Lucas Foppa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8618232/publications.pdf Version: 2024-02-01

Ι μελς Εορρλ

#	Article	IF	CITATIONS
1	Identifying Outstanding Transition-Metal-Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery. Topics in Catalysis, 2022, 65, 196-206.	2.8	10
2	Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence. ACS Catalysis, 2022, 12, 2223-2232.	11.2	22
3	Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence. MRS Bulletin, 2021, 46, 1016-1026.	3.5	26
4	Towards Experimental Handbooks in Catalysis. Topics in Catalysis, 2020, 63, 1683-1699.	2.8	28
5	Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications. Inorganic Chemistry, 2019, 58, 14939-14980.	4.0	23
6	Facile Fischer–Tropsch Chain Growth from CH ₂ Monomers Enabled by the Dynamic CO Adlayer. ACS Catalysis, 2019, 9, 6571-6582.	11.2	20
7	What Can We Learn from First Principles Multi-Scale Models in Catalysis? The Role of the Ni/Alâ,,Oâ,ƒ Interface in Water-Gas Shift and Dry Reforming as a Case Study. Chimia, 2019, 73, 239.	0.6	3
8	CO methanation on ruthenium flat and stepped surfaces: Key role of H-transfers and entropy revealed by ab initio molecular dynamics. Journal of Catalysis, 2019, 371, 270-275.	6.2	15
9	Electronic Structure–Reactivity Relationship on Ruthenium Step-Edge Sites from Carbonyl 13C Chemical Shift Analysis. Journal of Physical Chemistry Letters, 2018, 9, 3348-3353.	4.6	9
10	Adlayer Dynamics Drives CO Activation in Ru-Catalyzed Fischer–Tropsch Synthesis. ACS Catalysis, 2018, 8, 6983-6992.	11.2	29
11	Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. Journal of the American Chemical Society, 2017, 139, 1937-1949.	13.7	322
12	Contrasting the Role of Ni/Al ₂ O ₃ Interfaces in Water–Gas Shift and Dry Reforming of Methane. Journal of the American Chemical Society, 2017, 139, 17128-17139.	13.7	172
13	Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles. Journal of the American Chemical Society, 2016, 138, 16655-16668.	13.7	67
14	Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: Insights from first principles calculations and microkinetic modeling simulations. Journal of Catalysis, 2016, 343, 196-207.	6.2	156
15	Benzene partial hydrogenation: advances and perspectives. Chemical Society Reviews, 2015, 44, 1886-1897.	38.1	120
16	Platinum nanoparticles supported on ionic liquid-modified-silica gel: hydrogenation catalysts. RSC Advances, 2014, 4, 16583-16588.	3.6	21
17	Metal Nanoparticle/Ionic Liquid/Cellulose: New Catalytically Active Membrane Materials for Hydrogenation Reactions. Biomacromolecules, 2009, 10, 1888-1893.	5.4	50