Christoforos Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618836/publications.pdf Version: 2024-02-01

		623734	677142
23	1,141	14	22
papers	citations	h-index	g-index
23	23	23	2131
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Estrogen Receptor Î ² -Mediated Inhibition of Actin-Based Cell Migration Suppresses Metastasis of Inflammatory Breast Cancer. Cancer Research, 2021, 81, 2399-2414.	0.9	7
2	Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation. Oncogene, 2020, 39, 4344-4357.	5.9	22
3	Estrogen-dependent DLL1-mediated Notch signaling promotes luminal breast cancer. Oncogene, 2019, 38, 2092-2107.	5.9	66
4	Estrogen Receptor \hat{I}^2 and Breast Cancer. Cancer Drug Discovery and Development, 2019, , 309-342.	0.4	0
5	ERβ Sensitizes NSCLC to Chemotherapy by Regulating DNA Damage Response. Molecular Cancer Research, 2018, 16, 233-242.	3.4	14
6	ERβ alters the chemosensitivity of luminal breast cancer cells by regulating p53 function. Oncotarget, 2018, 9, 22509-22522.	1.8	19
7	Somatic loss of estrogen receptor beta and p53 synergize to induce breast tumorigenesis. Breast Cancer Research, 2017, 19, 79.	5.0	20
8	Estrogen signaling and unfolded protein response in breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 45-50.	2.5	23
9	ERÎ ² decreases the invasiveness of triple-negative breast cancer cells by regulating mutant p53 oncogenic function. Oncotarget, 2016, 7, 13599-13611.	1.8	39
10	Pleiotropic signaling evoked by tumor necrosis factor in podocytes. American Journal of Physiology - Renal Physiology, 2015, 309, F98-F108.	2.7	6
11	Estrogen receptor mutations and functional consequences for breast cancer. Trends in Endocrinology and Metabolism, 2015, 26, 467-476.	7.1	63
12	Progesterone receptor-estrogen receptor crosstalk: a novel insight. Trends in Endocrinology and Metabolism, 2015, 26, 453-454.	7.1	25
13	ERβ Regulates NSCLC Phenotypes by Controlling Oncogenic RAS Signaling. Molecular Cancer Research, 2014, 12, 843-854.	3.4	14
14	Characteristics and survival of patients with advanced cancer and p53 mutations. Oncotarget, 2014, 5, 3871-3879.	1.8	11
15	ERβ1 represses basal-like breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Research, 2012, 14, R148.	5.0	73
16	A CUE hints at tumor resistance. Nature Medicine, 2011, 17, 658-660.	30.7	6
17	Not enough evidence to include ESR1 amplification. Nature Reviews Cancer, 2011, 11, 823-823.	28.4	9
18	The different roles of ER subtypes in cancer biology and therapy. Nature Reviews Cancer, 2011, 11, 597-608.	28.4	555

#	Article	IF	CITATIONS
19	The Two-Pore Domain Potassium Channel KCNK5: Induction by Estrogen Receptor \hat{I}_{\pm} and Role in Proliferation of Breast Cancer Cells. Molecular Endocrinology, 2011, 25, 1326-1336.	3.7	51
20	Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a p27Kip1-dependent G1/S cell cycle arrest in conjunction with NF-κB activation. Biochemical Pharmacology, 2009, 78, 33-44.	4.4	31
21	Effect of intravenous administration of antioxidants alone and in combination on myocardial reperfusion injury in an experimental pig model. Current Therapeutic Research, 2008, 69, 423-439.	1.2	11
22	Pharmaceutical Agents Known to Produce Disulfiram-Like Reaction: Effects on Hepatic Ethanol Metabolism and Brain Monoamines. International Journal of Toxicology, 2007, 26, 423-432.	1.2	54
23	Rosmarinic acid failed to suppress hydrogen peroxide-mediated apoptosis but induced apoptosis of Jurkat cells which was suppressed by Bcl-2. Molecular and Cellular Biochemistry, 2006, 285, 111-120.	3.1	22