
Andreas Schneemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/861775/publications.pdf Version: 2024-02-01

ANDREAS SCHNEEMANN

#	Article	IF	CITATIONS
1	Flexible metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6062-6096.	38.1	1,741
2	Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews, 2018, 118, 10775-10839.	47.7	461
3	Directing the Breathing Behavior of Pillared-Layered Metal–Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. Journal of the American Chemical Society, 2012, 134, 9464-9474.	13.7	415
4	Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1700451.	14.9	198
5	Massive Anisotropic Thermal Expansion and Thermoâ€Responsive Breathing in Metal–Organic Frameworks Modulated by Linker Functionalization. Advanced Functional Materials, 2013, 23, 5990-5996.	14.9	187
6	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	21.0	138
7	Selfâ€Directed Localization of ZIFâ€8 Thin Film Formation by Conversion of ZnO Nanolayers. Advanced Functional Materials, 2014, 24, 4804-4811.	14.9	134
8	Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	21.0	121
9	Shapeâ€Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ€ion Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	14.9	118
10	Liquid exfoliation of alkyl-ether functionalised layered metal–organic frameworks to nanosheets. Chemical Communications, 2016, 52, 10474-10477.	4.1	98
11	Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces. Nature Communications, 2019, 10, 346.	12.8	93
12	Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the Metal Center. Chemistry of Materials, 2018, 30, 1667-1676.	6.7	76
13	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	7.4	73
14	MOF Derived Porous ZnO/C Nanocomposites for Efficient Dye Photodegradation. ACS Applied Energy Materials, 2018, 1, 4695-4707.	5.1	72
15	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 9101-9112.	13.7	71
16	A Solidâ€Solution Approach to Mixedâ€Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013, 2013, 4546-4557.	2.0	69
17	Pore closure in zeolitic imidazolate frameworks under mechanical pressure. Chemical Science, 2018, 9, 1654-1660.	7.4	63
18	Zinc-1,4-benzenedicarboxylate-bipyridine frameworks – linker functionalization impacts network topology during solvothermal synthesis. Journal of Materials Chemistry, 2012, 22, 909-918.	6.7	48

Andreas Schneemann

#	Article	IF	CITATIONS
19	Negative Thermal Expansion Design Strategies in a Diverse Series of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1904669.	14.9	48
20	Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano, 2021, 15, 17275-17298.	14.6	48
21	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	10.3	48
22	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	2.1	46
23	Discovery of Polyoxo-Noble-Metalate-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3385-3389.	13.7	43
24	Characteristics of flexibility in metal-organic framework solid solutions of composition [Zn2(BME-bdc)x(DB-bdc)2â^xdabco]n: In situ powder X-ray diffraction, in situ NMR spectroscopy, and molecular dynamics simulations. Microporous and Mesoporous Materials, 2015, 216, 64-74.	4.4	41
25	Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach. Journal of the American Chemical Society, 2019, 141, 12849-12854.	13.7	41
26	Metal–Organic Frameworks: Hydrophobic Metal–Organic Frameworks (Adv. Mater. 32/2019). Advanced Materials, 2019, 31, 1970230.	21.0	40
27	Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework. ACS Nano, 2020, 14, 10294-10304.	14.6	40
28	Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Applied Materials & Interfaces, 2018, 10, 41089-41097.	8.0	38
29	Influence of Solventâ€Like Sidechains on the Adsorption of Light Hydrocarbons in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18764-18769.	3.3	32
30	Configurational Entropy Driven Highâ€Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angewandte Chemie - International Edition, 2021, 60, 787-793.	13.8	30
31	A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH ₄) ₂ within Reduced Graphene Oxide. ACS Nano, 2020, 14, 1745-1756.	14.6	29
32	Lewis base mediated efficient synthesis and solvation-like host–guest chemistry of covalent organic framework-1. Chemical Communications, 2013, 49, 463-465.	4.1	26
33	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	10.3	26
34	Controlled SBU Approaches to Isoreticular Metalâ€Organic Framework Rutheniumâ€Analogues of HKUSTâ€1. European Journal of Inorganic Chemistry, 2015, 2015, 3913-3920.	2.0	25
35	Influence of Co-adsorbates on CO ₂ induced phase transition in functionalized pillared-layered metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 12963-12972.	10.3	25
36	Metal–organic frameworks constructed from crown ether-based 1,4-benzenedicarboxylic acid derivatives. Dalton Transactions, 2016, 45, 3063-3069.	3.3	25

#	Article	IF	CITATIONS
37	Probing Local Structural Changes at Cu ²⁺ in a Flexible Mixed-Metal Metal-Organic Framework by <i>in Situ</i> Electron Paramagnetic Resonance during CO ₂ Ad- and Desorption. Journal of Physical Chemistry C, 2019, 123, 2940-2952.	3.1	24
38	Reversing the Irreversible: Thermodynamic Stabilization of LiAlH ₄ Nanoconfined Within a Nitrogen-Doped Carbon Host. ACS Nano, 2021, 15, 10163-10174.	14.6	24
39	Increasing Alkyl Chain Length in a Series of Layered Metal–Organic Frameworks Aids Ultrasonic Exfoliation to Form Nanosheets. Inorganic Chemistry, 2019, 58, 10837-10845.	4.0	23
40	Flexibility control in alkyl ether-functionalized pillared-layered MOFs by a Cu/Zn mixed metal approach. Dalton Transactions, 2019, 48, 6564-6570.	3.3	22
41	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	10.3	20
42	Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. Chemistry of Materials, 2020, 32, 5604-5615.	6.7	18
43	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	3.3	15
44	A superhydrophilic metal–organic framework thin film for enhancing capillary-driven boiling heat transfer. Journal of Materials Chemistry A, 2021, 9, 25480-25487.	10.3	15
45	Al ₂ O ₃ Atomic Layer Deposition on Nanostructured γ-Mg(BH ₄) ₂ for H ₂ Storage. ACS Applied Energy Materials, 2021, 4, 1150-1162.	5.1	13
46	Linker functionalisation triggers an alternative 3D-topology for Zn-isophthalate-4,4′-bipyridine frameworks. Dalton Transactions, 2017, 46, 8198-8203.	3.3	12
47	Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Interfaces, 2020, 12, 9448-9456.	8.0	11
48	Configurational Entropy Driven Highâ€Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angewandte Chemie, 2021, 133, 800-806.	2.0	9
49	Asymmetric Supercapacitors: Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170028.	21.0	8
50	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	5.8	8
51	Hierarchical Porous Graphene–Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal–Organic Gel as Efficient Electrochemical Dopamine Sensor. Frontiers in Chemistry, 2020, 8, 544.	3.6	6
52	Recovery of MOF-5 from Extreme High-Pressure Conditions Facilitated by a Modern Pressure Transmitting Medium. Chemistry of Materials, 0, , .	6.7	6
53	Reactive Vapor-Phase Additives toward Destabilizing γ-Mg(BH ₄) ₂ for Improved Hydrogen Release. ACS Applied Energy Materials, 2022, 5, 1690-1700.	5.1	5
54	Innenrücktitelbild: Configurational Entropy Driven Highâ€Pressure Behaviour of a Flexible Metal–Organic Framework (MOF) (Angew. Chem. 2/2021). Angewandte Chemie, 2021, 133, 1047-1047.	2.0	2

#	ARTICLE	IF	CITATIONS
55	Electrocatalysis: Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution (Adv. Funct. Mater. 33/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
56	A Solid-Solution Approach to Mixed-Metal Metal-Organic Frameworks - Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013, 2013, 4528-4528.	2.0	0