Egon Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8619876/publications.pdf

Version: 2024-02-01

54 1,385 21 36
papers citations h-index g-index

54 54 54 54 54 793

54 54 54 793
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Incorporation of an Active Site Inhibitor in Factor VIIa Alters the Affinity for Tissue Factor. Journal of Biological Chemistry, 1997, 272, 11863-11868.	3.4	120
2	A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood, 2013, 121, 2108-2116.	1.4	112
3	Improved hemostasis with superactive analogs of factor VIIa in a mouse model of hemophilia A. Blood, 2003, 102, 3615-3620.	1.4	103
4	The Endothelial Protein C Receptor Supports Tissue Factor Ternary Coagulation Initiation Complex Signaling through Protease-activated Receptors. Journal of Biological Chemistry, 2011, 286, 5756-5767.	3.4	80
5	A Variant of Recombinant Factor VIIa With Enhanced Procoagulant and Antifibrinolytic Activities in an In Vitro Model of Hemophilia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 683-689.	2.4	67
6	Factor VIIa analogue (V158D/E296V/M298Q-FVIIa) normalises clot formation in whole blood from patients with severe haemophilia A. British Journal of Haematology, 2007, 137, 158-165.	2.5	64
7	Structural changes in factor VIIa induced by Ca ²⁺ and tissue factor studied using circular dichroism spectroscopy. Protein Science, 1996, 5, 1531-1540.	7.6	63
8	Substitution of Aspartic Acid for Methionine-306 in Factor VIIa Abolishes the Allosteric Linkage between the Active Site and the Binding Interface with Tissue Factor. Biochemistry, 2001, 40, 3251-3256.	2.5	58
9	Allosteric Activation of Coagulation Factor VIIa Visualized by Hydrogen Exchange. Journal of Biological Chemistry, 2006, 281, 23018-23024.	3.4	52
10	Augmented intrinsic activity of Factor VIIa by replacement of residues 305, 314, 337 and 374: evidence of two unique mutational mechanisms of activity enhancement. Biochemical Journal, 2004, 379, 497-503.	3.7	43
11	Oxidation of Methionine Residues in Coagulation Factor VIIa. Archives of Biochemistry and Biophysics, 1999, 363, 43-54.	3.0	42
12	Substitution of Valine for Leucine 305 in Factor VIIa Increases the Intrinsic Enzymatic Activity. Journal of Biological Chemistry, 2001, 276, 29195-29199.	3.4	39
13	Recombinant coagulation factor VIIa – from molecular to clinical aspects of a versatile haemostatic agent. Thrombosis Research, 2010, 125, 483-489.	1.7	31
14	A combined structural dynamics approach identifies a putative switch in factor VIIa employed by tissue factor to initiate blood coagulation. Protein Science, 2007, 16, 671-682.	7.6	30
15	Site-directed mutagenesis but not \hat{I}^3 -carboxylation of Glu-35 in factor VIIa affects the association with tissue factor. FEBS Letters, 1996, 385, 241-243.	2.8	28
16	Binding of Zn ²⁺ to a Ca ²⁺ loop allosterically attenuates the activity of factor VIIa and reduces its affinity for tissue factor. Protein Science, 2000, 9, 859-866.	7.6	28
17	The Origins of Enhanced Activity in Factor VIIa Analogs and the Interplay between Key Allosteric Sites Revealed by Hydrogen Exchange Mass Spectrometry. Journal of Biological Chemistry, 2008, 283, 13378-13387.	3.4	28
18	Structurally and Functionally Distinct Ca2+ Binding Sites in the gamma-Carboxyglutamic Acid-Containing Domain of Factor VIIa. FEBS Journal, 1995, 234, 293-300.	0.2	27

#	Article	IF	CITATIONS
19	Ca2+ Binding to the First Epidermal Growth Factor-like Domain of Factor VIIa Increases Amidolytic Activity and Tissue Factor Affinity. Journal of Biological Chemistry, 1997, 272, 19919-19924.	3.4	25
20	In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia. Blood, 2014, 124, 3172-3174.	1.4	25
21	Allosteric activation of coagulation factor VIIa. Frontiers in Bioscience - Landmark, 2011, 16, 3156.	3.0	24
22	Probing the interface between factor Xa and tissue factor in the quaternary complex tissue factor-factor VIIa-factor Xa-tissue factor pathway inhibitor. FEBS Journal, 2003, 270, 2576-2582.	0.2	22
23	Protein disulfide isomerase has no stimulatory chaperone effect on factor X activation by factor VIIa-soluble tissue factor. Thrombosis Research, 2008, 123, 171-176.	1.7	21
24	Sites Involved in Intra- and Interdomain Allostery Associated with the Activation of Factor VIIa Pinpointed by Hydrogen-Deuterium Exchange and Electron Transfer Dissociation Mass Spectrometry. Journal of Biological Chemistry, 2014, 289, 35388-35396.	3.4	20
25	Conformational Stability of Factor VIIa:Â Biophysical Studies of Thermal and Guanidine Hydrochloride-Induced Denaturation. Biochemistry, 1998, 37, 7203-7212.	2.5	18
26	Vatreptacog Alfa from Conception to Clinical Proof of Concept. Seminars in Thrombosis and Hemostasis, 2012, 38, 274-281.	2.7	16
27	Assignment of molecular properties of a superactive coagulation factor VIIa variant to individual amino acid changes. FEBS Journal, 2002, 269, 5950-5955.	0.2	15
28	Underestimation of Nâ€glycoPEGylated factor IX oneâ€stage clotting activity owing to contact activatorâ€impaired activation. Research and Practice in Thrombosis and Haemostasis, 2017, 1, 259-263.	2.3	14
29	Variants of recombinant factor VIIa with increased intrinsic activity. Seminars in Hematology, 2004, 41, 89-92.	3.4	13
30	Characterization of the interaction between the light chain of factor VIIa and tissue factor. FEBS Letters, 1997, 413, 359-363.	2.8	12
31	Mechanism of the Ca2+-induced Enhancement of the Intrinsic Factor VIIa Activity. Journal of Biological Chemistry, 2008, 283, 25863-25870.	3.4	11
32	Activation loop 3 and the 170 loop interact in the active conformation of coagulation factor VIIa. FEBS Journal, 2009, 276, 3099-3109.	4.7	11
33	Extensive Small-Angle X-ray Scattering Studies of Blood Coagulation Factor VIIa Reveal Interdomain Flexibility. Biochemistry, 2010, 49, 9739-9745.	2.5	11
34	Reagentâ€specific underestimation of turoctocog alfa pegol (N8â€GP) clotting activity owing to decelerated activation by thrombin. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 114-120.	2.3	11
35	Prevention of \hat{I}^2 Strand Movement into a Zymogen-like Position Does Not Confer Higher Activity to Coagulation Factor VIIa. Biochemistry, 2004, 43, 14096-14103.	2.5	10
36	Antibody-induced Enhancement of Factor VIIa Activity through Distinct Allosteric Pathways. Journal of Biological Chemistry, 2012, 287, 8994-9001.	3.4	10

#	Article	IF	Citations
37	Probing Inhibitor-Induced Conformational Changes along the Interface between Tissue Factor and Factor VIIa. Biochemistry, 2001, 40, 9324-9328.	2.5	9
38	Macromolecular substrate affinity for free factor VIIa is independent of a buried protease domain N-terminus. Biochemical and Biophysical Research Communications, 2006, 341, 28-32.	2.1	9
39	Current status on tissue factor activation of factor VIIa. Thrombosis Research, 2010, 125, S11-S12.	1.7	9
40	Influence of the \hat{I}^3 -Carboxyglutamic Acid-Rich Domain and Hydrophobic Stack of Factor Vila on Tissue Factor Binding. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1996, 26, 31-34.	0.3	8
41	Fibrin gel structure obtained with a FVIIa analogue with enhanced FX-activating potential in haemophilia. Thrombosis and Haemostasis, 2009, 102, 790-792.	3.4	7
42	Allostery in Coagulation Factor VIIa Revealed by Ensemble Refinement of Crystallographic Structures. Biophysical Journal, 2019, 116, 1823-1835.	0.5	7
43	Beating tissue factor at its own game: Design and properties of a soluble tissue factor–independent coagulation factor VIIa. Journal of Biological Chemistry, 2020, 295, 517-528.	3.4	7
44	The length of the linker between the epidermal growth factorâ€like domains in factor VIIa is critical for a productive interaction with tissue factor. Protein Science, 2014, 23, 1717-1727.	7.6	6
45	Sequential coagulation factor VIIa domain binding to tissue factor. Biochemical and Biophysical Research Communications, 2005, 337, 1276-1282.	2.1	5
46	Transition state analysis of the complex between coagulation factor VIIa and tissue factor: suggesting a sequential domain-binding pathway. Biochemical and Biophysical Research Communications, 2005, 327, 789-793.	2.1	4
47	A loop of coagulation factor VIIa influencing macromolecular substrate specificity. FEBS Letters, 2007, 581, 71-76.	2.8	4
48	Site-directed fluorescence probing to dissect the calcium-dependent association between soluble tissue factor and factor VIIa domains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1648, 12-16.	2.3	3
49	Factor VII Tokushima (Cys22 â†' Gly) is not \hat{I}^3 -carboxylated due to a disrupted \hat{I}^3 -carboxylase recognition site. Thrombosis Research, 2017, 158, 108-112.	1.7	2
50	Novel molecules for the correction of factor Xa generation and phenotype in hemophilia. Thrombosis Research, 2012, 129, S51-S53.	1.7	1
51	Limited factor VII a surface localization requirement of the factor VII a–induced overall thrombin generation in plateletâ€rich hemophilia A plasma. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 713-717.	2.3	0
52	Crystal structure, epitope, and functional impact of an antibody against a superactive FVII a provide insights into allosteric mechanism. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 412-419.	2.3	0
53	Inhibitor Haemophilia A - Cases with Reduced Haemostatic Response to Wildtype rFVIIa Who Achieved a Normal Clotting Profile with a Novel Potent Analogue of rFVIIa Blood, 2005, 106, 3215-3215.	1.4	0
54	Increased Platelet Binding of NN1731, a Factor VIIa Variant with Enhanced Tissue Factor-Independent Activity Blood, 2010, 116, 1133-1133.	1.4	0