Linda L Walling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620548/publications.pdf

Version: 2024-02-01

46 papers

4,574 citations

236925 25 h-index 243625 44 g-index

47 all docs

47 docs citations

47 times ranked

3810 citing authors

#	Article	IF	Citations
1	Efficient CRISPR/Cas9-mediated genome modification of the glassy-winged sharpshooter Homalodisca vitripennis (Germar). Scientific Reports, 2022, 12, 6428.	3.3	9
2	Virusâ€induced phytohormone dynamics and their effects on plant–insect interactions. New Phytologist, 2021, 230, 1305-1320.	7.3	38
3	Improved draft reference genome for the Glassy-winged Sharpshooter (<i>Homalodisca) Tj ETQq1 1 0.784314 rg</i>	gBT /Overl	ock 10 Tf 50 6
4	Can CRISPR gene drive work in pest and beneficial haplodiploid species?. Evolutionary Applications, 2020, 13, 2392-2403.	3.1	20
5	Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods, 2020, 16, 131.	4.3	9
6	Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME Journal, 2020, 14, 2923-2935.	9.8	47
7	Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid. BMC Genomics, 2020, 21, 93.	2.8	41
8	A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biology, 2019, 19, 518.	3.6	26
9	Extreme resistance: The GLK–Rx1 alliance. Journal of Biological Chemistry, 2018, 293, 3234-3235.	3.4	3
10	Editorial: Advances in Plant-Hemipteran Interactions. Frontiers in Plant Science, 2017, 8, 1652.	3.6	8
11	Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS ONE, 2017, 12, e0185492.	2.5	6
12	Structural insights into chaperone-activity enhancement by a K354E mutation in tomato acidic leucine aminopeptidase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 694-702.	2.3	4
13	Hemipteran and dipteran pests: Effectors and plant host immune regulators. Journal of Integrative Plant Biology, 2016, 58, 350-361.	8.5	84
14	Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1649-1658.	2.5	13
15	Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecology Letters, 2013, 16, 390-398.	6.4	161
16	Microarray Analysis of Tomato's Early and Late Wound Response Reveals New Regulatory Targets for Leucine Aminopeptidase A. PLoS ONE, 2013, 8, e77889.	2.5	35
17	Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage. Journal of Biological Chemistry, 2012, 287, 18408-18417.	3.4	56
18	Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding. Journal of Chemical Ecology, 2010, 36, 1271-1285.	1.8	79

#	Article	IF	Citations
19	Leucine Aminopeptidase Regulates Defense and Wound Signaling in Tomato Downstream of Jasmonic Acid. Plant Cell, 2009, 21, 1239-1251.	6.6	124
20	Avoiding Effective Defenses: Strategies Employed by Phloem-Feeding Insects. Plant Physiology, 2008, 146, 859-866.	4.8	498
21	Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiology, 2007, 143, 866-875.	4.8	635
22	Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiology, 2007, 143, 849-865.	4.8	344
23	Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomologia Experimentalis Et Applicata, 2006, 121, 67-72.	1.4	109
24	Recycling or regulation? The role of amino-terminal modifying enzymes. Current Opinion in Plant Biology, 2006, 9, 227-233.	7.1	65
25	An improved method for isolating RNA from dehydrated and nondehydrated chili pepper (Capsicum) Tj ETQq $1\ 1$	0.784314 1.8	rgBT /Overlo
26	Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. FEBS Journal, 2002, 269, 1630-1640.	0.2	47
27	Influence of elevated CO 2 concentration on disease development in tomato. New Phytologist, 2001, 149, 509-518.	7.3	42
28	A Lipid Transfer–like Protein Is Necessary for Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix. Plant Cell, 2000, 12, 151-163.	6.6	202
29	Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. FEBS Journal, 2000, 267, 1178-1187.	0.2	51
30	The Myriad Plant Responses to Herbivores. Journal of Plant Growth Regulation, 2000, 19, 195-216.	5.1	1,213
31	Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta, 2000, 210, 563-573.	3.2	35
32	Local and Systemic Changes in Squash Gene Expression in Response to Silverleaf Whitefly Feeding. Plant Cell, 2000, 12, 1409-1423.	6.6	121
33	Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. FEBS Journal, 1999, 263, 726-735.	0.2	7 5
34	Leucine Aminopeptidase RNAs, Proteins, and Activities Increase in Response to Water Deficit, Salinity, and the Wound Signals Systemin, Methyl Jasmonate, and Abscisic Acid1. Plant Physiology, 1999, 120, 979-992.	4.8	184
35	Identification of mRNAs and proteins in higher plants using probes from the Band 3 anion transporter of mammals. Journal of Experimental Botany, 1997, 48, 857-868.	4.8	4
36	Localization and Post-translational Processing of the Wound-induced Leucine Aminopeptidase Proteins of Tomato. Journal of Biological Chemistry, 1996, 271, 25880-25887.	3.4	41

#	Article	lF	CITATION
37	Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. American Journal of Botany, 1994, 81, 414-422.	1.7	6
38	Differential Expression of Photosynthesis Genes in Leaf Tissue Layers of Peperomia as Revealed by Tissue Printing. American Journal of Botany, 1994, 81, 414.	1.7	4
39	Expression of P-Enolpyruvate Carboxylase and other Aspects of CAM during the Development of Peperomia camptotrichaLeaves. Botanica Acta, 1993, 106, 313-319.	1.6	11
40	Characterization of an antherâ€specific glycoprotein in Lilium longiflorum. American Journal of Botany, 1993, 80, 1155-1161.	1.7	0
41	PATTERNS OF PROTEIN ACCUMULATION IN DEVELOPING ANTHERS OF LILIUM LONGIFLORUM CORRELATE WITH HISTOLOGICAL EVENTS. American Journal of Botany, 1992, 79, 118-127.	1.7	43
42	ANALYSIS OF POLYPEPTIDES ASSOCIATED WITH SHOOT FORMATION IN TOBACCO CALLUS CULTURES. American Journal of Botany, 1992, 79, 481-487.	1.7	6
43	Chlorophyll a/b-binding protein genes are differentially expressed during soybean development. Plant Molecular Biology, 1992, 19, 217-230.	3.9	13
44	Analysis of Polypeptides Associated with Shoot Formation in Tobacco Callus Cultures. American Journal of Botany, 1992, 79, 481.	1.7	2
45	Patterns of Protein Accumulation in Developing Anthers of Lilium longiflorum Correlate with Histological Events. American Journal of Botany, 1992, 79, 118.	1.7	20
46	Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	9