Lianbin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8620180/publications.pdf

Version: 2024-02-01

		394421	361022
37	4,075 citations	19	35
papers	citations	h-index	g-index
37	37	37	4134
all docs	docs citations	times ranked	citing authors
an docs	does citations	tilles l'alliceu	citing authors

#	Article	IF	CITATIONS
1	The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013, 60, 16-27.	10.3	954
2	Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 2014, 69, 467-480.	10.3	677
3	Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites Part A: Applied Science and Manufacturing, 2014, 64, 79-89.	7. 6	525
4	Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Composites Science and Technology, 2013, 82, 60-68.	7.8	293
5	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	14.6	227
6	Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. Journal of Materials Chemistry A, 2014, 2, 15058.	10.3	217
7	Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Composites Part A: Applied Science and Manufacturing, 2013, 45, 95-101.	7.6	156
8	Creep and recovery of polystyrene composites filled with graphene additives. Composites Science and Technology, 2014, 91, 63-70.	7.8	123
9	Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 2015, 69, 288-298.	7.6	103
10	Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Composites Science and Technology, 2016, 134, 144-152.	7.8	103
11	Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 53-64.	7.6	89
12	A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer. Journal of Hazardous Materials, 2017, 336, 222-231.	12.4	87
13	Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Materials Chemistry and Physics, 2013, 141, 333-342.	4.0	85
14	Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon, 2016, 107, 573-582.	10.3	83
15	Facile fabrication of superhydrophobic polyurethane sponge towards oil-water separation with exceptional flame-retardant performance. Separation and Purification Technology, 2019, 229, 115801.	7.9	72
16	Facile Surface Modification of Hydroxylated Silicon Nanostructures Using Heterocyclic Silanes. Journal of the American Chemical Society, 2016, 138, 15106-15109.	13.7	68
17	Mechanical properties and fracture behaviors of epoxy composites with phase-separation formed liquid rubber and preformed powdered rubber nanoparticles: A comparative study. Polymer Composites, 2015, 36, 785-799.	4.6	43
18	Facile fabrication of mechanically stable non-iridescent structural color coatings. Journal of Materials Science, 2020, 55, 2353-2364.	3.7	24

#	Article	IF	CITATIONS
19	Facile Generation of Durable Superhydrophobic Fabrics toward Oil/Water Separation via Thiol-Ene Click Chemistry. Industrial & Engineering Chemistry Research, 2020, 59, 6130-6140.	3.7	24
20	Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating. Frontiers of Chemical Science and Engineering, 2021, 15, 969-983.	4.4	14
21	Stable electrically conductive, highly flame-retardant foam composites generated from reduced graphene oxide and silicone resin coatings. Soft Matter, 2021, 17, 68-82.	2.7	13
22	Modeling Spray Drying of Redispersible Polyacrylate Powder. Drying Technology, 2014, 32, 222-235.	3.1	11
23	Superhydrophobic Self-Healing Coatings Comprised of Hemispherical Particles Arrays Decorated by Fluorocarbon-Coated Nanoscale Fe ₂ O ₃ Rods and SiO ₂ Particles. ACS Applied Nano Materials, 2020, 3, 10342-10348.	5.0	11
24	Synthesis of vinyl end-capped polydimethylsiloxane by ring opening polymerization of octamethylcyclotetrasiloxane (D4) catalyzed by rare earth solid super acid SO4 2 - /TiO2 /Ln3+. Polymer International, 2014, 63, 347-351.	3.1	10
25	Fabrication and characterisation of hydrophobic magnetite composite nanoparticles for oil/water separation. Materials Technology, 2016, 31, 38-43.	3.0	9
26	Preparation and properties of fluorine-containing polysiloxanes obtained via ring-opening copolymerization of trifluoropropyltrimethylcyclotrisiloxane with cyclotetrasiloxane catalyzed by rare earth solid superacid SO_{4}^{2-} ITiO2 /Ln3+. Polymer International, 2012, 61, 1627-1633.	3.1	8
27	Stabilization Mechanism of the Reconstituted Emulsion of Polyacrylate Redispersible Powder. Chemical Engineering Communications, 2015, 202, 1245-1250.	2.6	8
28	Facile generation of highly durable thiol-functionalized polyhedral oligomeric silsesquioxane based superhydrophobic melamine foam. Frontiers of Chemical Science and Engineering, 0 , 1 .	4.4	7
29	Fabrication and properties of chemically bonded polysilsesquioxaneâ€polyacrylate/silica hybrid latex films with high silicon content. Polymer Composites, 2015, 36, 389-396.	4.6	6
30	Superhydrophobic and Superparamagnetic Composite Coatings: A Comparative Study on Dual-Sized Functional Magnetite Nanoparticles/Silicone Rubber. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1816-1825.	3.7	6
31	One-Step Covalent Surface Modification to Achieve Oil–Water Separation Performance of a Non-Fluorinated Durable Superhydrophobic Fabric. ACS Omega, 2021, 6, 24139-24146.	3.5	5
32	Bithiazole-bridged polysilsesquioxane and its metal complexes: synthesis and magnetic properties. Journal of Sol-Gel Science and Technology, 2011, 60, 214-220.	2.4	4
33	Fabrication and characterization of chemically bonded polysilsesquioxane-polyacrylate hybrid latex particles. Composite Interfaces, 2014, 21, 455-465.	2.3	4
34	'LIVING' RADICAL POLYMERIZATION OF METHYL METHACRYLATE IN [mim][HCOO] IONIC LIQUID SYSTEM. Acta Polymerica Sinica, 2006, 006, 549-552.	0.0	4
35	SYNTHESIS OF POLY[γ-(2-THIAZOLE-UREIDO)PROPYL]-METHYLDIETHOXYSILANE METAL COMPLEXES AND THEIR MAGNETIC PROPERTIES. Acta Polymerica Sinica, 2010, 010, 377-382.	0.0	1
36	Fabrication and performance of a superhydrophobic fluorine-modified porous silicon based on photocatalytic hydrosilylation. Microporous and Mesoporous Materials, 2021, 330, 111561.	4.4	1

#	Article	IF	CITATIONS
37	Impact of the boron substituent on the molecular structures and electronic properties of N-heterocycle-substituted indolylboranes. Dyes and Pigments, 2021, 196, 109807.	3.7	0