower Respiratory Tract Illness in the First Year of Life. Pediatric Infectious Disease Journal, 2006, 25, 680-686.	2.0	390

#	Article	IF	CITATIONS
19	Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 734-742.	5.6	349
20	Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nature Medicine, 2008, 14, 199-204.	30.7	339
21	Type 1 and Type 2 Cytokine Imbalance in Acute Respiratory Syncytial Virus Bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 633-639.	5.6	337
22	Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. European Respiratory Journal, 2002, 19, 68-75.	6.7	331
23	Lung microbiome dynamics in COPD exacerbations. European Respiratory Journal, 2016, 47, 1082-1092.	6.7	330
24	Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1224-1231.	5.6	329
25	Montelukast Reduces Asthma Exacerbations in 2- to 5-Year-Old Children with Intermittent Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 315-322.	5.6	325
26	Targeting the NF- $\hat{I}^{ m g}$ B pathway in asthma and chronic obstructive pulmonary disease. , 2009, 121, 1-13.		323
27	Rhinovirus Infection Induces Expression of Its Own Receptor Intercellular Adhesion Molecule 1 (ICAM-1) via Increased NF-κB-mediated Transcription. Journal of Biological Chemistry, 1999, 274, 9707-9720.	3.4	322
28	Synergism between allergens and viruses and risk of hospital admission with asthma: case-control study. BMJ: British Medical Journal, 2002, 324, 763-763.	2.3	309
29	The role of viruses in acute exacerbations of asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 1178-1187.	2.9	305
30	New year: new editors. Thorax, 2003, 58, 1-2.	5.6	304
31	Viruses as precipitants of asthma symptoms. I. Epidemiology. Clinical and Experimental Allergy, 1992, 22, 325-336.	2.9	301
32	Asthma exacerbations: Origin, effect, and prevention. Journal of Allergy and Clinical Immunology, 2011, 128, 1165-1174.	2.9	301
33	The September epidemic of asthma exacerbations in children: A search for etiology. Journal of Allergy and Clinical Immunology, 2005, 115, 132-138.	2.9	298
34	Personal exposure to nitrogen dioxide (NO2) and the severity of virus-induced asthma in children. Lancet, The, 2003, 361, 1939-1944.	13.7	286
35	Co-ordinated Role of TLR3, RIC-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium. PLoS Pathogens, 2010, 6, e1001178.	4.7	286
36	Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ: British Medical Journal, 2010, 341, c4978-c4978.	2.3	281

#	Article	IF	CITATIONS
37	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	12.4	280
38	Azithromycin induces anti-viral responses in bronchial epithelial cells. European Respiratory Journal, 2010, 36, 646-654.	6.7	270
39	The Effect of Telithromycin in Acute Exacerbations of Asthma. New England Journal of Medicine, 2006, 354, 1589-1600.	27.0	267
40	Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nature Medicine, 2017, 23, 681-691.	30.7	260
41	Use of polymerase chain reaction for diagnosis of picornavirus infection in subjects with and without respiratory symptoms. Journal of Clinical Microbiology, 1993, 31, 111-117.	3.9	246
42	Rhinovirus Infection Induces Degradation of Antimicrobial Peptides and Secondary Bacterial Infection in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1117-1124.	5.6	238
43	Viruses and bacteria in acute asthma exacerbations – A GA ² LENâ€ÐARE* systematic review. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 458-468.	5.7	237
44	RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nature Communications, 2015, 6, 10224.	12.8	237
45	The Effect of Inhaled IFN-β on Worsening of Asthma Symptoms Caused by Viral Infections. A Randomized Trial. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 145-154.	5.6	231
46	A defective type 1 response to rhinovirus in atopic asthma. Thorax, 2002, 57, 328-332.	5.6	226
47	Toll-Like Receptor 3 Is Induced by and Mediates Antiviral Activity against Rhinovirus Infection of Human Bronchial Epithelial Cells. Journal of Virology, 2005, 79, 12273-12279.	3.4	210
48	Asthma and Natural Colds. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 1178-1184.	5.6	202
49	Chronic <i>Chlamydia pneumoniae</i> infection and asthma exacerbations in children. European Respiratory Journal, 1998, 11, 345-349.	6.7	200
50	Increased Interleukin-4, Interleukin-5, and Interferon-Î ³ in Airway CD4 ⁺ and CD8 ⁺ T Cells in Atopic Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 224-230.	5.6	200
51	Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunology, 2013, 6, 797-806.	6.0	198
52	Air pollution and infection in respiratory illness. British Medical Bulletin, 2003, 68, 95-112.	6.9	197
53	Lower Airways Inflammation during Rhinovirus Colds in Normal and in Asthmatic Subjects. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 879-886.	5.6	195
54	Respiratory virus induction of alphaâ€, beta―and lambdaâ€interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 375-386.	5.7	192

#	Article	IF	CITATIONS
55	Rhinovirus 16–induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. Journal of Allergy and Clinical Immunology, 2012, 129, 1506-1514.e6.	2.9	190
56	Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. Journal of Allergy and Clinical Immunology, 2017, 140, 909-920.	2.9	178
57	<i>Chlamydophila pneumoniae</i> and <i>Mycoplasma pneumoniae</i> . American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1078-1089.	5.6	176
58	Vitamin D modulation of innate immune responses to respiratory viral infections. Reviews in Medical Virology, 2017, 27, e1909.	8.3	176
59	Role of nasal interleukin-8 in neutrophil recruitment and activation in children with virus-induced asthma American Journal of Respiratory and Critical Care Medicine, 1997, 155, 1362-1366.	5.6	170
60	The microbiology of asthma. Nature Reviews Microbiology, 2012, 10, 459-471.	28.6	170
61	Respiratory Syncytial Virus, Airway Inflammation, and FEV ₁ Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 871-876.	5.6	169
62	PMA Induces the MUC5AC Respiratory Mucin in Human Bronchial Epithelial Cells, via PKC, EGF/TGF-α, Ras/Raf, MEK, ERK and Sp1-dependent Mechanisms. Journal of Molecular Biology, 2004, 344, 683-695.	4.2	162
63	Rhinoviruses replicate effectively at lower airway temperatures. , 1999, 58, 100-104.		160
64	MACVIA-ARIA Sentinel NetworK for allergic rhinitis (MASK-rhinitis): the new generation guideline implementation. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1372-1392.	5.7	160
65	Important research questions in allergy and related diseases: nonallergic rhinitis: a GA ² LEN paper. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 842-853.	5.7	158
66	IFN-γ–induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2007, 120, 586-593.	2.9	157
67	The September epidemic of asthma hospitalization: School children as disease vectors. Journal of Allergy and Clinical Immunology, 2006, 117, 557-562.	2.9	155
68	Integrated care pathways for airway diseases (AIRWAYS-ICPs). European Respiratory Journal, 2014, 44, 304-323.	6.7	154
69	Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nature Communications, 2018, 9, 2229.	12.8	153
70	How Viral Infections Cause Exacerbation of Airway Diseases. Chest, 2006, 130, 1203-1210.	0.8	149
71	Detection of Airborne Rhinovirus and Its Relation to Outdoor Air Supply in Office Environments. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1187-1190.	5.6	148
72	Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host and Microbe, 2018, 24, 341-352.e5.	11.0	146

#	Article	IF	CITATIONS
73	The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Therapeutic Advances in Respiratory Disease, 2016, 10, 158-174.	2.6	144
74	Activated, Cytotoxic CD8 ⁺ T Lymphocytes Contribute to the Pathology of Asthma Death. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 560-564.	5.6	138
75	Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages. Thorax, 2008, 63, 519-525.	5.6	136
76	Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 910-920.	5.7	136
77	Microbes and mucosal immune responses in asthma. Lancet, The, 2013, 381, 861-873.	13.7	134
78	Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. European Respiratory Journal, 2015, 45, 428-439.	6.7	134
79	Host defense function of the airway epithelium in health and disease: clinical background. Journal of Leukocyte Biology, 2004, 75, 5-17.	3.3	132
80	The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nature Medicine, 2013, 19, 232-237.	30.7	127
81	Review of the Molecular and Cellular Mechanisms of Action of Glucocorticoids for Use in Asthma. Pulmonary Pharmacology and Therapeutics, 2002, 15, 35-50.	2.6	125
82	Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. Journal of Allergy and Clinical Immunology, 2018, 141, 2027-2036.e12.	2.9	124
83	Vitamin D increases the antiviral activity of bronchial epithelial cells inÂvitro. Antiviral Research, 2017, 137, 93-101.	4.1	123
84	Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine,the, 2021, 9, 699-711.	10.7	122
85	Viruses as precipitants of asthma symptoms II. Physiology and mechanisms. Clinical and Experimental Allergy, 1992, 22, 809-822.	2.9	121
86	Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax, 2014, 69, 240-246.	5.6	121
87	Association between respiratory infections in early life and later asthma is independent of virus type. Journal of Allergy and Clinical Immunology, 2015, 136, 81-86.e4.	2.9	121
88	Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. Journal of Allergy and Clinical Immunology, 2021, 147, 510-519.e5.	2.9	121
89	Human Rhinovirus 1B Exposure Induces Phosphatidylinositol 3-Kinase–dependent Airway Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1111-1121.	5.6	120
90	EAACI position statement on asthma exacerbations and severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1520-1531.	5.7	107

#	Article	IF	CITATIONS
91	Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nature Immunology, 2019, 20, 1444-1455.	14.5	106
92	Rhinovirus infection upâ€regulates eotaxin and eotaxinâ€⊋ expression in bronchial epithelial cells. Clinical and Experimental Allergy, 2001, 31, 1060-1066.	2.9	105
93	Echinacea in the prevention of induced rhinovirus colds: A meta-analysis. Clinical Therapeutics, 2006, 28, 174-183.	2.5	105
94	Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology. Journal of Allergy and Clinical Immunology, 2019, 143, 864-879.	2.9	103
95	A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine, 2017, 19, 128-138.	6.1	102
96	Lung microbiology and exacerbations in COPD. International Journal of COPD, 2012, 7, 555.	2.3	101
97	Rhinovirus Viremia in Children with Respiratory Infections. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1037-1040.	5.6	99
98	Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-ÂB and EGFR pathways. European Respiratory Journal, 2010, 36, 1425-1435.	6.7	99
99	Effectiveness of Influenza Vaccines in Asthma: A Systematic Review and Meta-Analysis. Clinical Infectious Diseases, 2017, 65, 1388-1395.	5.8	99
100	Combination Therapy. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 616-624.	2.9	97
101	Febrile respiratory illnesses in infancy and atopy are risk factors for persistent asthma and wheeze. European Respiratory Journal, 2012, 39, 876-882.	6.7	97
102	The emerging role of micro <scp>RNA</scp> s in regulating immune and inflammatory responses in the lung. Immunological Reviews, 2013, 253, 198-215.	6.0	97
103	The effect of the orally active platelet-activating factor antagonist WEB 2086 in the treatment of asthma American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1142-1148.	5.6	96
104	Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus. Nature Chemistry, 2018, 10, 599-606.	13.6	96
105	Innate Immunity in the Pathogenesis of Virus-induced Asthma Exacerbations. Proceedings of the American Thoracic Society, 2007, 4, 267-270.	3.5	95
106	Etiology of asthma exacerbations. Journal of Allergy and Clinical Immunology, 2008, 122, 685-688.	2.9	95
107	Asthma and COVIDâ€19: Is asthma a risk factor for severe outcomes?. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1543-1545.	5.7	95
108	A compendium answering 150 questions on COVIDâ€19 and SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2503-2541.	5.7	95

#	Article	IF	CITATIONS
109	Oral Oseltamivir Improves Pulmonary Function and Reduces Exacerbation Frequency for Influenza-Infected Children With Asthma. Pediatric Infectious Disease Journal, 2005, 24, 225-232.	2.0	94
110	Frequency of Detection of Picornaviruses and Seven Other Respiratory Pathogens in Infants. Pediatric Infectious Disease Journal, 2005, 24, 611-616.	2.0	94
111	<i>Staphylococcus aureus</i> Induces a Mucosal Type 2 Immune Response via Epithelial Cell–derived Cytokines. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 452-463.	5.6	94
112	Amplified rhinovirus colds in atopic subjects. Clinical and Experimental Allergy, 1994, 24, 457-464.	2.9	93
113	Rhinovirus Replication in Human Macrophages Induces NF-κB-Dependent Tumor Necrosis Factor Alpha Production. Journal of Virology, 2006, 80, 8248-8258.	3.4	93
114	National and regional asthma programmes in Europe. European Respiratory Review, 2015, 24, 474-483.	7.1	91
115	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax, 2015, 70, 854-861.	5.6	90
116	Respiratory Epithelial Cell Expression of Vascular Cell Adhesion Molecule-1 and Its Up-regulation by Rhinovirus Infection via NF-I®B and GATA Transcription Factors. Journal of Biological Chemistry, 1999, 274, 30041-30051.	3.4	89
117	The immunology of virus infection in asthma. European Respiratory Journal, 2001, 18, 1013-1025.	6.7	89
118	Expression of Programmed Death–1 Ligand (PDâ€L) 1, PDâ€L2, B7â€H3, and Inducible Costimulator Ligand on Human Respiratory Tract Epithelial Cells and Regulation by Respiratory Syncytial Virus and Type 1 and 2 Cytokines. Journal of Infectious Diseases, 2006, 193, 404-412.	4.0	89
119	The role of macrolides in asthma: current evidence and future directions. Lancet Respiratory Medicine,the, 2014, 2, 657-670.	10.7	89
120	Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. Journal of Allergy and Clinical Immunology, 2015, 136, 177-188.e11.	2.9	89
121	Azithromycin for Acute Exacerbations of Asthma. JAMA Internal Medicine, 2016, 176, 1630.	5.1	89
122	Overview of Virus-induced Airway Disease. Proceedings of the American Thoracic Society, 2005, 2, 150-156.	3.5	88
123	Composite type-2 biomarker strategy versus a symptom–risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 57-68.	10.7	88
124	An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study. Respiratory Research, 2006, 7, 116.	3.6	87
125	Development and implementation of guidelines in allergic rhinitis – an ARIAâ€GA ² LEN paper. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1212-1221.	5.7	85
126	Role of Viral Infections, Atopy and Antiviral Immunity in the Etiology of Wheezing Exacerbations Among Children and Young Adults. Pediatric Infectious Disease Journal, 2005, 24, S217-S222.	2.0	84

#	Article	IF	CITATIONS
127	Mechanisms of virusâ€induced asthma exacerbations: stateâ€ofâ€theâ€art. A GA ² LEN and InterAirways document. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 457-470.	5.7	84
128	Respiratory Syncytial Virus Persistence in Chronic Obstructive Pulmonary Disease. Pediatric Infectious Disease Journal, 2008, 27, S63-S70.	2.0	84
129	Natural and Experimental Rhinovirus Infections of the Lower Respiratory Tract. American Journal of Respiratory and Critical Care Medicine, 1995, 152, S46-S52.	5.6	81
130	Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma. Clinical and Translational Allergy, 2019, 9, 16.	3.2	81
131	RANTES, Macrophageâ€Inhibitory Protein 1?, and the Eosinophil Product Major Basic Protein Are Released into Upper Respiratory Secretions during Virusâ€Induced Asthma Exacerbations in Children. Journal of Infectious Diseases, 1999, 179, 677-681.	4.0	80
132	Chlamydia pneumoniae immunoglobulin A reactivation and airway inflammation in acute asthma. European Respiratory Journal, 2002, 20, 834-840.	6.7	80
133	Defining critical roles for NFâ€ÎºB p65 and type I interferon in innate immunity to rhinovirus. EMBO Molecular Medicine, 2012, 4, 1244-1260.	6.9	80
134	Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor κB and c-Jun N-terminal kinase activation. Journal of Allergy and Clinical Immunology, 2013, 132, 1075-1085.e6.	2.9	80
135	Airway Inflammation and Illness Severity in Response to Experimental Rhinovirus Infection in Asthma. Chest, 2014, 145, 1219-1229.	0.8	80
136	Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care. Thorax, 2005, 61, 75-79.	5.6	79
137	Assessing the association of early life antibiotic prescription with asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21: a population-based birth cohort study. Lancet Respiratory Medicine,the, 2014, 2, 621-630.	10.7	79
138	Research in progress: Medical Research Council United Kingdom Refractory Asthma Stratification Programme (RASP-UK). Thorax, 2016, 71, 187-189.	5.6	78
139	Detection of rhinovirus infection of the nasal mucosa by oligonucleotide in situ hybridization American Journal of Respiratory Cell and Molecular Biology, 1994, 10, 207-213.	2.9	78
140	Challenges in developing a cross-serotype rhinovirus vaccine. Current Opinion in Virology, 2015, 11, 83-88.	5.4	77
141	Rhinovirus Infection Increases 5â€Lipoxygenase and Cyclooxygenaseâ€2 in Bronchial Biopsy Specimens from Nonatopic Subjects. Journal of Infectious Diseases, 2002, 185, 540-544.	4.0	76
142	Viruses in asthma. British Medical Bulletin, 2002, 61, 29-43.	6.9	76
143	Mechanisms of rhinovirus-induced asthma. Paediatric Respiratory Reviews, 2004, 5, 255-260.	1.8	76
144	Obesity and susceptibility to severe outcomes following respiratory viral infection. Thorax, 2013, 68, 684-686.	5.6	76

#	Article	IF	CITATIONS
145	Pathogenesis of Viral Infection in Exacerbations of Airway Disease. Annals of the American Thoracic Society, 2015, 12, S115-S132.	3.2	76
146	Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Science Translational Medicine, 2019, 11, .	12.4	75
147	Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respiratory Research, 2006, 7, 71.	3.6	73
148	Cytokine Responses to Rhinovirus and Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1265-1274.	5.6	73
149	Adherence to treatment in allergic rhinitis using mobile technology. The <scp>MASK</scp> Study. Clinical and Experimental Allergy, 2019, 49, 442-460.	2.9	73
150	Mucosal Type 2 Innate Lymphoid Cells Are a Key Component of the Allergic Response to Aeroallergens. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1586-1596.	5.6	71
151	Prostaglandin D ₂ -induced bronchoconstriction is mediated only in part by the thromboxane prostanoid receptor. European Respiratory Journal, 1995, 8, 411-415.	6.7	70
152	Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD. Chest, 2016, 149, 62-73.	0.8	70
153	An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation. PLoS Pathogens, 2013, 9, e1003520.	4.7	69
154	Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein. PLoS Pathogens, 2013, 9, e1003669.	4.7	69
155	Corticosteroids and β2 Agonists Differentially Regulate Rhinovirus-induced Interleukin-6 via Distinct Cis-acting Elements. Journal of Biological Chemistry, 2007, 282, 15366-15375.	3.4	68
156	Inhaled corticosteroids and pneumonia in chronic obstructive pulmonary disease. Lancet Respiratory Medicine,the, 2014, 2, 919-932.	10.7	68
157	Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Medicine, 2012, 10, 27.	5.5	67
158	RSV-Induced Bronchial Epithelial Cell PD-L1 Expression Inhibits CD8+ T Cell Nonspecific Antiviral Activity. Journal of Infectious Diseases, 2011, 203, 85-94.	4.0	66
159	Neonatal bronchial hyperresponsiveness precedes acute severe viral bronchiolitis in infants. Journal of Allergy and Clinical Immunology, 2012, 130, 354-361.e3.	2.9	65
160	Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2019, 143, 114-125.e4.	2.9	65
161	Rhinoviruses Induce Interleukin-8 mRNA and Protein Production in Human Monocytes. Journal of Infectious Diseases, 1997, 175, 323-329.	4.0	64
162	Peripheral blood CD4 ⁺ and CD8 ⁺ T cell type 1 and type 2 cytokine production in atopic asthmatic and normal subjects. Clinical and Experimental Allergy, 2002, 32, 427-433.	2.9	64

#	Article	IF	CITATIONS
163	Exacerbations of Asthma and Chronic Obstructive Pulmonary Disease (COPD): Focus on Virus Induced Exacerbations. Current Pharmaceutical Design, 2007, 13, 73-97.	1.9	63
164	Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 142, 815-823.e6.	2.9	63
165	Rhinovirus Infection Induces Major Histocompatibility Complex Class I and Costimulatory Molecule Upregulation on Respiratory Epithelial Cells. Journal of Infectious Diseases, 2000, 181, 1780-1784.	4.0	62
166	Leukotrienes as a Target in Asthma Therapy. Drugs, 1994, 47, 12-24.	10.9	60
167	Role of interleukin 33 in respiratory allergy and asthma. Lancet Respiratory Medicine,the, 2014, 2, 226-237.	10.7	60
168	Corticosteroids inhibit rhinovirus-induced intercellular adhesion molecule-1 up-regulation and promoter activation on respiratory epithelial cells. Journal of Allergy and Clinical Immunology, 2000, 105, 318-326.	2.9	58
169	New Paradigms in the Pathogenesis of Chronic Obstructive Pulmonary Disease II. Proceedings of the American Thoracic Society, 2009, 6, 532-534.	3.5	58
170	Lung function prior to viral lower respiratory tract infections in prematurely born infants. Thorax, 2011, 66, 468-473.	5.6	58
171	The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathogens, 2011, 7, e1002114.	4.7	58
172	Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay. BMC Public Health, 2003, 3, 5.	2.9	57
173	Antiviral immunity is impaired in COPD patients with frequent exacerbations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L893-L903.	2.9	57
174	Influenza infection and COPD. International Journal of COPD, 2007, 2, 55-64.	2.3	57
175	Mouse respiratory epithelial cells support efficient replication of human rhinovirus. Journal of General Virology, 2003, 84, 2829-2836.	2.9	56
176	ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. European Respiratory Journal, 2019, 54, 1900900.	6.7	56
177	Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 152-159.	2.5	56
178	Increased frequency of detection of Chlamydophila pneumoniae in asthma. European Respiratory Journal, 2004, 24, 745-749.	6.7	55
179	Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1000-1009.	5.6	55
180	Rhinovirus identification by Bgll digestion of picornavirus RT-PCR amplicons. Journal of Virological Methods, 1999, 80, 179-185.	2.1	53

#	Article	IF	CITATIONS
181	Echinacea Reduces the Risk of Recurrent Respiratory Tract Infections and Complications: A Meta-Analysis of Randomized Controlled Trials. Advances in Therapy, 2015, 32, 187-200.	2.9	53
182	Reducing agents inhibit rhinovirusâ€induced upâ€regulation of the rhinovirus receptor intercellular adhesion moleculeâ€1 (ICAMâ€1) in respiratory epithelial cells. FASEB Journal, 2002, 16, 1934-1936.	0.5	52
183	The Relationship between Atopic Status and IL-10 Nasal Lavage Levels in the Acute and Persistent Inflammatory Response to Upper Respiratory Tract Infection. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1101-1107.	5.6	50
184	Rhinovirusâ€induced alterations on peripheral blood mononuclear cell phenotype and costimulatory molecule expression in normal and atopic asthmatic subjects. Clinical and Experimental Allergy, 2002, 32, 537-542.	2.9	50
185	Macrolide antibiotics and asthma treatment. Journal of Allergy and Clinical Immunology, 2006, 117, 1233-1236.	2.9	50
186	Role of Xanthine Oxidase Activation and Reduced Glutathione Depletion in Rhinovirus Induction of Inflammation in Respiratory Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 28595-28606.	3.4	50
187	Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design. Thorax, 2013, 68, 1122-1130.	5.6	50
188	The role of respiratory syncytial virus―and rhinovirusâ€induced bronchiolitis in recurrent wheeze and asthma—A systematic review and metaâ€analysis. Pediatric Allergy and Immunology, 2022, 33, e13741.	2.6	50
189	Immunohistochemical analysis of nasal biopsies during rhinovirus experimental colds American Journal of Respiratory and Critical Care Medicine, 1994, 150, 1130-1136.	5.6	49
190	Local CD11c+MHC Class IIâ^Precursors Generate Lung Dendritic Cells during Respiratory Viral Infection, but Are Depleted in the Process. Journal of Immunology, 2006, 177, 2536-2542.	0.8	49
191	Cough and viruses in airways disease: Mechanisms. Pulmonary Pharmacology and Therapeutics, 2009, 22, 108-113.	2.6	49
192	The potential of antiâ€infectives and immunomodulators as therapies for asthma and asthma exacerbations. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 50-63.	5.7	49
193	Viruses as precipitants of asthma symptoms III. Rhinoviruses: molecular biology and prospects for future intervention. Clinical and Experimental Allergy, 1993, 23, 237-246.	2.9	47
194	Viruses and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 922-932.	5.7	47
195	Effect of desloratadine and loratadine on rhinovirus-induced intercellular adhesion molecule 1 upregulation and promoter activation in respiratory epithelial cells. Journal of Allergy and Clinical Immunology, 2001, 108, 221-228.	2.9	47
196	CXC chemokines and antimicrobial peptides in rhinovirusâ€induced experimental asthma exacerbations. Clinical and Experimental Allergy, 2014, 44, 930-939.	2.9	47
197	IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunology, 2014, 7, 1151-1164.	6.0	47
198	Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5). Clinical and Translational Allergy, 2016, 6, 29.	3.2	47

#	Article	IF	CITATIONS
199	Addressing unmet needs in understanding asthma mechanisms. European Respiratory Journal, 2017, 49, 1602448.	6.7	47
200	Building bridges for innovation in ageing: Synergies between action groups of the EIP on AHA. Journal of Nutrition, Health and Aging, 2017, 21, 92-104.	3.3	47
201	Pathogenesis of respiratory syncytial virus bronchiolitis-related wheezing. Paediatric Respiratory Reviews, 2004, 5, S179-S184.	1.8	45
202	Plasmacytoid dendritic cells drive acute asthma exacerbations. Journal of Allergy and Clinical Immunology, 2018, 142, 542-556.e12.	2.9	45
203	Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma. Annals of the American Thoracic Society, 2016, 13, S55-S63.	3.2	45
204	Rhinovirus infection and house dust mite exposure synergize in inducing bronchial epithelial cell interleukinâ€8 release. Clinical and Experimental Allergy, 2008, 38, 1615-1626.	2.9	44
205	Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L951-L957.	2.9	44
206	The role of viral and atypical bacterial pathogens in asthma pathogenesis. Pediatric Pulmonology, 1999, 27, 141-143.	2.0	43
207	Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology, 2011, 16, 367-377.	2.3	43
208	Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. European Respiratory Journal, 2012, 39, 297-304.	6.7	43
209	The role of macrophage ILâ€10/innate IFN interplay during virusâ€induced asthma. Reviews in Medical Virology, 2015, 25, 33-49.	8.3	43
210	The MIF Antagonist ISO-1 Attenuates Corticosteroid-Insensitive Inflammation and Airways Hyperresponsiveness in an Ozone-Induced Model of COPD. PLoS ONE, 2016, 11, e0146102.	2.5	43
211	Use of induced sputum for the diagnosis of influenza and infections in asthma: a comparison of diagnostic techniques. Journal of Clinical Virology, 2003, 26, 339-346.	3.1	42
212	Genetics and epidemiology: asthma and infection. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 395-400.	2.3	42
213	The influence of asthma control on the severity of virus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2015, 136, 497-500.e3.	2.9	42
214	Human Rhinovirus Impairs the Innate Immune Response to Bacteria in Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1496-1507.	5.6	42
215	Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection. Journal of Clinical Investigation, 2019, 130, 523-538.	8.2	42
216	Protein kinase R, lκB kinase-β and NF-κB are required for human rhinovirus induced pro-inflammatory cytokine production in bronchial epithelial cells. Molecular Immunology, 2007, 44, 1587-1597.	2.2	41

#	Article	IF	CITATIONS
217	RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. European Respiratory Journal, 2012, 39, 712-720.	6.7	41
218	Rhinovirus infections and immunisation induce cross-serotype reactive antibodies to VP1. Antiviral Research, 2012, 95, 193-201.	4.1	41
219	Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. International Journal of COPD, 2014, 9, 1119.	2.3	41
220	Vitamin D receptor genotype influences risk of upper respiratory infection. British Journal of Nutrition, 2018, 120, 891-900.	2.3	41
221	The effects of an oral thromboxane TP receptor antagonist BAY u 3405, on prostaglandin D2―and histamineâ€induced bronchoconstriction in asthma, and relationship to plasma drug concentrations British Journal of Clinical Pharmacology, 1992, 34, 402-408.	2.4	40
222	Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. Journal of Antimicrobial Chemotherapy, 2016, 71, 2767-2781.	3.0	40
223	Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations: AÂrandomized controlled study. Journal of Allergy and Clinical Immunology, 2018, 141, 1220-1230.	2.9	40
224	Recent advances in understanding rhinovirus immunity. F1000Research, 2018, 7, 1537.	1.6	40
225	Inhaled ds <scp>RNA</scp> and rhinovirus evoke neutrophilic exacerbation and lung expression of thymic stromal lymphopoietin in allergic mice with established experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 348-358.	5.7	39
226	CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses following Rhinovirus 1B Infection. Journal of Immunology, 2015, 194, 4924-4930.	0.8	39
227	TLR3, TLR4 and TLRs7–9 Induced Interferons Are Not Impaired in Airway and Blood Cells in Well Controlled Asthma. PLoS ONE, 2013, 8, e65921.	2.5	39
228	Peak expiratory flow changes during experimental rhinovirus infection. European Respiratory Journal, 2000, 16, 980-985.	6.7	38
229	Diagnosis of Pathogens in Exacerbations of Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2007, 4, 642-646.	3.5	38
230	Role of Interleukin-1 and MyD88-Dependent Signaling in Rhinovirus Infection. Journal of Virology, 2011, 85, 7912-7921.	3.4	38
231	γÎT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunology, 2013, 6, 1091-1100.	6.0	38
232	A short-term mouse model that reproduces the immunopathological features of rhinovirus-induced exacerbation of COPD. Clinical Science, 2015, 129, 245-258.	4.3	38
233	Impact of COVID-19 on people with asthma: a mixed methods analysis from a UK wide survey. BMJ Open Respiratory Research, 2022, 9, e001056.	3.0	38
234	Chlamydia pneumoniae and COPD exacerbation. Thorax, 2002, 57, 1087-a-1089.	5.6	37

#	Article	IF	CITATIONS
235	Genetic predisposition of RSV infection-related respiratory morbidity in preterm infants. European Journal of Pediatrics, 2014, 173, 905-912.	2.7	37
236	Tolerogenic signaling by pulmonary CD1c+ dendritic cellsÂinduces regulatory T cells in patients with chronic obstructive pulmonary disease by IL-27/IL-10/inducible costimulator ligand. Journal of Allergy and Clinical Immunology, 2014, 134, 944-954.e8.	2.9	37
237	M1-like macrophages are potent producers of anti-viral interferons and M1-associated marker-positive lung macrophages are decreased during rhinovirus-induced asthma exacerbations. EBioMedicine, 2020, 54, 102734.	6.1	37
238	IL-1β induces IL-8 in bronchial cells via NF-κB and NF-IL6 transcription factors and can be suppressed by glucocorticoids. Pulmonary Pharmacology and Therapeutics, 2005, 18, 337-345.	2.6	36
239	LTB4 increases nasal neutrophil activity and conditions neutrophils to exert antiviral effects. Respiratory Medicine, 2011, 105, 997-1006.	2.9	36
240	Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax, 2012, 67, 517-525.	5.6	36
241	Rhinovirus infection and healthcare utilisation in prematurely born infants. European Respiratory Journal, 2013, 42, 1029-1036.	6.7	35
242	The role of antibiotics in asthma. International Journal of Antimicrobial Agents, 2007, 29, 485-493.	2.5	34
243	Detection of exacerbations in asthma based on electronic diary data: results from the 1-year prospective BIOAIR study. Thorax, 2013, 68, 611-618.	5.6	34
244	Raised interferonâ€Î², type 3 interferon and interferonâ€stimulated genes – evidence of innate immune activation in neutrophilic asthma. Clinical and Experimental Allergy, 2017, 47, 313-323.	2.9	34
245	Epidemiology of Viral Respiratory Tract Infections. , 1996, , 1-38.		34
246	The effect of BAY u 3405, a thromboxane receptor antagonist, on prostaglandin D2-induced nasal blockage. Journal of Allergy and Clinical Immunology, 1993, 91, 903-909.	2.9	33
247	Mechanisms of adverse effects of Â-agonists in asthma. Thorax, 2009, 64, 739-741.	5.6	33
248	Small Interfering RNAs Targeted to Interleukin-4 and Respiratory Syncytial Virus Reduce Airway Inflammation in a Mouse Model of Virus-Induced Asthma Exacerbation. Human Gene Therapy, 2014, 25, 642-650.	2.7	33
249	Duration of wheezy episodes in early childhood is independent of the microbial trigger. Journal of Allergy and Clinical Immunology, 2015, 136, 1208-1214.e5.	2.9	33
250	Role of microbiome in the pathophysiology and disease course of asthma. Current Opinion in Pulmonary Medicine, 2017, 23, 41-47.	2.6	33
251	Respiratory viruses: do they protect from or induce asthma?. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 1118-1129.	5.7	32
252	Rhinovirusâ€induced basic fibroblast growth factor release mediates airway remodeling features. Clinical and Translational Allergy, 2012, 2, 14.	3.2	32

#	Article	IF	CITATIONS
253	Salmeterol attenuates chemotactic responses in rhinovirus-induced exacerbation of allergic airways diseaseÂby modulating protein phosphatase 2A. Journal of Allergy and Clinical Immunology, 2014, 133, 1720-1727.	2.9	32
254	Human rhinoviruses enter and induce proliferation of B lymphocytes. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 232-243.	5.7	32
255	Gas Cooking and Smoking Habits and the Risk of Childhood and Adolescent Wheeze. American Journal of Epidemiology, 2005, 162, 513-522.	3.4	31
256	Spectrum of activity of soluble intercellular adhesion molecule-1 against rhinovirus reference strains and field isolates. Antimicrobial Agents and Chemotherapy, 1994, 38, 1413-1415.	3.2	30
257	New treatment regimes for virus-induced exacerbations of asthma. Pulmonary Pharmacology and Therapeutics, 2006, 19, 320-334.	2.6	30
258	Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion. Journal of Virology, 2014, 88, 11671-11685.	3.4	30
259	Toward personalization of asthma treatment according to trigger factors. Journal of Allergy and Clinical Immunology, 2020, 145, 1529-1534.	2.9	30
260	A comparison of RT-PCR, in-situ hybridisation and in-situ RT-PCR for the detection of rhinovirus infection in paraffin sections. Journal of Virological Methods, 1997, 67, 153-160.	2.1	29
261	A multiplex RT-PCR for the detection of parainfluenza viruses 1-3 in clinical samples. Journal of Virological Methods, 1999, 82, 9-18.	2.1	29
262	The protective effect of childhood infections. BMJ: British Medical Journal, 2001, 322, 376-377.	2.3	29
263	Lung function of preterm infants before and after viral infections. European Journal of Pediatrics, 2014, 173, 1497-1504.	2.7	28
264	Interferon response of the cystic fibrosis bronchial epithelium to major and minor group rhinovirus infection. Journal of Cystic Fibrosis, 2016, 15, 332-339.	0.7	28
265	Respiratory outcome of prematurely born infants following human rhinovirus A and C infections. European Journal of Pediatrics, 2014, 173, 913-919.	2.7	27
266	Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. Journal of Clinical Investigation, 2022, 132, .	8.2	27
267	Is <i>Chlamydia pneumoniae</i> Important in Asthma?. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 513-514.	5.6	25
268	Rhinovirus Infections. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1284-1285.	5.6	25
269	Molecular Mechanisms of Respiratory Virus-Induced Asthma and COPD Exacerbations and Pneumonia. Current Medicinal Chemistry, 2006, 13, 2267-2290.	2.4	25
270	Experimental rhinovirus infection in COPD: Implications for antiviral therapies. Antiviral Research, 2014, 102, 95-105.	4.1	25

#	Article	IF	CITATIONS
271	Microbiome balance in sputum determined by PCR stratifies COPD exacerbations and shows potential for selective use of antibiotics. PLoS ONE, 2017, 12, e0182833.	2.5	25
272	Rhinovirus-induced VP1-specific Antibodies are Group-specific and Associated With Severity of Respiratory Symptoms. EBioMedicine, 2015, 2, 64-70.	6.1	24
273	Immune mechanisms of respiratory viral infections in asthma. Current Opinion in Immunology, 2017, 48, 31-37.	5.5	24
274	Neutrophil adhesion molecules in experimental rhinovirus infection in COPD. Respiratory Research, 2013, 14, 72.	3.6	23
275	Innate Immune Response to Viral Infections in Primary Bronchial Epithelial Cells is Modified by the Atopic Status of Asthmatic Patients. Allergy, Asthma and Immunology Research, 2018, 10, 144.	2.9	23
276	Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. Journal of Allergy and Clinical Immunology, 2019, 143, 1403-1415.	2.9	23
277	Zanamivir. Drug Safety, 2001, 24, 1113-1125.	3.2	22
278	Picornavirus-Induced Airway Mucosa Immune Profile in Asymptomatic Neonates. Journal of Infectious Diseases, 2016, 213, 1262-1270.	4.0	22
279	Investigation of the Role of Protein Kinase D in Human Rhinovirus Replication. Journal of Virology, 2017, 91, .	3.4	22
280	Dual role of the miRâ€146 family in rhinovirusâ€induced airway inflammation and allergic asthma exacerbation. Clinical and Translational Medicine, 2021, 11, e427.	4.0	22
281	Pulmonary Innate Lymphoid Cell Responses during Rhinovirus-induced Asthma Exacerbations <i>InÂVivo</i> : A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1259-1273.	5.6	22
282	Trajectories of childhood immune development and respiratory health relevant to asthma and allergy. ELife, 2018, 7, .	6.0	22
283	Longitudinal changes in skin-prick test reactivity over 2 years in a population of schoolchildren with respiratory symptoms. Clinical and Experimental Allergy, 1992, 22, 948-957.	2.9	21
284	Signalling pathways mediating type I interferon gene expression. Microbes and Infection, 2007, 9, 1245-1251.	1.9	21
285	Role of respiratory viral infections in the development of atopic conditions. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 150-153.	2.3	21
286	Evaluation of coagulation activation after Rhinovirus infection in patients with asthma and healthy control subjects: an observational study. Respiratory Research, 2014, 15, 14.	3.6	21
287	IFN Deficiency in Asthma Attacks. Is Restoring Toll-like Receptor-7 Expression a New Treatment Approach in Severe Asthma?. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1-3.	5.6	21
288	Tbet Deficiency Causes T Helper Cell Dependent Airways Eosinophilia and Mucus Hypersecretion in Response to Rhinovirus Infection. PLoS Pathogens, 2016, 12, e1005913.	4.7	21

#	Article	IF	CITATIONS
289	Airway Epithelial Innate Immunity. Frontiers in Physiology, 2021, 12, 749077.	2.8	21
290	Are emerging PGD2 antagonists a promising therapy class for treating asthma?. Expert Opinion on Emerging Drugs, 2016, 21, 359-364.	2.4	20
291	Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial. European Journal of Medical Research, 2021, 26, 33.	2.2	20
292	Impact of viruses on airway diseases. European Respiratory Review, 2005, 14, 57-61.	7.1	19
293	Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease. Respiratory Medicine, 2014, 108, 78-85.	2.9	19
294	Interleukin-18 Is Associated With Protection Against Rhinovirus-Induced Colds and Asthma Exacerbations. Clinical Infectious Diseases, 2015, 60, 1528-1531.	5.8	19
295	Repurposing Existing Drugs for the Treatment of COVID-19. Annals of the American Thoracic Society, 2020, 17, 1186-1194.	3.2	19
296	Problems and prospects of developing effective therapy for common cold viruses. Trends in Microbiology, 1997, 5, 58-63.	7.7	18
297	Cord blood hemopoietic progenitor profiles predict acute respiratory symptoms in infancy. Pediatric Allergy and Immunology, 2008, 19, 239-247.	2.6	18
298	Reprogramming of lysosomal gene expression by interleukin-4 and Stat6. BMC Genomics, 2013, 14, 853.	2.8	18
299	Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Frontiers in Cellular and Infection Microbiology, 2018, 8, 432.	3.9	18
300	The effect of local hyperthermia on allergen-induced nasal congestion and mediator release. Journal of Allergy and Clinical Immunology, 1993, 92, 850-856.	2.9	17
301	Induction of type 2 activity in adult human CD8+ T cells by repeated stimulation and IL-4. International Immunology, 2001, 13, 341-348.	4.0	17
302	A hypothesis: antenatal sensitisation to respiratory syncytial virus in viral bronchiolitis. Archives of Disease in Childhood, 2002, 86, 431-433.	1.9	17
303	Inhibiting AKT Phosphorylation Employing Non-Cytotoxic Anthraquinones Ameliorates TH2 Mediated Allergic Airways Disease and Rhinovirus Exacerbation. PLoS ONE, 2013, 8, e79565.	2.5	17
304	β ₂ -Agonists Enhance Asthma-Relevant Inflammatory Mediators in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 128-132.	2.9	17
305	Long-term impact of inhaled corticosteroid use in asthma and chronic obstructive pulmonary disease (COPD): Review of mechanisms that underlie risks. Journal of Allergy and Clinical Immunology, 2020, 146, 1292-1294.	2.9	17
306	miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight, 2021, 6, .	5.0	17

#	Article	IF	CITATIONS
307	Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections. Journal of Experimental Pharmacology, 2021, Volume 13, 645-659.	3.2	17
308	Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors. PLoS ONE, 2014, 9, e91119.	2.5	16
309	Experimental rhinovirus 16 infection in moderate asthmatics on inhaled corticosteroids. European Respiratory Journal, 2014, 43, 1186-1189.	6.7	16
310	Viral lower respiratory tract infections and preterm infants' healthcare utilisation. European Journal of Pediatrics, 2015, 174, 209-215.	2.7	16
311	Reduced sputum expression of interferon-stimulated genes in severe COPD. International Journal of COPD, 2016, Volume 11, 1485-1494.	2.3	16
312	Antiâ€inflammatory effects of the novel inhaled phosphodiesterase type 4 inhibitor <scp>CHF</scp> 6001 on virusâ€inducible cytokines. Pharmacology Research and Perspectives, 2016, 4, e00202.	2.4	16
313	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	3.3	16
314	Lung function fluctuation patterns unveil asthma and COPD phenotypes unrelated to type 2 inflammation. Journal of Allergy and Clinical Immunology, 2021, 148, 407-419.	2.9	16
315	Mouse Models of Rhinovirus Infection and Airways Disease. Methods in Molecular Biology, 2015, 1221, 181-188.	0.9	16
316	Increased aeroallergenâ€specific interleukinâ€4â€producing T cells in asthmatic adults. Clinical and Experimental Allergy, 2002, 32, 1739-1744.	2.9	15
317	Interferonâ€lambda as a new approach for treatment of allergic asthma?. EMBO Molecular Medicine, 2011, 3, 306-308.	6.9	15
318	Middle airway obstruction—it may be happening under our noses. Thorax, 2013, 68, 396-398.	5.6	15
319	The potential for a protective vaccine for rhinovirus infections. Expert Review of Vaccines, 2016, 15, 569-571.	4.4	15
320	Anti-influenza therapies. Virus Research, 2001, 82, 147-152.	2.2	14
321	Role of PD-L1/PD-1 in the immune response to respiratory viral infections. Microbes and Infection, 2012, 14, 495-499.	1.9	14
322	Anti-viral agents: potential utility in exacerbations of asthma. Current Opinion in Pharmacology, 2013, 13, 331-336.	3.5	14
323	Viruses and asthma exacerbations. Thorax, 1998, 53, 913-914.	5.6	13
324	The rhinovirus–not such an innocent?. QJM - Monthly Journal of the Association of Physicians, 2001, 94, 1-3.	0.5	13

#	Article	IF	CITATIONS
325	Experimental Models of Rhinovirus-induced Exacerbations of Asthma. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1145-1146.	5.6	13
326	Bronchial platelet-activating factor receptor in chronic obstructive pulmonary disease. Respiratory Medicine, 2014, 108, 898-904.	2.9	13
327	Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants. European Journal of Pediatrics, 2016, 175, 1943-1949.	2.7	13
328	<p>Inflammation and infections in unreported chronic obstructive pulmonary disease exacerbations</p> . International Journal of COPD, 2019, Volume 14, 823-833.	2.3	13
329	IFN-λ1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps. Journal of Allergy and Clinical Immunology, 2019, 143, 1416-1425.e4.	2.9	13
330	Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 344-356.	2.9	13
331	Loss of regulatory capacity in Treg cells following rhinovirus infection. Journal of Allergy and Clinical Immunology, 2021, 148, 1016-1029.e16.	2.9	13
332	Virus-induced Volatile Organic Compounds Are Detectable in Exhaled Breath during Pulmonary Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1075-1085.	5.6	13
333	Pathophysiology of viral-induced exacerbations of COPD. International Journal of COPD, 2007, 2, 477-83.	2.3	13
334	Leukocyte responses to experimental infection with human rhinovirus. Journal of Allergy and Clinical Immunology, 1994, 94, 1255-1262.	2.9	12
335	The role of viruses in the induction and progression of asthma. Current Allergy and Asthma Reports, 2001, 1, 144-152.	5.3	12
336	Profiling of H3K27Ac Reveals the Influence of Asthma on the Epigenome of the Airway Epithelium. Frontiers in Genetics, 2020, 11, 585746.	2.3	12
337	In vivo bronchial epithelial interferon responses are augmented in asthma on day 4 following experimental rhinovirus infection. Thorax, 2022, 77, 929-932.	5.6	12
338	Cytokine production of RSV/PHA-stimulated tonsillar mononuclear cells: influences of age and atopy. European Respiratory Journal, 2003, 22, 317-322.	6.7	11
339	Thank you to all Thorax reviewers. Thorax, 2004, 59, 6-7.	5.6	11
340	Effect of fluticasone propionate on virus-induced airways inflammation and anti-viral immune responses in mice. Lancet, The, 2015, 385, S88.	13.7	11
341	IL-4 increases type 2, but not type 1, cytokine production in CD8+ T cells from mild atopic asthmatics. Respiratory Research, 2005, 6, 67.	3.6	10
342	The Application of Prophylactic Antibodies for Rhinovirus Infections. Antiviral Chemistry and Chemotherapy, 2014, 23, 173-177.	0.6	10

#	Article	IF	CITATIONS
343	Glucocorticoids impair type I IFN signalling and enhance rhinovirus replication. European Journal of Pharmacology, 2021, 893, 173839.	3.5	10
344	Experimental rhinovirus infection induces an antiviral response in circulating B cells which is dysregulated in patients with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 130-142.	5.7	10
345	Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. European Respiratory Journal, 2022, 59, 2100142.	6.7	10
346	Attenuation of exercise induced asthma by local hyperthermia Thorax, 1992, 47, 592-597.	5.6	9
347	Asthma survey items as predictors of respiratory problems in children 2 yrs later: a longitudinal study. European Respiratory Journal, 1999, 14, 650.	6.7	9
348	Models of infection and exacerbations in COPD. Current Opinion in Pharmacology, 2007, 7, 259-265.	3.5	9
349	Immunological pathways in virusâ€induced COPD exacerbations: a role for ILâ€15. European Journal of Clinical Investigation, 2012, 42, 1010-1015.	3.4	9
350	IFN Therapy in Airway Disease: Is Prophylaxis a New Approach in Exacerbation Prevention?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 9-11.	5.6	9
351	Respiratory Virus Infections in Asthma: Research Developments and Therapeutic Advances. Acta Medica Academica, 2020, 49, 130-143.	0.8	9
352	Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. Journal of Allergy and Clinical Immunology, 2020, 146, 840-850.e7.	2.9	8
353	Cardiac tamponade due to pneumopericardium Thorax, 1988, 43, 482-483.	5.6	7
354	Asthma. Clinics in Chest Medicine, 2012, 33, 473-484.	2.1	7
355	Asthma research in Europe: a transformative agenda for innovation andÂcompetitiveness. European Respiratory Journal, 2017, 49, 1602294.	6.7	7
356	Rhinovirus induction of fractalkine (CX3CL1) in airway and peripheral blood mononuclear cells in asthma. PLoS ONE, 2017, 12, e0183864.	2.5	7
357	Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax, 2022, 77, 950-959.	5.6	7
358	The Role of Interferons in Driving Susceptibility to Asthma Following Bronchiolitis: Controversies and Research Gaps. Frontiers in Immunology, 2021, 12, 761660.	4.8	7
359	Increased Sensitivity to the Consequences of Rhinoviral Infection in Atopic Subjects. Chest, 1995, 107, 157S.	0.8	6
360	Unravelling synergistic immune interactions between respiratory virus infections and allergic airway inflammation. Clinical and Experimental Allergy, 2004, 34, 1153-1155.	2.9	6

#	Article	IF	CITATIONS
361	Journal impact factors for 2004: another rise for Thorax. Thorax, 2005, 60, 712-712.	5.6	6
362	Deficient interferon in virusâ€induced asthma exacerbations. Clinical and Experimental Allergy, 2008, 38, 1416-1418.	2.9	6
363	Epitope mapping of antibodies induced with a conserved rhinovirus protein generating protective anti-rhinovirus immunity. Vaccine, 2019, 37, 2805-2813.	3.8	6
364	A, B, and C Rhinoviruses: New Knowledge from an Impressive Consortium. A Step Forward for Rhinovirus Vaccine Efforts or a Step Back?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 786-788.	5.6	6
365	Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Scientific Reports, 2021, 11, 23741.	3.3	6
366	Journal impact factors for 2003: Thorax increases. Thorax, 2004, 59, 736-736.	5.6	5
367	A Human Rhinovirus Model of Chronic Obstructive Pulmonary Disease Exacerbations. , 2007, 14, 101-112.		5
368	Pandemic Influenza A (H1N1) Virus 2009 in a Prospectively Followed Cohort of Prematurely Born Infants. Pediatric Infectious Disease Journal, 2012, 31, 91-92.	2.0	5
369	Asthma and viruses: AÂfocus on rhinoviruses and SARS-CoV-2. Journal of Allergy and Clinical Immunology, 2021, 147, 1648-1651.	2.9	5
370	Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. Frontiers in Allergy, 2021, 2, 668781.	2.8	5
371	Beclomethasone Has Lesser Suppressive Effects on Inflammation and Antibacterial Immunity Than Fluticasone or Budesonide in Experimental Infection Models. Chest, 2020, 158, 947-951.	0.8	5
372	Type 2 Cytokines in Respiratory Syncytial Virus Bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1167-1168.	5.6	4
373	A Simultaneous, Noninvasive Comparison with Sinus Rhythm, of two Activity Sensing, Rate Adaptive Pacemakers, in an Elderly Population. PACE - Pacing and Clinical Electrophysiology, 1991, 14, 20-27.	1.2	3
374	Comparison of 3? and 5? biotin labelled oligonucleotides for in situ hybridisation. Histochemistry, 1993, 100, 387-392.	1.9	3
375	Soluble Major Histocompatibility Complex Class I-Related Chain B Molecules Are Increased and Correlate With Clinical Outcomes During Rhinovirus Infection in Healthy Subjects. Chest, 2014, 146, 32-40.	0.8	3
376	Exacerbations of chronic respiratory diseases. , 2019, , 137-168.		3
377	The Renin-Angiotensin system and SARS-CoV-2 infection: A role for the ACE2 receptor?. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2020, 21, 147032032092691.	1.7	3

#	Article	IF	CITATIONS
379	Type I conventional dendritic cells relate to disease severity in virusâ€induced asthma exacerbations. Clinical and Experimental Allergy, 2022, 52, 550-560.	2.9	3
380	Rhinoviruses. , 0, , 361-377.		2
381	Staphyloccoccus Aureus Induces a Th2 Response Via TSLP and IL-33 Release in Human Airway Mucosa. Journal of Allergy and Clinical Immunology, 2015, 135, AB81.	2.9	2
382	Attenuating COVIDâ€19 infection and inflammation: Lessons from asthma. Respirology, 2020, 25, 1233-1234.	2.3	2
383	Decline in respiratory and cardiac admissions during the COVID â€19 pandemic: What is the role of common respiratory virus infections?. Respirology, 2021, 26, 1010-1011.	2.3	2
384	Virus–bacteria interactions in COPD exacerbations. , 2013, , 76-83.		2
385	Volatile organic compound (VOC) analysis to differentiate between bacterial and viral respiratory infections in COPD. , 2018, , .		2
386	Viral infection. , 0, , 76-96.		2
387	Microbiologic Diagnosis of Respiratory Illness. , 2012, , 399-423.		2
388	A randomised, double-blind, placebo-controlled study to evaluate the efficacy of oral azithromycin as a supplement to standard care for adult patients with acute exacerbations of asthma (the AZALEA) Tj ETQq0 0 0	rg 81 7/Ove	erlazk 10 Tf 5
389	Editorial: Type I and Type III Interferon Immune Responses in Asthma. Frontiers in Immunology, 2021, 12, 826363.	4.8	2
390	Diagnosis of Viral Respiratory Illness: Practical Applications. , 2006, , 388-403.		1
391	Rhinovirus Modulation of Dendritic Cell Phenotype and Function. Journal of Allergy and Clinical Immunology, 2015, 135, AB63.	2.9	1
392	Reply. Journal of Allergy and Clinical Immunology, 2016, 138, 313-314.	2.9	1
393	The Effect of Vitamin D Supplementation on Mucosal IL-5, MMP9 and Cathelicidin after Nasal Allergen Challenge with Grass Pollen. Journal of Allergy and Clinical Immunology, 2016, 137, AB73.	2.9	1
394	Pulmonary Innate Lymphoid Cell Responses During Rhinovirus-Induced Asthma Exacerbations. Journal of Allergy and Clinical Immunology, 2018, 141, AB195.	2.9	1
395	The role of viral and atypical bacterial pathogens in asthma pathogenesis. Pediatric Pulmonology, 1999, 27, 141-143.	2.0	1
396	Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. , 0, .		1

#	Article	IF	CITATIONS
397	Human rhinovirus impairs macrophage innate immune responses to bacteria via the interferon pathway in COPD. , 2018, , .		1
398	Respiratory viruses and eosinophilic airway inflammation. , 2022, , 204-218.		1
399	Rhinoviruses. , 0, , 329-343.		0
400	The practical implications of diagnosis. Practice Nursing, 2001, 12, 399-402.	0.1	0
401	Respiratory Syncytial Virus Infection: Determinants of Disease Severity. Clinical Pulmonary Medicine, 2002, 9, 306-314.	0.3	0
402	Molecular Mechanisms of Respiratory Virus-Induced Inflammation. , 2003, , .		0
403	Parainfluenza Viruses. , 0, , 299-321.		0
404	Thorax Annual Report October 2004-September 2005. Thorax, 2005, 60, 987-988.	5.6	0
405	Respiratory Infections in Allergy and Asthma: Lung Biology in Health and Disease; Volume 178. Chest, 2005, 128, 1076.	0.8	0
406	Thorax update for the 60th year (October 2005-September 2006). Thorax, 2006, 61, 1035-1036.	5.6	0
407	Thorax 2009: another great year!. Thorax, 2009, 64, 1017-1018.	5.6	0
408	Experimental Rhinovirus-16 Challenge In Moderate Asthma. , 2010, , .		0
409	Rhinovirus Induces Production Of Th2 Cell Recruiting Chemokines In Vivo: Linking Infection And Asthma Exacerbations. , 2010, , .		0
410	Acute Phase And Neutrophilic Responses During Experimental Rhinovirus-induced Exacerbations Of COPD. , 2010, , .		0
411	Molecular Profiling Of Bronchial Biopsies In COPD During Experimental Rhinovirus-induced Exacerbations. , 2010, , .		0
412	Thorax 2010: celebrating the success of an international respiratory journal. Thorax, 2010, 65, 755-756.	5.6	0
413	Type I Interferon Regulates Antiviral And Inflammatory Responses To Rhinovirus Infection In Vivo. , 2011, , .		0
414	Rhinovirus Infection Augments Recruitment Of Th2 Allergen Specific T Cells To The Airway, Enhancing		0

Allergic Airway Inflammation. , 2011, , .

#	Article	IF	CITATIONS
415	Bacterial Infections Following Experimental Rhinovirus Infection In COPD. , 2011, , .		0
416	Bronchial Mucosal Histone Deacetylase 2 (HDAC2) Protein Expression In Non-Smokers, Smokers And Smokers With COPD: A Biopsy Study. , 2011, , .		0
417	Investigating The Role Of Rhinovirus Infection In Precipitating Bacterial Infections In COPD Using Culture Independent Molecular Microbiology. , 2011, , .		0
418	Role Of Interleukine-33 In Rhinovirus-Induced Allergic Asthma Exacerbation. Journal of Allergy and Clinical Immunology, 2014, 133, AB52.	2.9	0
419	Innate and Adaptive Lymphocyte Responses In a Mouse Model Of Rhinovirus-Induced Asthma Exacerbation. Journal of Allergy and Clinical Immunology, 2014, 133, AB135.	2.9	0
420	Związek między infekcjami wirusowymi we wczesnym okresie życia a późniejszym rozwojem astmy jest niezależny od rodzaju wirusa. Alergologia Polska - Polish Journal of Allergology, 2015, 2, T25-T35.	0.0	0
421	Smoke and viruses–a hindrance to relaxing the airways?. Clinical Science, 2016, 130, 839-841.	4.3	Ο
422	Incorrect Conclusions Concerning Antibiotics and Asthma Exacerbation. JAMA Internal Medicine, 2017, 177, 598.	5.1	0
423	Insight into Rhinovirus-Induced Asthma Exacerbation Using High-Throughput Immunosequencing of B-Cell Repertoires. Journal of Allergy and Clinical Immunology, 2017, 139, AB80.	2.9	Ο
424	Not just the common cold: Rhinovirus infection in lung allograft recipients. Respirology, 2019, 24, 1134-1135.	2.3	0
425	Development of antirhinoviral DNAzymes for effective prevention of asthma exacerbations. Journal of Allergy and Clinical Immunology, 2019, 143, AB99.	2.9	Ο
426	Ivor Norman Lennox Johnston. BMJ: British Medical Journal, 2019, , l4668.	2.3	0
427	Treatment of the Common Cold Prospects and Implications for the Treatment of Asthma Exacerbations. , 2003, , .		Ο
428	Respiratory Viruses Do They Protect From or Induce Asthma?. , 2003, , .		0
429	Differential interferon response of the cystic fibrosis bronchial epithelium to major and minor group rhinovirus infection. , 2015, , .		Ο
430	LSC Abstract $\hat{a} \in \hat{~}$ Bacterial burden in rhinovirus-induced asthma exacerbations. , 2015, , .		0
431	LSC Abstract – Rhinovirus infection induces NRF2 in monocytes but not in epithelial cells, via distinct intracellular pathways. , 2015, , .		Ο
432	Safety of research bronchoscopy in asthma and COPD. , 2016, , .		0

#	Article	IF	CITATIONS
433	Airway glucose in COPD exacerbations. , 2016, , .		Ο
434	The role of suppressor of cytokine signalling 1 (SOCS1) in virus-induced asthma exacerbations. , 2016, ,		0
435	LATE-BREAKING ABSTRACT: Airway recruitment and anti-viral function of dendritic cells in asthmatic patients during RV-16 infection. , 2016, , .		0
436	Fluticasone propionate alters the respiratory tract microbiota and has dose-related effects on anti-bacterial host defence. , 2016, , .		0
437	An imbalanced airway microbiota correlates with greater peak flow decline in virus-induced asthma exacerbations. , 2017, , .		0
438	Modulation of pro-inflammatory and anti-viral responses in BEAS2B cells by glucocorticoid agonists. , 2017, , .		0
439	Suppressor of cytokine signalling 1 (SOCS1) and asthma exacerbations. , 2018, , .		0
440	Overlapping biologic exacerbation clusters in asthma and chronic obstructive pulmonary disease have distinct sputum mediator and microbiome profiles. , 2018, , .		0
441	Rhinoviruses. , 0, , 489-510.		0