Linda L Walling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Myriad Plant Responses to Herbivores. Journal of Plant Growth Regulation, 2000, 19, 195-216.	5.1	1,213
2	Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiology, 2007, 143, 866-875.	4.8	635
3	Avoiding Effective Defenses: Strategies Employed by Phloem-Feeding Insects. Plant Physiology, 2008, 146, 859-866.	4.8	498
4	Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiology, 2007, 143, 849-865.	4.8	344
5	A Lipid Transfer–like Protein Is Necessary for Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix. Plant Cell, 2000, 12, 151-163.	6.6	202
6	Leucine Aminopeptidase RNAs, Proteins, and Activities Increase in Response to Water Deficit, Salinity, and the Wound Signals Systemin, Methyl Jasmonate, and Abscisic Acid1. Plant Physiology, 1999, 120, 979-992.	4.8	184
7	Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecology Letters, 2013, 16, 390-398.	6.4	161
8	Leucine Aminopeptidase Regulates Defense and Wound Signaling in Tomato Downstream of Jasmonic Acid. Plant Cell, 2009, 21, 1239-1251.	6.6	124
9	Local and Systemic Changes in Squash Gene Expression in Response to Silverleaf Whitefly Feeding. Plant Cell, 2000, 12, 1409-1423.	6.6	121
10	Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomologia Experimentalis Et Applicata, 2006, 121, 67-72.	1.4	109
11	Hemipteran and dipteran pests: Effectors and plant host immune regulators. Journal of Integrative Plant Biology, 2016, 58, 350-361.	8.5	84
12	Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding. Journal of Chemical Ecology, 2010, 36, 1271-1285.	1.8	79
13	Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. FEBS Journal, 1999, 263, 726-735.	0.2	75
14	Recycling or regulation? The role of amino-terminal modifying enzymes. Current Opinion in Plant Biology, 2006, 9, 227-233.	7.1	65
15	Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage. Journal of Biological Chemistry, 2012, 287, 18408-18417.	3.4	56
16	Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. FEBS Journal, 2000, 267, 1178-1187.	0.2	51
17	Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. FEBS Journal, 2002, 269, 1630-1640.	0.2	47
18	Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME Journal, 2020, 14, 2923-2935.	9.8	47

LINDA L WALLING

C

9

#	Article	IF	CITATIONS
19	PATTERNS OF PROTEIN ACCUMULATION IN DEVELOPING ANTHERS OF LILIUM LONGIFLORUM CORRELATE WITH HISTOLOGICAL EVENTS. American Journal of Botany, 1992, 79, 118-127.	1.7	43
20	Influence of elevated CO 2 concentration on disease development in tomato. New Phytologist, 2001, 149, 509-518.	7.3	42
21	Localization and Post-translational Processing of the Wound-induced Leucine Aminopeptidase Proteins of Tomato. Journal of Biological Chemistry, 1996, 271, 25880-25887.	3.4	41
22	Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid. BMC Genomics, 2020, 21, 93.	2.8	41
23	Virusâ€induced phytohormone dynamics and their effects on plant–insect interactions. New Phytologist, 2021, 230, 1305-1320.	7.3	38
24	Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta, 2000, 210, 563-573.	3.2	35
25	Microarray Analysis of Tomato's Early and Late Wound Response Reveals New Regulatory Targets for Leucine Aminopeptidase A. PLoS ONE, 2013, 8, e77889.	2.5	35
26	A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biology, 2019, 19, 518.	3.6	26
27	Can CRISPR gene drive work in pest and beneficial haplodiploid species?. Evolutionary Applications, 2020, 13, 2392-2403.	3.1	20
28	Patterns of Protein Accumulation in Developing Anthers of Lilium longiflorum Correlate with Histological Events. American Journal of Botany, 1992, 79, 118.	1.7	20
29	Chlorophyll a/b-binding protein genes are differentially expressed during soybean development. Plant Molecular Biology, 1992, 19, 217-230.	3.9	13
30	Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1649-1658.	2.5	13
31	Expression of P-Enolpyruvate Carboxylase and other Aspects of CAM during the Development ofPeperomia camptotrichaLeaves. Botanica Acta, 1993, 106, 313-319.	1.6	11
32	An improved method for isolating RNA from dehydrated and nondehydrated chili pepper (Capsicum) Tj ETQq0 C) 0 rgBT /0	iverlock 10 Tf
33	Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods, 2020, 16, 131.	4.3	9
34	Improved draft reference genome for the Glassy-winged Sharpshooter (<i>Homalodisca) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 7	rf 5g 142 Td (
35	Efficient CRISPR/Cas9-mediated genome modification of the glassy-winged sharpshooter Homalodisca vitripennis (Germar). Scientific Reports, 2022, 12, 6428.	3.3	9

36Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives.4.1Frontiers in Bioengineering and Biotechnology, 0, 10, .

LINDA L WALLING

#	Article	IF	CITATIONS
37	Editorial: Advances in Plant-Hemipteran Interactions. Frontiers in Plant Science, 2017, 8, 1652.	3.6	8
38	ANALYSIS OF POLYPEPTIDES ASSOCIATED WITH SHOOT FORMATION IN TOBACCO CALLUS CULTURES. American Journal of Botany, 1992, 79, 481-487.	1.7	6
39	Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. American Journal of Botany, 1994, 81, 414-422.	1.7	6
40	Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS ONE, 2017, 12, e0185492.	2.5	6
41	Identification of mRNAs and proteins in higher plants using probes from the Band 3 anion transporter of mammals. Journal of Experimental Botany, 1997, 48, 857-868.	4.8	4
42	Structural insights into chaperone-activity enhancement by a K354E mutation in tomato acidic leucine aminopeptidase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 694-702.	2.3	4
43	Differential Expression of Photosynthesis Genes in Leaf Tissue Layers of Peperomia as Revealed by Tissue Printing. American Journal of Botany, 1994, 81, 414.	1.7	4
44	Extreme resistance: The GLK–Rx1 alliance. Journal of Biological Chemistry, 2018, 293, 3234-3235.	3.4	3
45	Analysis of Polypeptides Associated with Shoot Formation in Tobacco Callus Cultures. American Journal of Botany, 1992, 79, 481.	1.7	2
46	Characterization of an antherâ€specific glycoprotein in Lilium longiflorum. American Journal of Botany, 1993, 80, 1155-1161.	1.7	0