M Parans Paranthaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8621949/publications.pdf

Version: 2024-02-01

369 papers 16,052 citations

65 h-index 109 g-index

385 all docs

385 docs citations

times ranked

385

12355 citing authors

#	Article	IF	CITATIONS
1	Cryogenic heat capacity measurements and thermodynamic analysis of lithium aluminum layered double hydroxides (LDHs) with intercalated chloride. American Mineralogist, 2022, 107, 709-715.	0.9	6
2	Manufacturing Processes for Permanent Magnets: Part lâ€"Sintering and Casting. Jom, 2022, 74, 1279-1295.	0.9	40
3	Facile Surface Coatings for Performance Improvement of NMC811 Battery Cathode Material. Journal of the Electrochemical Society, 2022, 169, 020565.	1.3	15
4	Manufacturing Processes for Permanent Magnets: Part IIâ€"Bonding and Emerging Methods. Jom, 2022, 74, 2492-2506.	0.9	12
5	Review of additive manufacturing of permanent magnets for electrical machines: A prospective on wind turbine. Materials Today Physics, 2022, 24, 100675.	2.9	25
6	Effective antiviral coatings for deactivating SARS-CoV-2 virus on N95 respirator masks or filters. Materials Today Advances, 2022, 14, 100228.	2.5	3
7	Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes. Advanced Functional Materials, 2021, 31, 2008708.	7.8	30
8	MADE3D: Enabling the next generation of high-torque density wind generators by additive design and 3D printing. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 287-311.	1.0	2
9	Alignment of magnetic particles in anisotropic Nd–Fe–B bonded magnets. Journal Physics D: Applied Physics, 2021, 54, 315004.	1.3	4
10	Life Cycle Assessment and Techno-Economic Assessment of Lithium Recovery from Geothermal Brine. ACS Sustainable Chemistry and Engineering, 2021, 9, 6551-6560.	3.2	19
11	Dynamics of Emim ⁺ in [Emim][TFSI]/LiTFSI Solutions as Bulk and under Confinement in a Quasi-liquid Solid Electrolyte. Journal of Physical Chemistry B, 2021, 125, 5443-5450.	1.2	8
12	(Invited) Carbon Nanostructures for Energy Storage Applications. ECS Meeting Abstracts, 2021, MA2021-01, 485-485.	0.0	0
13	U.S. lithium resources from geothermal and extraction feasibility. Resources, Conservation and Recycling, 2021, 169, 105514.	5.3	27
14	Recent developments in filtration media and respirator technology in response to COVID-19. MRS Bulletin, 2021, 46, 822-831.	1.7	7
15	Compression molding of anisotropic NdFeB bonded magnets in a polycarbonate matrix. Materialia, 2021, 19, 101167.	1.3	8
16	In-situ magnetic alignment model for additive manufacturing of anisotropic bonded magnets. Additive Manufacturing, 2021, 46, 102096.	1.7	10
17	Polymer, Additives, and Processing Effects on N95 Filter Performance. ACS Applied Polymer Materials, 2021, 3, 1022-1031.	2.0	21
18	<scp>3D</scp> printing of anisotropic <scp>Sm–Fe–N</scp> nylon bonded permanent magnets. Engineering Reports, 2021, 3, e12478.	0.9	6

#	Article	IF	Citations
19	Front Cover Image, Volume 3, Number 12, December 2021. Engineering Reports, 2021, 3, .	0.9	O
20	Unraveling the structural properties and dynamics of sulfonated solid acid carbon catalysts with neutron vibrational spectroscopy. Catalysis Today, 2020, 358, 387-393.	2.2	6
21	Fabrication and Characterization of Composite Membranes for the Concentration of Lithium Containing Solutions Using Forward Osmosis. Advanced Sustainable Systems, 2020, 4, 2000165.	2.7	5
22	Additive manufacturing of soft magnets for electrical machinesâ€"a review. Materials Today Physics, 2020, 15, 100255.	2.9	81
23	Additive Manufacturing of Isotropic NdFeB PPS Bonded Permanent Magnets. Materials, 2020, 13, 3319.	1.3	23
24	Encapsulated Sb and Sb ₂ O ₃ particles in waste-tire derived carbon as stable composite anodes for sodium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 3613-3622.	2.5	13
25	Additive manufacturing of highly dense anisotropic Nd–Fe–B bonded magnets. Scripta Materialia, 2020, 183, 91-95.	2.6	30
26	Functionalizing magnet additive manufacturing with in-situ magnetic field source. Additive Manufacturing, 2020, 34, 101289.	1.7	8
27	Magnetic Sorbent for the Removal of Selenium(IV) from Simulated Industrial Wastewaters: Determination of Column Kinetic Parameters. Water (Switzerland), 2020, 12, 1234.	1.2	5
28	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	10.2	57
29	Thermal and radiation response of 4H–SiC Schottky diodes with direct-write electrical contacts. Applied Physics Letters, 2020, 116, .	1.5	9
30	Neutron Spectroscopic and Thermochemical Characterization of Lithium–Aluminum-Layered Double Hydroxide Chloride: Implications for Lithium Recovery. Journal of Physical Chemistry C, 2019, 123, 20723-20729.	1.5	20
31	Probing microstructure and electrolyte concentration dependent cell chemistry <i>via operando</i> small angle neutron scattering. Energy and Environmental Science, 2019, 12, 1866-1877.	15.6	36
32	Magnetic adsorbents for selective removal of selenite from contaminated water. Separation Science and Technology, 2019, 54, 2138-2146.	1.3	10
33	Recycling of additively printed rare-earth bonded magnets. Waste Management, 2019, 90, 94-99.	3.7	16
34	Carbon polyaniline capacitive deionization electrodes with stable cycle life. Desalination, 2019, 464, 25-32.	4.0	32
35	Fluorination of MXene by Elemental F 2 as Electrode Material for Lithiumâ€ion Batteries. ChemSusChem, 2019, 12, 1271-1271.	3.6	O
36	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€ion Batteries. ChemSusChem, 2019, 12, 1316-1324.	3.6	28

#	Article	lF	Citations
37	Binder jet additive manufacturing method to fabricate near net shape crack-free highly dense Fe-6.5 wt.% Si soft magnets. Heliyon, 2019, 5, e02804.	1.4	36
38	Low-Field Alignment of Anisotropic Bonded Magnets for Additive Manufacturing of Permanent Magnet Motors. Jom, 2019, 71, 626-632.	0.9	12
39	Lithium aluminum″ayered double hydroxide chlorides (<scp>LDH</scp>): Formation enthalpies and energetics for lithium ion capture. Journal of the American Ceramic Society, 2019, 102, 2398-2404.	1.9	34
40	Bis(trimethylsilyl) 2-fluoromalonate derivatives as electrolyte additives for high voltage lithium ion batteries. Journal of Power Sources, 2019, 412, 527-535.	4.0	47
41	Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing. Additive Manufacturing, 2018, 21, 495-500.	1.7	48
42	Rationalization of solidification mechanism of Nd–Fe–B magnets during laser directed-energy deposition. Journal of Materials Science, 2018, 53, 8619-8626.	1.7	19
43	Conversion of Waste Tire Rubber into High-Value-Added Carbon Supports for Electrocatalysis. Journal of the Electrochemical Society, 2018, 165, H881-H888.	1.3	16
44	Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries. Sustainability, 2018, 10, 2840.	1.6	26
45	Carbon/tin oxide composite electrodes for improved lithium-ion batteries. Journal of Applied Electrochemistry, 2018, 48, 811-817.	1.5	13
46	Lithium Recovery from Aqueous Resources and Batteries: A Brief Review. Johnson Matthey Technology Review, 2018, 62, 161-176.	0.5	107
47	Additive manufacturing of anisotropic hybrid NdFeB-SmFeN nylon composite bonded magnets. Journal of Magnetism and Magnetic Materials, 2018, 467, 8-13.	1.0	68
48	Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resources Conversion, 2018, 1, 165-173.	3.2	38
49	Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber. Journal of the Electrochemical Society, 2017, 164, A1234-A1238.	1.3	88
50	Structure and Dynamics Investigations of Sr/Ca-Doped LaPO ₄ Proton Conductors. Journal of Physical Chemistry C, 2017, 121, 11991-12002.	1.5	13
51	A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication. Journal of Magnetism and Magnetic Materials, 2017, 438, 163-167.	1.0	65
52	Additive manufacturing of near-net-shape bonded magnets: Prospects and challenges. Scripta Materialia, 2017, 135, 100-104.	2.6	102
53	Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents. Environmental Science & Environmental S	4.6	132
54	In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO ₂ nanotubes as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20651-20657.	5.2	45

#	Article	IF	Citations
55	The influence of the local structure on proton transport in a solid oxide proton conductor La _{0.8} Ba _{1.2} GaO _{3.9} . Journal of Materials Chemistry A, 2017, 5, 15507-15511.	5.2	9
56	Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy, 2017, 40, 9-19.	8.2	72
57	Neutron vibrational spectroscopic studies of novel tire-derived carbon materials. Physical Chemistry Chemical Physics, 2017, 19, 22256-22262.	1.3	8
58	Novel Acid Catalysts from Wasteâ€Tireâ€Derived Carbon: Application in Waste–toâ€Biofuel Conversion. ChemistrySelect, 2017, 2, 4975-4982.	0.7	17
59	Observing Framework Expansion of Ordered Mesoporous Hard Carbon Anodes with Ionic Liquid Electrolytes via in Situ Small-Angle Neutron Scattering. ACS Energy Letters, 2017, 2, 1698-1704.	8.8	16
60	Membraneâ€Based Gas Separation Accelerated by Hollow Nanosphere Architectures. Advanced Materials, 2017, 29, 1603797.	11.1	48
61	A Novel Electrolyte Salt Additive for Lithiumâ€lon Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials, 2017, 7, 1601397.	10.2	103
62	Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders. Journal of Magnetism and Magnetic Materials, 2017, 422, 168-173.	1.0	29
63	Monodispersed Li 4 Ti 5 O 12 with Controlled Morphology as High Power Lithium Ion Battery Anodes. ChemNanoMat, 2016, 2, 642-646.	1.5	12
64	Tire-derived carbon composite anodes for sodium-ion batteries. Journal of Power Sources, 2016, 316, 232-238.	4.0	85
65	Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process. Jom, 2016, 68, 1978-1982.	0.9	121
66	<i>In Situ</i> X-ray and Neutron Diffraction of the Rare-Earth Phosphate Proton Conductors Sr/Ca-Doped LaPO ₄ at Elevated Temperatures. Chemistry of Materials, 2016, 28, 7232-7240.	3.2	5
67	Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets. Scientific Reports, 2016, 6, 36212.	1.6	138
68	Nanoparticle Shape Evolution and Proximity Effects During Tip-Induced Electrochemical Processes. ACS Nano, 2016, 10, 663-671.	7.3	11
69	Conduction below 100°C in nominal Li6ZnNb4O14. Journal of Materials Science, 2016, 51, 854-860.	1.7	5
70	A high performance hybrid battery based on aluminum anode and LiFePO ₄ cathode. Chemical Communications, 2016, 52, 1713-1716.	2.2	48
71	Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes. Ionics, 2016, 22, 317-325.	1.2	19
72	ZnO Doping and Defect Engineering—A Review. Springer Series in Materials Science, 2016, , 105-140.	0.4	16

#	Article	IF	Citations
73	Waste Tire Derived Carbon–Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life. ChemSusChem, 2015, 8, 3576-3581.	3.6	94
74	Optimization of a non-arsenic iron-based superconductor for wire fabrication. Superconductor Science and Technology, 2015, 28, 045018.	1.8	3
7 5	Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality. Nano Letters, 2015, 15, 1062-1069.	4.5	27
76	Monolithic graded-refractive-index glass-based antireflective coatings: broadband/omnidirectional light harvesting and self-cleaning characteristics. Journal of Materials Chemistry C, 2015, 3, 5440-5449.	2.7	55
77	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Letters, 2015, 15, 3398-3402.	4.5	115
78	The "filler effect― A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ionics, 2015, 283, 75-80.	1.3	41
79	A POM–organic framework anode for Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 22989-22995.	5.2	58
80	Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 201, 13-22.	1.7	19
81	Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass. Applied Physics Letters, 2014, 105, 193106.	1.5	10
82	Quasi-Elastic Neutron Scattering Reveals Fast Proton Diffusion in Ca-Doped LaPO ₄ . Journal of Physical Chemistry C, 2014, 118, 20112-20121.	1.5	10
83	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2014, 4, 1301368.	10.2	43
84	Chemical solution derived planarization layers for highly aligned IBAD-MgO templates. Superconductor Science and Technology, 2014, 27, 022002.	1.8	30
85	High performance Cr, N-codoped mesoporous TiO ₂ microspheres for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1818-1824.	5.2	58
86	An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate. Journal of Materials Chemistry A, 2014, 2, 2418.	5.2	22
87	Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon. Langmuir, 2014, 30, 900-910.	1.6	342
88	Neutron Diffraction and Electrochemical Studies of Na0.79CoO2and Na0.79CoO.7Mn0.3O2Cathodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A961-A967.	1.3	19
89	Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Advances, 2014, 4, 38213.	1.7	70
90	Chemical and Electrochemical Lithiation of LiVOPO ₄ Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2014, 26, 3849-3861.	3.2	63

#	Article	IF	Citations
91	Evolution of structural and magnetic properties due to nanocrystallization of mechanically milled amorphous Pr-Co-B powders. Journal of Applied Physics, 2014, 116, .	1.1	7
92	Atomic-Scale Picture of the Ion Conduction Mechanism in a Tetrahedral Network of Lanthanum Barium Gallate. Chemistry of Materials, 2013, 25, 2741-2748.	3.2	17
93	Defect chemistry of phospho-olivine nanoparticles synthesized by a microwave-assisted solvothermal process. Journal of Solid State Chemistry, 2013, 205, 197-204.	1.4	8
94	Orienting Oxygen Vacancies for Fast Catalytic Reaction. Advanced Materials, 2013, 25, 6459-6463.	11,1	96
95	Temperature Dependence of Aliovalent-Vanadium Doping in LiFePO < sub > 4 < /sub > Cathodes. Chemistry of Materials, 2013, 25, 768-781.	3.2	83
96	Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 2013, 222, 461-466.	4.0	235
97	Proton dynamics in La0.8Ba1.2GaO3.9·nH2O studied by quasielastic incoherent neutron scattering. Solid State Ionics, 2013, 252, 12-18.	1.3	8
98	Overcoming phase instability of RBaCo2O5+ \hat{l} (R=Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells. Solid State Ionics, 2013, 253, 81-87.	1.3	24
99	Nitrogenâ€Enriched Carbons from Alkali Salts with High Coulombic Efficiency for Energy Storage Applications. Advanced Energy Materials, 2013, 3, 708-712.	10.2	51
100	Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. Journal of Materials Science, 2013, 48, 5125-5131.	1.7	18
101	Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions. Materials Research Society Symposia Proceedings, 2013, 1547, 115-119.	0.1	1
102	Novel tri-modal defect structure in Nb-doped MOCVD Y Ba2Cu3O7: a paradigm for pinning landscape control. Superconductor Science and Technology, 2012, 25, 095013.	1.8	2
103	Superconducting properties of YBa ₂ Cu ₃ O _{7â⁻Î'} films deposited on commercial tape substrates, decorated with Pd or Ta nano-islands. Superconductor Science and Technology, 2012, 25, 025018.	1.8	15
104	$\label{likelihood} Li < sub > 6 < / sub > La < sub > 3 < / sub > SnMO < sub > 12 < / sub > (M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-lon Conductivity. Journal of the Electrochemical Society, 2012, 159, A1148-A1151.$	1.3	19
105	Heteroepitaxial film silicon solar cell grown on Ni-W foils. Energy and Environmental Science, 2012, 5, 6052.	15.6	40
106	Conductive surface modification of LiFePO4 with nitrogen-doped carbon layers for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4611.	6.7	76
107	In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2012, 116, 7701-7711.	1.5	92
108	Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn _{1.5} Ni _{0.5â€"<i>x</i>} M _{<i>x</i>} O ₄ (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2012, 24, 3720-3731.	3.2	202

7

#	Article	IF	CITATIONS
109	Effect of Ca doping on the electrical conductivity of the high temperature proton conductor LaNbO4. International Journal of Hydrogen Energy, 2012, 37, 12751-12759.	3.8	32
110	Optimum lithium-ion conductivity in cubic Li7â^'xLa3Hf2â^'xTaxO12. Journal of Power Sources, 2012, 209, 184-188.	4.0	70
111	(Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214, 7-14.	4.0	21
112	Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 106, 661-667.	1.1	11
113	Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2011, 21, 3059-3061.	1.1	20
114	Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics. Energy and Environmental Science, 2011, 4, 3346.	15.6	33
115	Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2. Applied Catalysis B: Environmental, 2011, 110, 148-153.	10.8	37
116	Triangular Graphene Grain Growth on Cubeâ€Textured Cu Substrates. Advanced Functional Materials, 2011, 21, 3868-3874.	7.8	31
117	Mesoporous TiO ₂ â€"B Microspheres with Superior Rate Performance for Lithium Ion Batteries. Advanced Materials, 2011, 23, 3450-3454.	11.1	361
118	Thermal stability of HfO2 nanotube arrays. Applied Surface Science, 2011, 257, 4075-4081.	3.1	25
119	High temperature phase stabilities and electrochemical properties of InBaCo4â^'xZnxO7 cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2011, 56, 5740-5745.	2.6	13
120	Phase stability and electrical conductivity of Ca-doped LaNb1â ⁻ 'Ta O4â ⁻ ' high temperature proton conductors. Journal of Power Sources, 2011, 196, 7395-7403.	4.0	23
121	Structure and magnetic order in the series BixRE1â^'xFe0.5Mn0.5O3 (RE=La,Nd). Journal of Solid State Chemistry, 2011, 184, 830-842.	1.4	16
122	Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa2Cu3O6+δ films: Correlation of structure and chemistry with flux pinning performance. Journal of Applied Physics, 2011, 109, 113923.	1.1	12
123	Pinning Enhancements in YBCO Films via Nanoengineered \${m LaMnO}_{3}:\${m MgO}\$ Composite Cap Layer. IEEE Transactions on Applied Superconductivity, 2011, 21, 3171-3174.	1.1	1
124	An evaluation of phase separated, self-assembled LaMnO ₃ -MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa ₂ Cu ₃ O _{7-1´} coated conductors. Journal of Materials Research, 2010, 25, 437-443.	1.2	7
125	Interactions of Ba2YCu3O6+y with the Gd3NbO7 buffer layer in coated conductors. Journal of Solid State Chemistry, 2010, 183, 649-657.	1.4	2
126	Modified Lanthanum Zirconium Oxide buffer layers for low-cost, high performance YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2010, 470, 352-356.	0.6	24

#	Article	IF	CITATIONS
127	Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies. Superconductor Science and Technology, 2010, 23, 014005.	1.8	49
128	Raman and x-ray absorption spectroscopy characterization of Zr-doped MOCVD YBa $<$ sub $>$ 2 $<$ /sub $>$ Cu $<$ sub $>$ 3 $<$ /sub $>$ O $<$ sub $>$ 6 $+$ Î $<$ /sub $>$. Superconductor Science and Technology, 2010, 23, 014020.	1.8	11
129	Spontaneous Growth of ZnCO ₃ Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures. Chemistry of Materials, 2010, 22, 149-154.	3.2	58
130	A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies. Journal of Materials Chemistry, 2010, 20, 7776.	6.7	49
131	Strategic Buffer Layer Development for YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 3303-3306.	1.1	10
132	Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates. Superconductor Science and Technology, 2009, 22, 015008.	1.8	21
133	Size control of highly ordered HfO ₂ nanotube arrays and a possible growth mechanism. Nanotechnology, 2009, 20, 455601.	1.3	21
134	Solution-derived textured oxide thin films—a review. Superconductor Science and Technology, 2009, 22, 049801-049801.	1.8	0
135	Zinc Oxide Microtowers by Vapor Phase Homoepitaxial Regrowth. Advanced Materials, 2009, 21, 890-896.	11.1	33
136	Synthesis and characterization of anodized titanium-oxide nanotube arrays. Journal of Materials Science, 2009, 44, 2820-2827.	1.7	30
137	Epitaxial growth of MgO/TiN multilayers on Cu. Vacuum, 2009, 83, 897-901.	1.6	9
138	Magnetic field orientation dependence of flux pinning in (Gd,Y)Ba2Cu3O7â x coated conductor with tilted lattice and nanostructures. Physica C: Superconductivity and Its Applications, 2009, 469, 2044-2051.	0.6	21
139	Magnetic order in CaMn2Sb2 studied via powder neutron diffraction. Journal of Magnetism and Magnetic Materials, 2009, 321, 3653-3657.	1.0	24
140	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95.	10.8	54
141	Properties of YBCO on \${m LaMnO}_{3}\$-Capped IBAD MgO-Templates Without Homo-Epitaxial MgO Layer. IEEE Transactions on Applied Superconductivity, 2009, 19, 3315-3318.	1.1	5
142	Three-Dimensional Germanium Oxide Nanowire Networks. Crystal Growth and Design, 2009, 9, 35-39.	1.4	29
143	Vapor-Phase Synthesis of Gallium Phosphide Nanowires. Crystal Growth and Design, 2009, 9, 525-527.	1.4	28
144	Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Applied Physics Letters, 2009, 94, .	1.5	98

#	Article	IF	Citations
145	Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method. ACS Nano, 2009, 3, 273-278.	7.3	108
146	Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity. Physical Review Letters, 2009, 103, 226401.	2.9	347
147	Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. Nanoscale, 2009, 1, 347.	2.8	23
148	Microstructure and magnetic properties of electrodeposited cobalt films. Journal of Materials Science, 2008, 43, 1644-1649.	1.7	31
149	Analytical modeling of residual stresses in multilayered superconductor systems. Journal of Materials Science, 2008, 43, 6223-6232.	1.7	29
150	Improved textured La2Zr2O7 buffer on La3TaO7 seed for all-MOD Buffer/YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2008, 468, 1587-1590.	0.6	21
151	Corrections to "Growth of Lanthanum Manganate Buffer Layers for Coated Conductors via a Metal–Organic Decomposition Process― IEEE Transactions on Applied Superconductivity, 2008, 18, 1801-1803.	1.1	1
152	Direct growth of LaMnO ₃ cap buffer layers on ion-beam-assisted deposition MgO for simplified template-based YBa ₂ Cu ₃ O _{7â^î^} -coated conductors. Journal of Materials Research, 2008, 23, 3021-3028.	1.2	16
153	Enhanced flux pinning and critical currents in YBa2Cu3O7â^'î' films by nanoparticle surface decoration: Extension to coated conductor templates. Journal of Applied Physics, 2008, 104, 043906.	1.1	27
154	Low-Cost Approaches for Flux-Pinning Enhancements in YBCO Films Using Solution Processing. IEEE Transactions on Applied Superconductivity, 2007, 17, 3668-3671.	1.1	1
155	MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires. IEEE Transactions on Applied Superconductivity, 2007, 17, 3332-3335.	1.1	22
156	Enhanced Flux-Pinning in Dy-Doped, MOD YBCO Films on RABiTS. IEEE Transactions on Applied Superconductivity, 2007, 17, 3340-3342.	1.1	15
157	AC Losses in YBCO Coated Conductor With Inkjet Filaments. IEEE Transactions on Applied Superconductivity, 2007, 17, 3159-3162.	1.1	24
158	Slot Die Coating and Conversion of LZO on Rolling Assisted Biaxially Textured Ni-W Substrates With and Without a Very Thin Seed Layer in Low Vacuum. IEEE Transactions on Applied Superconductivity, 2007, 17, 3417-3419.	1.1	4
159	Substrate Surface Decoration With $m CeO_{2}$ Nanoparticles: An Effective Method for Improving Flux Pinning in $m YBa_{2}$ M $m Cu_{3}$ M $m Cu_{3}$ Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 3720-3723.	1.1	11
160	Fabrication of High- $J_{m c}$ MdBa $_{2}$ Mcu $_{3}$ Mcu $_{7-delta}$ and $m = 2$ MazrO $_{3}$ -depend and $m = 2$ MazrO $_{3}$ -delta $_{7-delta}$ Films on RABiTS. IEEE Transactions on Applied Superconductivity, 2007, 17, 3672-3674.	1.1	1
161	Control of Flux Pinning in MOD YBCO Coated Conductor. IEEE Transactions on Applied Superconductivity, 2007, 17, 3347-3350.	1.1	31
162	Development of Modified MOD-TFA Approach for YBCO Film Growth. IEEE Transactions on Applied Superconductivity, 2007, 17, 3557-3560.	1.1	9

#	Article	IF	Citations
163	Electrical properties of epoxy resin based nano-composites. Nanotechnology, 2007, 18, 025703.	1.3	133
164	Enhancement of dielectric strength in nanocomposites. Nanotechnology, 2007, 18, 325704.	1.3	89
165	Flux-pinning characteristics as a function of density of columnar defects comprised of self-assembled nanodots and nanorods in epitaxial YBa2Cu3O7â°l´ films for coated conductor applications. Physica C: Superconductivity and Its Applications, 2007, 457, 41-46.	0.6	50
166	Low ac loss geometries in YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2007, 463-465, 755-760.	0.6	6
167	Formation of Highâ€Quality, Epitaxial La ₂ Zr ₂ O ₇ Layers on Biaxially Textured Substrates by Slotâ€Die Coating of Chemical Solution Precursors. Journal of the American Ceramic Society, 2007, 90, 3529-3535.	1.9	12
168	Chemical Solution-Based Epitaxial Oxide Films on Biaxially Textured Ni-W Substrates with Improved Out-of-Plane Texture for YBCO-Coated Conductors. Journal of Electronic Materials, 2007, 36, 1270-1274.	1.0	11
169	High-Performance High-Tc Superconducting Wires. Science, 2006, 311, 1911-1914.	6.0	395
170	Strong flux-pinning in epitaxial NdBa2Cu3O7â^îfilms with columnar defects comprised of self-assembled nanodots of BaZrO3. Superconductor Science and Technology, 2006, 19, L42-L45.	1.8	22
171	Solution-derived textured oxide thin films—a review. Superconductor Science and Technology, 2006, 19, R1-R21.	1.8	161
172	Effect of Relative Humidity on the Crystallization of Solâ^Gel Lanthanum Zirconium Oxide Films. Chemistry of Materials, 2006, 18, 5829-5831.	3.2	13
173	Processing Dependence of Texture, and Critical Properties of YBa2Cu3O7-delta Films on RABiTS Substrates by a Non-Fluorine MOD Method. Journal of the American Ceramic Society, 2006, 89, 914-920.	1.9	15
174	All MOD buffer/YBCO approach to coated conductors. Physica C: Superconductivity and Its Applications, 2006, 445-448, 529-532.	0.6	29
175	Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor. Materials Research Bulletin, 2006, 41, 1063-1068.	2.7	20
176	A perspective on conducting oxide buffers for Cu-based YBCO-coated conductors. Superconductor Science and Technology, 2006, 19, R23-R29.	1.8	28
177	Deposition of rare earth tantalate buffers on textured Ni-W substrates for YBCO coated conductor using chemical solution deposition approach. Journal of Materials Research, 2006, 21, 767-773.	1.2	11
178	Analysis of flux pinning inYBa2Cu3O7â~Îfilms by nanoparticle-modified substrate surfaces. Physical Review B, 2006, 74, .	1.1	60
179	Solution-processed lanthanum zirconium oxide as a barrier layer for high Ic-coated conductors. Journal of Materials Research, 2006, 21, 910-914.	1.2	25
180	Non-Fluorine Based Bulk Solution Techniques to Grow Superconducting YBa2Cu3O7â^'δ Films. , 2005, , 195-214.		O

#	Article	IF	Citations
181	Growth of epitaxial Y2O3 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors by MOD approach. Physica C: Superconductivity and Its Applications, 2005, 422, 95-101.	0.6	22
182	R&D of RABiTS-based coated conductors: Conversion of ex situ YBCO superconductor using a novel pulsed electron-beam deposited precursor. Physica C: Superconductivity and Its Applications, 2005, 426-431, 878-886.	0.6	9
183	Characterization of BaZrO3 Nanoparticles Prepared by Reverse Micelle Synthesis. Chemistry of Materials, 2005, 17, 4010-4017.	3.2	26
184	Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology, 2005, 16, 1960-1964.	1.3	131
185	Electrical Conductivity of the Manganese Chromite Spinel Solid Solution. Journal of the American Ceramic Society, 2005, 88, 1050-1053.	1.9	110
186	High Critical Current YBa2Cu3O7-delta Thick Films on Improved Rolling-Assisted Biaxially Textured Substrates (RABiTStm). Journal of the American Ceramic Society, 2005, 88, 2677-2680.	1.9	14
187	Growth of Lanthanum Manganate Buffer Layers for Coated Conductors via a Metal-Organic Decomposition Process. IEEE Transactions on Applied Superconductivity, 2005, 15, 3005-3008.	1.1	4
188	Solution Deposition Approach to High <tex>\$rm J_rm c\$</tex> Coated Conductor Fabrication. IEEE Transactions on Applied Superconductivity, 2005, 15, 2974-2976.	1.1	12
189	Iridium: An Oxygen Diffusion Barrier and a Conductive Seed Layer for RABiTS-Based Coated Conductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 2977-2980.	1.1	6
190	Enhancement of flux pinning and critical currents in YBa2Cu3O7â^î^films by nanoscale iridium pretreatment of substrate surfaces. Journal of Applied Physics, 2005, 98, 114309.	1.1	80
191	Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7â^Îfilms. Superconductor Science and Technology, 2005, 18, 1533-1538.	1.8	443
192	Growth of rare-earth niobate-based pyrochlores on textured Ni–W substrates with ionic radii dependency. Journal of Materials Research, 2005, 20, 904-909.	1.2	13
193	Assessment of Chemical Solution Synthesis and Properties of Gd2Zr2O7 Thin Films as Buffer Layers for Second-Generation High-Temperature Superconductor Wires. Journal of Materials Research, 2005, 20, 2988-2996.	1.2	20
194	<tex>\$(rm La,rm Sr)rm TiO_3\$</tex> as a Conductive Buffer for High-Temperature Superconducting Coated Conductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 2997-3000.	1.1	9
195	Investigation of TiN Seed Layers for RABiTS Architectures With a Single-Crystal-Like Out-of-Plane Texture. IEEE Transactions on Applied Superconductivity, 2005, 15, 2981-2984.	1.1	15
196	Comparison of <tex>\$rm YBa_2rm Cu_3rm O_7-delta\$</tex> Precursors Made Using TFA-MOD and <tex>\$rm BaF_2\$</tex> Ex-Situ Processes and Their Post-Deposition Processing Under Low Pressure Conditions. IEEE Transactions on Applied Superconductivity, 2005, 15, 2659-2662.	1.1	1
197	Epitaxial Growth of Solution-Based Rare-Earth Niobate, RE3NbO7, Films on Biaxially Textured Ni–W Substrates. Journal of Materials Research, 2005, 20, 6-9.	1.2	13
198	Second Generation HTS Wire Based on RABiTS Substrates and MOD YBCO. IEEE Transactions on Applied Superconductivity, 2005, 15, 2611-2616.	1.1	92

#	Article	IF	Citations
199	Vortex pinning and slow creep in high-JcÂMgB2thin films: a magnetic and transport study. Superconductor Science and Technology, 2005, 18, 970-976.	1.8	40
200	Improved YBCO Coated Conductors Using Alternate Buffer Architectures. IEEE Transactions on Applied Superconductivity, 2005, 15, 2632-2634.	1.1	23
201	Pulsed electron deposition of fluorine-based precursors for YBa2Cu3O7â^'x-coated conductors. Superconductor Science and Technology, 2005, 18, 1168-1175.	1.8	19
202	Growth of YBCO films on MgO-based rolling-assisted biaxially textured substrates templates. Superconductor Science and Technology, 2005, 18, 223-228.	1.8	14
203	Reel-to-reelex situconversion of high critical current density electron-beam co-evaporated BaF2precursor on RABiTS. Superconductor Science and Technology, 2004, 17, 386-394.	1.8	12
204	The growth of YBCO films with high critical current at reduced pressures using the BaF2ex situprocess. Superconductor Science and Technology, 2004, 17, 1209-1214.	1.8	7
205	Buffer Layer R&D for YBCO Coated Conductor Composite Wires. AIP Conference Proceedings, 2004, , .	0.3	3
206	An approach for electrical self-stabilization of high-temperature superconducting wires for power applications. Applied Physics Letters, 2004, 85, 2887-2889.	1.5	24
207	Effects of Conversion Parameters on the Transport Properties of YBCO Films in the BaF2 Ex Situ Process. Journal of Materials Research, 2004, 19, 1281-1289.	1.2	7
208	Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. Journal of Materials Research, 2004, 19, 2117-2123.	1.2	44
209	High-Performance YBCO-Coated Superconductor Wires. MRS Bulletin, 2004, 29, 533-541.	1.7	131
210	Reel-to-reel x-ray diffraction and Raman microscopy analysis of differentially heat-treated Y–BaF2–Cu precursor films on metre-length RABiTS. Superconductor Science and Technology, 2004, 17, 739-749.	1.8	24
211	Preparation of YBCO Films on CeO ₂ â€Buffered (001) YSZ Substrates by a Nonâ€Fluorine MOD Method. Journal of the American Ceramic Society, 2004, 87, 1669-1676.	1.9	31
212	LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications. Surface and Coatings Technology, 2004, 177-178, 65-72.	2.2	82
213	The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. MRS Bulletin, 2004, 29, 552-561.	1.7	247
214	Nonlinear microwave response of an MgB2thin film. Superconductor Science and Technology, 2004, 17, 681-684.	1.8	10
215	Fabrication of high J/sub c/YBa/sub 2/Cu/sub 3/O//sub $7-\hat{l}^3$ / tapes using the newly developed lanthanum manganate single buffer layers. IEEE Transactions on Applied Superconductivity, 2003, 13, 2481-2483.	1.1	26
216	High critical current MOD ex situ YBCO films on RABiTSTM and MgO-IBAD templates. Physica C: Superconductivity and Its Applications, 2003, 390, 249-253.	0.6	23

#	Article	IF	Citations
217	Reelâ€toâ€Reel Continuous Chemical Solution Deposition of Epitaxial Gd ₂ O ₃ Buffer Layers on Biaxially Textured Metal Tapes for the Fabrication of YBa ₂ Cu ₃ O _{7â^î(} Coated Conductors. Journal of the American Ceramic Society, 2003, 86, 257-265.	1.9	18
218	YBCO coated conductors by an MOD/RABiTS process. IEEE Transactions on Applied Superconductivity, 2003, 13, 2458-2461.	1.1	96
219	Thickness dependence of microstructure and critical current density of Yba2Cu3O7â^Î on rolling-assisted biaxially textured substrates. Journal of Materials Research, 2003, 18, 1109-1122.	1.2	24
220	Transverse compressive stress effect in Y-Ba-Cu-O coatings on biaxially textured Ni and Ni-W substrates. IEEE Transactions on Applied Superconductivity, 2003, 13, 3530-3533.	1.1	30
221	Electrical and magnetic properties of conductive Cu-based coated conductors. Applied Physics Letters, 2003, 83, 3963-3965.	1.5	33
222	Solution processing of lanthanum zirconate films as single buffer layers for high I/sub c/ YBCO coated conductors. IEEE Transactions on Applied Superconductivity, 2003, 13, 2658-2660.	1.1	24
223	LaMnO/sub 3/: a single oxide buffer layer for high-J/sub c/ YBa/sub 2/Cu/sub 3/O//sub 7-γ/ coated conductors. IEEE Transactions on Applied Superconductivity, 2003, 13, 2661-2664.	1.1	18
224	Fabrication of high-critical current density Yba2Cu3O7â~δfilms using a fluorine-free sol gel approach. Journal of Materials Research, 2003, 18, 677-681.	1.2	33
225	Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni–W substrate. Superconductor Science and Technology, 2003, 16, L19-L22.	1.8	89
226	MOD approach for the growth of epitaxial CeO2buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Superconductor Science and Technology, 2003, 16, 1305-1309.	1.8	123
227	High critical current density YBa ₂ Cu ₃ O _{7–δ} coatings on LaMnO ₃ -buffered biaxially textured Cu tapes for coated conductor applications. Journal of Materials Research, 2003, 18, 872-877.	1.2	21
228	Study of magnetization and pinning mechanisms in MgB2thin film superconductors: effect of heavy ion irradiation. Superconductor Science and Technology, 2003, 16, 951-955.	1.8	21
229	A study on the nonlinear microwave electrodynamic response of e-beam evaporated MgB2superconducting thin films. Superconductor Science and Technology, 2003, 16, 260-263.	1.8	7
230	The microwave surface impedance of MgB2thin films. Superconductor Science and Technology, 2003, 16, 1-6.	1.8	29
231	Lanthanum zirconate: A single buffer layer processed by solution deposition for coated conductor fabrication. Journal of Materials Research, 2002, 17, 2181-2184.	1.2	44
232	Microwave surface resistance of MgB2. Applied Physics Letters, 2002, 80, 2347-2349.	1.5	29
233	Comparative Study of Thickness Dependence of Critical Current Density of Yba ₂ Cu ₃ O _{7ê€'Î} on (100) SrTiO ₃ and on Rolling-assisted Biaxially Textured Substrates. Journal of Materials Research, 2002, 17, 1750-1757.	1.2	79
234	Effective vortex pinning in MgB2thin films. Superconductor Science and Technology, 2002, 15, 1392-1397.	1.8	8

#	Article	IF	CITATIONS
235	Structure of the superconducting gap in MgB2from point-contact spectroscopy. Superconductor Science and Technology, 2002, 15, 526-532.	1.8	40
236	Chemical Solution Deposition of Lanthanum Zirconate Buffer Layers on Biaxially Textured Ni–1.7% Fe–3% W Alloy Substrates for Coated-conductor Fabrication. Journal of Materials Research, 2002, 17, 1543-1549.	1.2	40
237	Microstructure of pulsed laser deposited YBa2Cu3O7â°Î films on yttria-stabilized zirconia/CeO2 buffered biaxially textured Ni substrates. Physica C: Superconductivity and Its Applications, 2002, 377, 333-347.	0.6	6
238	Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications. Physica C: Superconductivity and Its Applications, 2002, 382, 251-262.	0.6	75
239	Study of the microwave electrodynamic response of MgB2 thin films. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1287-1290.	0.6	7
240	Bulk solution techniques to fabricate high Jc YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1009-1012.	0.6	7
241	Growth of high current density MgB2 films using ex-situ precursor approach. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1252-1255.	0.6	10
242	Far-Infrared Optical Conductivity Gap in Superconducting MgB2Films. Physical Review Letters, 2001, 88, 027003.	2.9	112
243	Low cost Y-Ba-Cu-O coated conductors. IEEE Transactions on Applied Superconductivity, 2001, 11, 2927-2930.	1.1	70
244	Progress towards a low-cost commercial coated conductor. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	0
245	Single Buffer Layer Technology for YBCO Coated Conductors. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	1
246	LED-induced fluorescence diagnostics for turbine and combustion engine thermometry. , 2001, 4448, 28.		9
247	Continuous deposition of ex situ YBCO precursor films on rolling-assisted biaxially textured substrates by electron beam evaporation. Physica C: Superconductivity and Its Applications, 2001, 351, 175-181.	0.6	7
248	Effect of carbon-doping in bulk superconducting MgB2 samples. Physica C: Superconductivity and Its Applications, 2001, 355, 1-5.	0.6	92
249	Recent progress in the fabrication of high-Jc tapes by epitaxial deposition of YBCO on RABiTS. Physica C: Superconductivity and Its Applications, 2001, 357-360, 903-913.	0.6	101
250	Progress in solution-based YBCO coated conductor. Physica C: Superconductivity and Its Applications, 2001, 357-360, 987-990.	0.6	27
251	Growth and characterization of conductive SrRuO ₃ and LaNiO ₃ multilayers on textured Ni tapes for high-J _{<} Yba ₂ Cu ₃ O _{7–delta;} coated conductors. Journal of Materials Research, 2001, 16, 2661-2669.	1.2	18
252	Fabrication of long lengths of YBCO coated conductors using a continuous reel-to-reel dip-coating unit. IEEE Transactions on Applied Superconductivity, 2001, 11, 3146-3149.	1.1	49

#	Article	IF	Citations
253	Conductive buffer layers and overlayers for the thermal stability of coated conductors. IEEE Transactions on Applied Superconductivity, 2001, 11, 3309-3312.	1.1	20
254	Degradation of superconducting properties in MgB2films by exposure to water. Superconductor Science and Technology, 2001, 14, 425-428.	1.8	30
255	Electron beam co-evaporation of Y-BaF2-Cu precursor films for YBa2Cu3O7-ycoated conductors. Superconductor Science and Technology, 2001, 14, 218-223.	1.8	15
256	High temporal stability of supercurrents in MgB2materials. Superconductor Science and Technology, 2001, 14, L17-L20.	1.8	48
257	Superconducting MgB2 films via precursor postprocessing approach. Applied Physics Letters, 2001, 78, 3669-3671.	1.5	130
258	Superconducting magnesium diboride films on Si with Tc0â ¹ /424 K grown via vacuum annealing from stoichiometric precursors. Applied Physics Letters, 2001, 79, 2603-2605.	1.5	48
259	Inter- and intragrain transport measurements in YBa2Cu3O7â^'x deformation textured coated conductors. Applied Physics Letters, 2001, 79, 3998-4000.	1.5	45
260	La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7â^'δ coated conductors. Applied Physics Letters, 2001, 79, 2205-2207.	1.5	53
261	Magneto-optical imaging of transport currents in YBa/sub 2/Cu/sub 3/O/sub 7-x/ on RABiTS/sup TM/. IEEE Transactions on Applied Superconductivity, 2001, 11, 3772-3775.	1.1	22
262	Fabrication of Long Lengths of Epitaxial Buffer Layers on Biaxially Textured Nickel Substrates Using a Continuous Reelâ€toâ€Reel Dipâ€Coating Unit. Journal of the American Ceramic Society, 2001, 84, 273-78.	1.9	41
263	Solution Synthesis of Epitaxial Rare-Earth Oxide Thin Films on Roll-Textured Nickel. Materials Research Society Symposia Proceedings, 2000, 619, 203.	0.1	1
264	Epitaxial growth of La2Zr2O7 thin films on rolled Ni-substrates by sol–gel process for high Tc superconducting tapes. Physica C: Superconductivity and Its Applications, 2000, 336, 63-69.	0.6	74
265	Synthesis and characterization of chromium-containing, thallium-based 1212 films. Physica C: Superconductivity and Its Applications, 2000, 333, 221-228.	0.6	10
266	Progress towards a low-cost coated conductor technology. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2319-2322.	0.6	9
267	An all-sputtered buffer layer architecture for high-Jc YBa2Cu3O7â^Î coated conductors. Physica C: Superconductivity and Its Applications, 2000, 340, 33-40.	0.6	11
268	Microstructure of a high Jc, laser-ablated YBa2Cu3O7â~Î/sol–gel deposited NdGaO3 buffer layer/(001) SrTiO3 multi-layer structure. Physica C: Superconductivity and Its Applications, 2000, 331, 73-78.	0.6	11
269	Microstructural homogeneity and electromagnetic connectivity of YBa2Cu3O7â^'δ grown on rolling-assisted biaxially textured coated conductor substrates. Physica C: Superconductivity and Its Applications, 2000, 329, 114-120.	0.6	9
270	Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties. Materials Research Bulletin, 2000, 35, 217-224.	2.7	64

#	Article	IF	CITATIONS
271	Low angle grain boundary transport in YBa2Cu3O7â^Î coated conductors. Applied Physics Letters, 2000, 76, 1755-1757.	1.5	166
272	Synthesis and characterization of thallium-based 1212 films with high critical current density on LaAlO3substrates. Superconductor Science and Technology, 2000, 13, 173-177.	1.8	14
273	Low-cost YBCO coated conductor technology. Superconductor Science and Technology, 2000, 13, 473-476.	1.8	107
274	YBa ₂ Cu ₃ O _{7-<i>y</i>>} â^'coated conductors with high engineering current density. Journal of Materials Research, 2000, 15, 2647-2652.	1.2	65
275	Epitaxial growth of gadolinium oxide on roll-textured nickel using a solution growth technique. Journal of Materials Research, 2000, 15, 621-628.	1.2	30
276	Epitaxy of HgBa2CaCu2O6 superconducting films on biaxially textured Ni substrates. Applied Physics Letters, 2000, 77, 4193-4195.	1.5	18
277	Preparation of Epitaxial YbBa2Cu3O7-δon SrTiO3 Single Crystal Substrates Using a Solution Process. Japanese Journal of Applied Physics, 1999, 38, L727-L730.	0.8	12
278	Alternative Buffer Architectures for High Critical Current Density YBCO Superconducting Deposits on Rolling Assisted Biaxially-Textured Substrates. Japanese Journal of Applied Physics, 1999, 38, L178-L180.	0.8	27
279	Growth of biaxially textured RE2O3buffer layers on rolled-Ni substrates using reactive evaporation for HTS-coated conductors. Superconductor Science and Technology, 1999, 12, 319-325.	1.8	72
280	Buffer layers and thallination of Tl-based superconductors on flexible metal substrates. IEEE Transactions on Applied Superconductivity, 1999, 9, 1673-1676.	1.1	4
281	Alternating transport-current flow in superconductive films: The role of a geometrical barrier to vortex motion. Physical Review B, 1999, 60, 6878-6883.	1.1	15
282	Optimization of buffer layers on rolled-Ni substrates for high current YBCO and Tl,Bi-1223 coated conductors using ex-situ precursor approaches. IEEE Transactions on Applied Superconductivity, 1999, 9, 2268-2271.	1.1	13
283	Long length fabrication of YBCO on rolling assisted biaxially textured substrates (RABiTS) using pulsed laser deposition. IEEE Transactions on Applied Superconductivity, 1999, 9, 2276-2279.	1.1	30
284	Low-cost combustion chemical vapor deposition of epitaxial buffer layers and superconductors. IEEE Transactions on Applied Superconductivity, 1999, 9, 2426-2429.	1.1	10
285	Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates. Micron, 1999, 30, 463-478.	1.1	84
286	High-resolution transmission electron microscopy/analytical electron microscopy characterization of epitaxial oxide multilayers fabricated by laser ablation on biaxially textured Ni. Physica C: Superconductivity and Its Applications, 1999, 321, 29-38.	0.6	13
287	In-plane aligned superconducting Tl0.78Bi0.22Sr1.6Ba0.4Ca2Cu3O9 films on rolling assisted biaxially textured substrates. Physica C: Superconductivity and Its Applications, 1999, 313, 241-245.	0.6	13
288	Growth of biaxially oriented conductive LaNiO3 buffer layers on textured Ni tapes for high-Tc-coated conductors. Physica C: Superconductivity and Its Applications, 1999, 314, 105-111.	0.6	32

#	Article	IF	Citations
289	Continuous growth of epitaxial CeO2 buffer layers on rolled Ni tapes by electron beam evaporation. Physica C: Superconductivity and Its Applications, 1999, 316, 27-33.	0.6	34
290	Preparation of textured YBCO films using all-iodide precursors. Physica C: Superconductivity and Its Applications, 1999, 319, 127-132.	0.6	14
291	Transport and structural characterization of epitaxial Nd1+xBa2â^'xCu3Oy thin films grown on LaAlO3 and Ni metal substrates by pulsed-laser deposition. Physica C: Superconductivity and Its Applications, 1999, 324, 177-186.	0.6	18
292	Low temperature preparation of BaCeO3 and CeO.75ZrO.25O2 thin films using sol-gel processing techniques. Materials Research Bulletin, 1999, 34, 817-825.	2.7	14
293	Growth and characterization of oxide buffer layers for YBCO coated conductors. IEEE Transactions on Applied Superconductivity, 1999, 9, 1527-1530.	1.1	23
294	Reel-to-reel continuous deposition of epitaxial CeO/sub 2/ buffer layers on biaxially textured Ni tapes by electron beam evaporation. IEEE Transactions on Applied Superconductivity, 1999, 9, 1967-1970.	1.1	11
295	Superconducting (TlBi)/sub 0.9/Sr/sub 1.6/Ba/sub 0.4/Ca/sub 2/Cu/sub 3/Ag/sub 0.2/O/sub x/ films from electrodeposited precursors. IEEE Transactions on Applied Superconductivity, 1999, 9, 1681-1683.	1.1	7
296	Epitaxial superconducting Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu3O9films on LaAlO3by thermal spray and post-spray annealing. Superconductor Science and Technology, 1999, 12, L1-L4.	1.8	14
297	Phase stability for thein situgrowth of Nd1+xBa2â^'xCu3Oy films using pulsed-laser deposition. Applied Physics Letters, 1999, 74, 96-98.	1.5	37
298	Title is missing!. Journal of Superconductivity and Novel Magnetism, 1998, 11, 159-161.	0.5	17
299	High Critical Current Density YBa2Cu3O x Tapes Using the RABiTs Approach. Journal of Superconductivity and Novel Magnetism, 1998, 11, 481-487.	0.5	47
300	Thick-Film Processing for Tl-Oxide Wire and Tape. Journal of Superconductivity and Novel Magnetism, 1998, 11, 173-180.	0.5	8
301	High Jc YBCO films on biaxially textured Ni with oxide buffer layers deposited using electron beam evaporation and sputtering. Physica C: Superconductivity and Its Applications, 1998, 302, 87-92.	0.6	77
302	Laser-ablated epitaxial LaAlO3 buffer layers on biaxially textured Ni substrates for superconducting tapes. Physica C: Superconductivity and Its Applications, 1998, 304, 82-88.	0.6	20
303	Microstructure of electron-beam-evaporated epitaxial yttria-stabilized zirconia/CeO2 bilayers on biaxially textured Ni tape. Physica C: Superconductivity and Its Applications, 1998, 307, 87-98.	0.6	42
304	Epitaxial YBa2Cu3O7 films on rolled-textured metals for high-temperature superconducting applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 86-94.	1.7	42
305	Biaxially Textured YBa2Cu3O7-δConductors on Rolling Assisted Biaxially Textured Substrates with Critical Current Densities of 2-3 mA/cm2. Japanese Journal of Applied Physics, 1998, 37, L1379-L1382.	0.8	72
306	Bend strain tolerance of critical currents for YBa2Cu3O7 films deposited on rolled-textured (001)Ni. Applied Physics Letters, 1998, 73, 1904-1906.	1.5	53

#	Article	IF	CITATIONS
307	Cube-textured nickel substrates for high-temperature superconductors. Superconductor Science and Technology, 1998, 11, 945-949.	1.8	101
308	Growth of TlBa ₂ Ca ₂ Cu ₃ O _{9â^'<i>y</i>} superconducting films with local biaxial alignment extending up to 5 mm on Ag substrates using a spray-pyrolysis technique. Journal of Materials Research, 1997, 12, 619-623.	1.2	8
309	Sol-gel Synthesis of LaAlO ₃ ; Epitaxial Growth of LaAlO ₃ Thin Films on SrTiO ₃ (100). Journal of Materials Research, 1997, 12, 1017-1021.	1.2	39
310	Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire. Journal of Materials Research, 1997, 12, 2924-2940.	1.2	161
311	Sol-Gel Synthesis of Rare Earth Aluminate Films as Buffer Layers for High Tc Superconducting Films. Materials Research Society Symposia Proceedings, 1997, 495, 263.	0.1	11
312	Alternating current losses in biaxially textured YBa2Cu3O7â^Î^films deposited on Ni tapes. Applied Physics Letters, 1997, 71, 2029-2031.	1.5	33
313	Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors. Physica C: Superconductivity and Its Applications, 1997, 275, 155-161.	0.6	117
314	Growth of biaxially textured buffer layers on rolled-Ni substrates by electron beam evaporation. Physica C: Superconductivity and Its Applications, 1997, 275, 266-272.	0.6	176
315	High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Applied Physics Letters, 1996, 69, 1795-1797.	1.5	944
316	Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density. Science, 1996, 274, 755-757.	6.0	678
317	Very Thin Films of High Dielectric Constant Materials. Materials Research Society Symposia Proceedings, 1996, 446, 309.	0.1	1
318	Biaxially oriented metallic tape substrates for high-temperature superconductors. European Physical Journal D, 1996, 46, 1531-1532.	0.4	3
319	Equilibrium magnetic studies of Hg-based high-Tc superconductors. European Physical Journal D, 1996, 46, 1599-1600.	0.4	0
320	Crystal Chemistry of HgBa2Canâ^'1CunO2n+2+Î'(n= 1, 2, 3, 4) Superconductors. Journal of Solid State Chemistry, 1996, 122, 221-230.	1.4	42
321	Neutron diffraction studies on superconducting YNi2B2C at various temperatures. Physica B: Condensed Matter, 1996, 223-224, 105-108.	1.3	9
322	Epitaxial superconductors on rolling-assisted biaxially-textured substrates (RABiTS): a route towards high critical current density wire. Applied Superconductivity, 1996, 4, 403-427.	0.5	129
323	Growth of Highly Oriented TlBa2Ca2Cu3O9-y Superconducting Films on Ag Substrates Using a Dip-Coated Barium Calcium Copper Oxide Sol-Gel Precursor. Journal of the American Ceramic Society, 1995, 78, 2551-2553.	1.9	15
324	Alternating-current electrodeposition (metafuse) process for forming thallium-oxide superconductors. Physica C: Superconductivity and Its Applications, 1995, 251, 105-109.	0.6	17

#	Article	IF	CITATIONS
325	Enhanced irreversibility field and current stabilization by Pb substitution in aligned Tl-1223 high-Tc superconductor. Physica C: Superconductivity and Its Applications, 1995, 253, 357-366.	0.6	7
326	Structure and superconducting properties of (Tl0.8Bi0.2)(Sr1.6Ba0.4)Ca2Cu3O9â^Î. Physica C: Superconductivity and Its Applications, 1995, 253, 109-114.	0.6	12
327			

#	Article	IF	CITATIONS
343	Thermoelectric power and resistivity of bulk HgBa2CuO4+y superconductors and the effects of annealing. Physica C: Superconductivity and Its Applications, 1994, 222, 47-51.	0.6	24
344	Neutron powder diffraction study of the superconducting quaternary intermetallic compound YNi2B2C. Physica C: Superconductivity and Its Applications, 1994, 227, 143-150.	0.6	42
345	Synthesis and magnetic characterization of (Tl0.5Pb0.5)Sr2Ca2Cu3O9 and Tl2Ba2CaCu2O8 bulk superconductors. Physica C: Superconductivity and Its Applications, 1994, 219, 413-419.	0.6	19
346	199Hg-solid state NMR and susceptibility studies of mercury - based HTSC. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1671-1672.	0.6	0
347	Evidence for phase stability and weak links in polycrystalline HgBa2CuO4 + $\hat{\Gamma}$. Applied Superconductivity, 1994, 2, 359-365.	0.5	3
348	Valence band electronic structure of the Tl2â^'xâ^'zBa2Ca2+xCu3O10â^'y system. Physica C: Superconductivity and Its Applications, 1993, 214, 153-158.	0.6	3
349	Synthesis and magnetic characterization of the high-Tc superconducting compound HgBa2CuO4+Î'. Physica C: Superconductivity and Its Applications, 1993, 213, 271-275.	0.6	54
350	Single crystal studies of the pairing mechanism in Tl2Ba2CuO6 superconductors. Physica C: Superconductivity and Its Applications, 1993, 209, 199-202.	0.6	14
351	Asymmetry between flux penetration and flux expulsion in Tl-2212 superconductors. Journal of Superconductivity and Novel Magnetism, 1993, 6, 185-189.	0.5	3
352	Effect of site-selective substitution in bulk superconducting Tl2Ba2CaCu2O8. Journal of Electronic Materials, 1993, 22, 1205-1209.	1.0	2
353	Comparative photoemission studies of Tl2Ba2Canâ^'1CunO2n+4(n=1, 2, and 3). Physical Review B, 1993, 48, 15999-16005.	1.1	16
354	Vortex fluctuations, magnetic penetration depth, and Hc2in Hg- and Tl-based high-Tcsuperconductors. Physical Review B, 1993, 48, 14031-14034.	1.1	61
355	Band structures and Fermi surfaces of single- and double-Tl-O-layered high-temperature superconductors. Physical Review B, 1993, 47, 14489-14494.	1.1	7
356	Hole concentration and critical temperature in Tl2 –yBa2 –zLazCuO6 –x. Journal of Materials Chemistry, 1992, 2, 317-321.	6.7	1
357	Hole concentration and Tc in Tl2â^'yBa2Ca1â^'zYzCu2O8â^'x. Journal of Solid State Chemistry, 1992, 98, 343-349.	1.4	13
358	On the determination of hole concentration in thallium cuprate superconductors. Journal of Solid State Chemistry, 1992, 96, 464-467.	1.4	12
359	Preparation and magnetic properties of Cu6O8·InCl and LixCu6O8·InCl. Journal of Solid State Chemistry, 1992, 96, 243-246.	1.4	4
360	Hole concentration and critical temperature in the Tl2â^'xâ^'zBa2Ca2+xCu3O10â^'y system. Physica C: Superconductivity and Its Applications, 1992, 192, 161-165.	0.6	12

#	Article	lF	CITATIONS
361	Oxide ion electrolytes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 12, 357-364.	1.7	102
362	Properties of the chemically characterized thallium cuprate superconductors. Physica C: Superconductivity and Its Applications, 1990, 171, 135-146.	0.6	44
363	Chemical methods to identify the origin of oxidation in the thallium cuprate superconductors. Journal of Solid State Chemistry, 1990, 87, 479-482.	1.4	35
364	Surface protonation and electrochemical activity of oxides in aqueous solution. Journal of the American Chemical Society, 1990, 112, 2076-2082.	6.6	197
365	Photoelectrochemical studies on Mo-cluster compounds, GaMo4S8 and ZnMo2Re2S8. Materials Research Bulletin, 1989, 24, 931-938.	2.7	1
366	Phase-Separated, Epitaxial, Nanostructured LaMnO ₃ +MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa ₂ Cu ₃ O _{7-Î<} Coated Conductors. Applied Physics Express, 0, 2, 063008.	1.1	6
367	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€ion Batteries. ChemSusChem, 0, , .	3.6	0
368	Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry. 3D Printing and Additive Manufacturing, 0, , .	1.4	1
369	Thermal stability of anisotropic bonded magnets prepared by additive manufacturing. Journal of the American Ceramic Society, 0, , .	1.9	0