## Ryoichi Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8617923/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                  | IF                 | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 1  | A catalyzed <i>E</i> / <i>Z</i> isomerization mechanism of stilbene using <i>para</i> -benzoquinone as a triplet sensitizer. Physical Chemistry Chemical Physics, 2022, 24, 1712-1721.                                                                                                   | 2.8                | 7                  |
| 2  | ldentification of hydrogen species on Pt/Al <sub>2</sub> O <sub>3</sub> by <i>in situ</i> inelastic<br>neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11,<br>116-123.                                                                    | 4.1                | 6                  |
| 3  | Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of<br>SrFeO <sub>3â^δ</sub> and Sr <sub>3</sub> Fe <sub>2</sub> O <sub>7â^δ</sub> Perovskites. ACS Applied<br>Materials & Interfaces, 2021, 13, 7216-7226.                                   | 8.0                | 14                 |
| 4  | An analysis of valence electronic structure from a viewpoint of resonance theory: Tautomerization of formamide and diazadiboretidine. Journal of Computational Chemistry, 2021, 42, 1662-1669.                                                                                           | 3.3                | 3                  |
| 5  | Pseudo-Jahn-Teller effect on the lowest triplet state of para-benzoquinone involving inequivalent carbonyl bonds. Chemical Physics Letters, 2020, 741, 137072.                                                                                                                           | 2.6                | 1                  |
| 6  | Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC I and TDâ€DFT<br>Study. Journal of Computational Chemistry, 2019, 40, 127-134.                                                                                                                   | 3.3                | 4                  |
| 7  | Reaction Behavior of the NO Molecule on the Surface of an M <sub><i>n</i></sub> Particle (M = Ru,) Tj ETQq1 1<br>Journal of Physical Chemistry A, 2019, 123, 7021-7033.                                                                                                                  | 0.784314<br>2.5    | rgBT /Overlo<br>24 |
| 8  | Quantum Chemical Computation-Driven Development of Cu-Shell–Ru-Core Nanoparticle Catalyst for<br>NO Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 20251-20256.                                                                                                         | 3.1                | 5                  |
| 9  | Quantum Chemical Study on the High-Pressure Effect for [4 + 4] Retrocycloaddition of Anthracene<br>Cyclophane Photodimer. Journal of Physical Chemistry C, 2019, 123, 4493-4501.                                                                                                         | 3.1                | 6                  |
| 10 | Electronic Structure and Stability of Binary Metal Cluster with Core-Shell Structure: Theoretical<br>Approach. Journal of Computer Chemistry Japan, 2019, 18, 38-48.                                                                                                                     | 0.1                | 0                  |
| 11 | Electronic Origin of Catalytic Nitric Oxide Reduction upon Small Rhodium and Copper Clusters.<br>Journal of Computer Chemistry Japan, 2019, 18, 95-101.                                                                                                                                  | 0.1                | 0                  |
| 12 | Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism. ACS<br>Omega, 2019, 4, 2596-2609.                                                                                                                                                       | 3.5                | 36                 |
| 13 | Electronic processes in NO dimerization on Ag and Cu clusters: DFT and MRMP2 studies. Journal of Computational Chemistry, 2019, 40, 181-190.                                                                                                                                             | 3.3                | 9                  |
| 14 | ESIPT emission behavior of methoxy-substituted 2-hydroxyphenylbenzimidazole isomers. New Journal of Chemistry, 2018, 42, 5923-5928.                                                                                                                                                      | 2.8                | 27                 |
| 15 | Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a<br>metal–support interfacial site in the presence of oxygen: similarities to and differences from<br>biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845.             | 4.1                | 16                 |
| 16 | A Theoretical Investigation on CO Oxidation by Singleâ€Atom Catalysts<br>M <sub>1</sub> /γâ€Al <sub>2</sub> O <sub>3</sub> (M=Pd, Fe, Co, and Ni). ChemCatChem, 2017, 9, 1222-122                                                                                                        | 29. <sup>3.7</sup> | 76                 |
| 17 | Comparing the performance of TDâ€ÐFT and SAC I methods in the description of excited states potential energy surfaces: An excited state proton transfer reaction as case study. Journal of Computational Chemistry, 2017, 38, 1084-1092.                                                 | 3.3                | 15                 |
| 18 | Core–Shell versus Other Structures in Binary Cu <sub>38–<i>n</i></sub> M <sub><i>n</i></sub><br>Nanoclusters (M = Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au; <i>n</i> = 1, 2, and 6): Theoretical Insight into<br>Determining Factors. Journal of Physical Chemistry C, 2017, 121, 10514-10528. | 3.1                | 16                 |

| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Diels–Alder Cycloaddition of Cyclopentadiene and C <sub>60</sub> at the Extreme High Pressure.<br>Journal of Physical Chemistry A, 2017, 121, 4363-4371.                                                                                                                                                                                  | 2.5  | 18        |
| 20 | Structures of Bimetallic Copper–Ruthenium Nanoparticles: Incoherent Interface and Surface Active<br>Sites for Catalytic Nitric Oxide Dissociation. Journal of Physical Chemistry C, 2017, 121, 300-307.                                                                                                                                   | 3.1  | 15        |
| 21 | Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer Active π-Conjugated<br>Benzimidazole Compounds: Influence of Structural Rigidification by Ring Fusion. Journal of Organic<br>Chemistry, 2017, 82, 12173-12180.                                                                                           | 3.2  | 34        |
| 22 | Synthesis and Optical Properties of Fused π-Conjugated Imidazole Compounds. Chemistry Letters, 2017, 46, 1372-1375.                                                                                                                                                                                                                       | 1.3  | 6         |
| 23 | Projected <scp>CAP</scp> / <scp>SAC</scp> â€ <scp>CI</scp> method with smooth <scp>V</scp> oronoi potential for calculating resonance states. Journal of Computational Chemistry, 2016, 37, 242-249.                                                                                                                                      | 3.3  | 19        |
| 24 | Electronic Transitions in Conformationally Controlled Peralkylated Hexasilanes. ChemPhysChem, 2016, 17, 3010-3022.                                                                                                                                                                                                                        | 2.1  | 16        |
| 25 | Electronic excitation and ionization behavior of N-hydroxypyridine-2(1H)-thione and its deprotonated anion in a polarizable medium studied using quantum chemical computations. Theoretical Chemistry Accounts, 2016, 135, 1.                                                                                                             | 1.4  | 4         |
| 26 | Electronic excitation of molecules in solution calculated using the symmetry-adapted<br>cluster–configuration interaction method in the polarizable continuum model. AIP Conference<br>Proceedings, 2015, , .                                                                                                                             | 0.4  | 3         |
| 27 | Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC–CI) Method: Confined Electronic Excited States of Furan as a Test Case. Journal of Chemical Theory and Computation, 2015, 11, 2063-2076.                     | 5.3  | 31        |
| 28 | Synthesis and Optical Properties of Imidazole- and Benzimidazole-Based Fused π-Conjugated<br>Compounds: Influence of Substituent, Counteranion, and π-Conjugated System. Journal of Organic<br>Chemistry, 2015, 80, 7172-7183.                                                                                                            | 3.2  | 25        |
| 29 | How Can We Understand Au <sub>8</sub> Cores and Entangled Ligands of Selenolate- and<br>Thiolate-Protected Gold Nanoclusters Au <sub>24</sub> (ER) <sub>20</sub> and<br>Au <sub>20</sub> (ER) <sub>16</sub> (E = Se, S; R = Ph, Me)? A Theoretical Study. Journal of the American<br>Chemical Society, 2015, 137, 8593-8602.              | 13.7 | 25        |
| 30 | Exploring excited states using Time Dependent Density Functional Theory and density-based indexes.<br>Coordination Chemistry Reviews, 2015, 304-305, 166-178.                                                                                                                                                                             | 18.8 | 118       |
| 31 | Protonâ€Induced Generation of Remote Nâ€Heterocyclic Carbene–Ru Complexes. Chemistry - A European<br>Journal, 2015, 21, 106-110.                                                                                                                                                                                                          | 3.3  | 8         |
| 32 | Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach. Journal of Chemical Physics, 2014, 140, 064114.                                                                                      | 3.0  | 10        |
| 33 | Efficiency of perturbation-selection and its orbital dependence in the SAC-CI calculations for valence excitations of medium-size molecules. Journal of Computational Chemistry, 2014, 35, 2163-2176.                                                                                                                                     | 3.3  | 20        |
| 34 | An efficient computational scheme for electronic excitation spectra of molecules in solution using<br>the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies<br>and intuitive charge-transfer indices. Journal of Chemical Physics, 2014, 141, 154104.                                        | 3.0  | 10        |
| 35 | Electronic Transitions in Conformationally Controlled Tetrasilanes with a Wide Range of SiSiSiSi<br>Dihedral Angles. Chemistry - A European Journal, 2014, 20, 9431-9441.                                                                                                                                                                 | 3.3  | 15        |
| 36 | Rydberg and π–π* Transitions in Film Surfaces of Various Kinds of Nylons Studied by Attenuated Total<br>Reflection Far-Ultraviolet Spectroscopy and Quantum Chemical Calculations: Peak Shifts in the<br>Spectra and Their Relation to Nylon Structure and Hydrogen Bondings. Journal of Physical Chemistry<br>B, 2014, 118, 11855-11861. | 2.6  | 37        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cooperative H <sub>2</sub> Activation at Ag Cluster/Î,-Al <sub>2</sub> O <sub>3</sub> (110) Dual<br>Perimeter Sites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118,<br>7996-8006.                                                       | 3.1 | 31        |
| 38 | Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of<br>Heterocyclic Compounds: Comparison Between TD-PBEO and SAC-CI. Journal of Chemical Theory and<br>Computation, 2014, 10, 3969-3979.                                           | 5.3 | 36        |
| 39 | Mechanism of the aerobic oxidation of methanol to formic acid on Au <sub>8</sub> <sup>â^'</sup> : A<br>DFT study. International Journal of Quantum Chemistry, 2013, 113, 428-436.                                                                                       | 2.0 | 18        |
| 40 | Chemically intuitive indices for charge-transfer excitation based on SAC-CI and TD-DFT calculations.<br>Journal of Computational Chemistry, 2013, 34, 2498-2501.                                                                                                        | 3.3 | 27        |
| 41 | Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories. Physical Chemistry Chemical Physics, 2013, 15, 17426.                                                                       | 2.8 | 23        |
| 42 | Mechanisms for Solvatochromic Shifts of Free-Base Porphine Studied with Polarizable Continuum<br>Models and Explicit Solute–Solvent Interactions. Journal of Chemical Theory and Computation, 2013,<br>9, 470-480.                                                      | 5.3 | 17        |
| 43 | Excited-State Geometries of Heteroaromatic Compounds: A Comparative TD-DFT and SAC-CI Study.<br>Journal of Chemical Theory and Computation, 2013, 9, 2368-2379.                                                                                                         | 5.3 | 57        |
| 44 | Theoretical study of the electronic excitations of free-base porphyrin–Ar2 van der Waals complexes.<br>Journal of Chemical Physics, 2013, 139, 074303.                                                                                                                  | 3.0 | 4         |
| 45 | Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations. Journal of Chemical Physics, 2013, 139, 154301.                                                                    | 3.0 | 41        |
| 46 | Theoretical Study on the Excited Electronic States of Coronene and Its ï€-Extended Molecules Using the Symmetry-Adapted Cluster-Configuration Interaction Method. Bulletin of the Chemical Society of Japan, 2013, 86, 445-451.                                         | 3.2 | 13        |
| 47 | Electronic excitations of C60 fullerene calculated using the <i>ab initio</i> cluster expansion method. Journal of Chemical Physics, 2012, 137, 134304.                                                                                                                 | 3.0 | 13        |
| 48 | Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method. Chemical Physics Letters, 2012, 552, 53-57.                                                                   | 2.6 | 16        |
| 49 | Aerobic oxidation of methanol to formic acid on Au20â^': a theoretical study on the reaction mechanism. Physical Chemistry Chemical Physics, 2012, 14, 3103.                                                                                                            | 2.8 | 40        |
| 50 | Comparative Study of C <sup>â^§</sup> N and N <sup>â^§</sup> C Type Cyclometalated Ruthenium Complexes<br>with a NAD <sup>+</sup> /NADH Function. Inorganic Chemistry, 2012, 51, 8091-8102.                                                                             | 4.0 | 13        |
| 51 | Excited states and electronic spectra of annulated dinuclear free-base phthalocyanines: A theoretical study on near-infrared-absorbing dyes. Journal of Chemical Physics, 2012, 136, 114304.                                                                            | 3.0 | 9         |
| 52 | D–Dâ~'π–A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron<br>Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation.<br>Journal of Physical Chemistry C, 2012, 116, 25653-25663. | 3.1 | 153       |
| 53 | Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by<br>Mononuclear Cyclometalated Ruthenium Catalysts. Inorganic Chemistry, 2012, 51, 5386-5392.                                                                                 | 4.0 | 38        |
| 54 | Photophysical Properties and Photochemistry of <i>EE</i> -, <i>EZ</i> -,<br>and <i>ZZ</i> -1,4-Dimethoxy-2,5-bis[2-(thien-2-yl)ethenyl] Benzene in Solution: Theory and Experiment.<br>Journal of Physical Chemistry A, 2012, 116, 924-937.                             | 2.5 | 5         |

| #  | Article                                                                                                                                                                                                                                                                                     | IF                  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 55 | Theoretical spectroscopy of O 1s and N 1s excited states of N <sub>2</sub> O. Journal of Physics:<br>Conference Series, 2011, 288, 012024.                                                                                                                                                  | 0.4                 | 3         |
| 56 | Excited-state geometries and vibrational frequencies studied using the analytical energy gradients of<br>the direct symmetry-adapted cluster–configuration interaction method. I. HAX-type molecules.<br>Journal of Chemical Physics, 2011, 135, 044316.                                    | 3.0                 | 10        |
| 57 | Electronic excited states of macrocyclic compounds: direct SAC-CI study. Procedia Computer Science, 2011, 4, 1129-1134.                                                                                                                                                                     | 2.0                 | 1         |
| 58 | Symmetry and vibrationally resolved absorption spectra near theNâ€,Kedges ofN2O: Experiment and theory. Physical Review A, 2011, 83, .                                                                                                                                                      | 2.5                 | 1         |
| 59 | Nonequilibrium solvation for vertical photoemission and photoabsorption processes using the<br>symmetry-adapted cluster–configuration interaction method in the polarizable continuum model.<br>Journal of Chemical Physics, 2011, 134, 104109.                                             | 3.0                 | 51        |
| 60 | Excited states and electronic spectra of extended tetraazaporphyrins. Journal of Chemical Physics, 2010, 133, 144316.                                                                                                                                                                       | 3.0                 | 37        |
| 61 | Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: Theory of the solvent effect on the electronic excitation of molecules in solution. Journal of Chemical Physics, 2010, 133, 024104.                              | 3.0                 | 71        |
| 62 | Valence ionized states of iron pentacarbonyl and η5-cyclopentadienyl<br>cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculati<br>collision-energy resolved Penning ionization electron spectroscopy. Journal of Chemical Physics,<br>2010, 132, 084302. | on <sub>3.0</sub> d | 11        |
| 63 | Valence ionization spectra of group six metal hexacarbonyls studied by the symmetry-adapted cluster-configuration interaction method. Journal of Chemical Physics, 2009, 131, 174303.                                                                                                       | 3.0                 | 14        |
| 64 | Formulation and implementation of direct algorithm for the symmetry-adapted cluster and<br>symmetry-adapted cluster–configuration interaction method. Journal of Chemical Physics, 2008, 128,<br>094105.                                                                                    | 3.0                 | 84        |
| 65 | Vibration-induced suppression of valence-Rydberg mixing in the O1s→nsσRydberg series inN2O. Physical<br>Review A, 2008, 77, .                                                                                                                                                               | 2.5                 | 11        |
| 66 | Symmetry-adapted-cluster/symmetry-adapted-cluster configuration interaction methodology extended to giant molecular systems: Ring molecular crystals. Journal of Chemical Physics, 2007, 126, 084104.                                                                                       | 3.0                 | 34        |
| 67 | Symmetry and vibrationally resolved absorption spectra near the O K edge of N2O: Experiment and theory. Chemical Physics Letters, 2007, 435, 182-187.                                                                                                                                       | 2.6                 | 23        |
| 68 | Spectroscopy of sodium atom in liquid helium cluster: a symmetry adapted cluster-configuration interaction (SAC-CI) study. Theoretical Chemistry Accounts, 2007, 118, 437-441.                                                                                                              | 1.4                 | 10        |
| 69 | Electronic spectra and photodissociation of vinyl chloride: A symmetry-adapted cluster configuration interaction study. Journal of Chemical Physics, 2006, 124, 034312.                                                                                                                     | 3.0                 | 11        |
| 70 | Relativistic configuration interaction and coupled cluster methods using four-component spinors:<br>Magnetic shielding constants of HX and CH3X (X=F, Cl, Br, I). Chemical Physics Letters, 2005, 408,<br>150-156.                                                                          | 2.6                 | 29        |
| 71 | Quasirelativistic theory for the magnetic shielding constant. III. Quasirelativistic second-order<br>MÃ,ller–Plesset perturbation theory and its application to tellurium compounds. Journal of Chemical<br>Physics, 2005, 123, 044101.                                                     | 3.0                 | 28        |
| 72 | GENERALIZED-UHF THEORY FOR MAGNETIC PROPERTIES WITH QUASI-RELATIVISTIC HAMILTONIANS. Recent Advances in Computational, 2004, , 191-220.                                                                                                                                                     | 0.8                 | 0         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Quasirelativistic theory for magnetic shielding constants. II. Gauge-including atomic orbitals and applications to molecules. Journal of Chemical Physics, 2003, 118, 1027-1035.                                                         | 3.0 | 103       |
| 74 | Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas–Kroll–Hess<br>transformation for the magnetic field and its application to atomic systems. Journal of Chemical<br>Physics, 2003, 118, 1015-1026. | 3.0 | 108       |
| 75 | Quasi-Relativistic Study of 199Hg Nuclear Magnetic Shielding Constants of Dimethylmercury,<br>Disilylmercury and Digermylmercury. Journal of Physical Chemistry A, 2001, 105, 128-133.                                                   | 2.5 | 16        |
| 76 | Relativistic effects and the halogen dependencies in the13C chemical shifts of CH4?nIn, CH4?nBrn, CCI4?nIn, and CBr4?nIn (n=0-4). Journal of Computational Chemistry, 2001, 22, 528-536.                                                 | 3.3 | 36        |
| 77 | Quasirelativistic study of125Te nuclear magnetic shielding constants and chemical shifts. Journal of Computational Chemistry, 2001, 22, 1502-1508.                                                                                       | 3.3 | 25        |
| 78 | Dirac–Fock calculations of the magnetic shielding constants of protons and heavy nuclei in XH2<br>(X=O, S, Se, and Te): a comparison with quasi-relativistic calculations. Chemical Physics Letters, 2000,<br>321, 452-458.              | 2.6 | 39        |