Johnny C Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8617683/publications.pdf

Version: 2024-02-01

231 papers 14,941 citations

63 h-index 21540 114 g-index

238 all docs

238 docs citations

times ranked

238

17886 citing authors

#	Article	IF	CITATIONS
1	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	9
2	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	13.8	21
3	Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy, 2022, 91, 106654.	16.0	41
4	On-wire axial perovskite heterostructures for monolithic dual-wavelength laser. Nano Energy, 2022, 92, 106778.	16.0	10
5	Sequential self-reconstruction of localized Mo species in hierarchical carbon/Co–Mo oxide heterostructures for boosting alkaline hydrogen evolution kinetics and durability. Journal of Materials Chemistry A, 2022, 10, 3953-3962.	10.3	13
6	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	12.8	49
7	Deconvoluting the energy transport mechanisms in all-inorganic CsPb2Br5/CsPbBr3 perovskite composite systems. APL Materials, 2022, 10, .	5.1	3
8	NiMo@C3N5 heterostructures with multiple electronic transmission channels for highly efficient hydrogen evolution from alkaline electrolytes and seawater. Chemical Engineering Journal, 2022, 438, 135379.	12.7	42
9	Solution-processed lead-free double perovskite microplatelets with enhanced photoresponse and thermal stability. Science China Materials, 2022, 65, 1313-1319.	6. 3	5
10	Direct drop-casting synthesis of all-inorganic lead and lead-free halide perovskite microcrystals for high-performance photodetectors. Nano Research, 2022, 15, 3621-3627.	10.4	11
11	Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 2022, 32, .	14.9	86
12	Near-Infrared Polarimetric Image Sensors Based on Ordered Sulfur-Passivation GaSb Nanowire Arrays. ACS Nano, 2022, 16, 8128-8140.	14.6	22
13	Luminescent concentrators enable highly efficient and broadband photodetection. Light: Science and Applications, 2022, 11, 125.	16.6	5
14	Highly Efficient Full van der Waals 1D pâ€Te/2D nâ€Bi ₂ O ₂ Se Heterodiodes with Nanoscale Ultraâ€Photosensitive Channels. Advanced Functional Materials, 2022, 32, .	14.9	32
15	Dropâ€Casting Halide Microcrystals Enabled by Green Glycol Solvent for Highâ€Performance Photodetectors. Advanced Photonics Research, 2022, 3, .	3 . 6	1
16	Mixed-Dimensional Anti-ambipolar Phototransistors Based on 1D GaAsSb/2D MoS ₂ Heterojunctions. ACS Nano, 2022, 16, 11036-11048.	14.6	24
17	Superior Electrocatalyst for Allâ€pH Hydrogen Evolution Reaction: Heterogeneous Rh/N and S Coâ€Doped Carbon Yolk–Shell Nanospheres. Advanced Functional Materials, 2022, 32, .	14.9	7
18	Recent Advances in the Construction of 2D Heterostructures for Electrocatalytic Water Splitting. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	15

#	Article	IF	CITATIONS
19	Topochemical domain engineering to construct 2D mosaic heterostructure with internal electric field for high-performance overall water splitting. Nano Energy, 2022, 101, 107566.	16.0	19
20	2D WS ₂ : From Vapor Phase Synthesis to Device Applications. Advanced Electronic Materials, 2021, 7, 2000688.	5.1	63
21	More than physical support: The effect of nickel foam corrosion on electrocatalytic performance. Applied Surface Science, 2021, 538, 147977.	6.1	27
22	Photoresponse improvement of mixed-dimensional 1D–2D GaAs photodetectors by incorporating constructive interface states. Nanoscale, 2021, 13, 1086-1092.	5.6	43
23	High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials. Nanoscale Advances, 2021, 3, 6254-6270.	4.6	14
24	Mechanism of non-catalytic chemical vapor deposition growth of all-inorganic CsPbX ₃ (X) Tj ETQq0	0 <u>9 </u>	Overlock 10
25	Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability. Nano Research, 2021, 14, 4116-4124.	10.4	39
26	High elasticity of CsPbBr3 perovskite nanowires for flexible electronics. Nano Research, 2021, 14, 4033-4037.	10.4	20
27	Highâ€Performance Flexible Selfâ€Powered Photodetectors Utilizing Spontaneous Electron and Hole Separation in Quasiâ€2D Halide Perovskites. Small, 2021, 17, e2100442.	10.0	26
28	Two-Step Chemical Vapor Deposition-Synthesized Lead-Free All-Inorganic Cs ₃ Sb ₂ Br ₉ Perovskite Microplates for Optoelectronic Applications. ACS Applied Materials & Description (2011), 13, 35930-35940.	8.0	20
29	Toward Unusualâ€High Hole Mobility of pâ€Channel Fieldâ€Effectâ€Transistors. Small, 2021, 17, 2102323.	10.0	18
30	Quantum Artificial Synapses. Advanced Quantum Technologies, 2021, 4, 2100072.	3.9	8
31	Antimonyâ€Rich GaAs <i>_x</i> Sb _{1â°'} <i>_x</i> Nanowires Passivated by Organic Sulfides for Highâ€Performance Transistors and Nearâ€Infrared Photodetectors. Advanced Optical Materials, 2021, 9, 2101289.	7.3	13
32	A thermally robust and strongly oxidizing surface of WO ₃ hydrate nanowires for electrical aldehyde sensing with long-term stability. Journal of Materials Chemistry A, 2021, 9, 5815-5824.	10.3	11
33	Selfâ€Antiâ€Stacking 2D Metal Phosphide Loopâ€Sheet Heterostructures by Edgeâ€Topological Regulation for Highly Efficient Water Oxidation. Small, 2021, 17, e2006860.	10.0	16
34	Van der Waals PdSe ₂ /WS ₂ Heterostructures for Robust Highâ€Performance Broadband Photodetection from Visible to Infrared Optical Communication Band. Advanced Optical Materials, 2021, 9, 2001991.	7.3	40
35	NiFe-layered double hydroxideÂarrays for oxygen evolution reaction in fresh water and seawater. Materials Today Energy, 2021, 22, 100883.	4.7	26
36	Superior Performance and Stability of 2D Dion–Jacobson Halide Perovskite Photodetectors Operated under Harsh Conditions without Encapsulation. Advanced Optical Materials, 2021, 9, 2101523.	7.3	7

#	Article	IF	Citations
37	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	14.2	10
38	Enhanced epitaxial growth of two-dimensional monolayer WS2 film with large single domains. Applied Materials Today, 2021, 25, 101234.	4.3	4
39	Selfâ€Assembly of Colloidal Particles for Fabrication of Structural Color Materials toward Advanced Intelligent Systems, 2020, 2, 1900085.	6.1	18
40	Flexible Quasiâ€2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Advanced Materials, 2020, 32, e1907527.	21.0	88
41	Substantially Improving Device Performance of Allâ€Inorganic Perovskiteâ€Based Phototransistors via Indium Tin Oxide Nanowire Incorporation. Small, 2020, 16, e1905609.	10.0	33
42	Fullâ€Color Reflective Filters in a Large Area with a Wideâ€Band Tunable Absorber Deposited by Oneâ€Step Magnetron Sputtering. Advanced Optical Materials, 2020, 8, 1901626.	7.3	16
43	In situ electrochemical conversion of cobalt oxide@MOF-74 core-shell structure as an efficient and robust electrocatalyst for water oxidation. Applied Materials Today, 2020, 21, 100820.	4.3	11
44	Efficient and stable electrocatalysts for water splitting. MRS Bulletin, 2020, 45, 531-538.	3.5	10
45	Artificial visual systems enabled by quasi–two-dimensional electron gases in oxide superlattice nanowires. Science Advances, 2020, 6, .	10.3	51
46	Bication-Mediated Quasi-2D Halide Perovskites for High-Performance Flexible Photodetectors: From Ruddlesden–Popper Type to Dion–Jacobson Type. ACS Applied Materials & Diterfaces, 2020, 12, 39567-39577.	8.0	25
47	Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Research, 2020, 13, 2939-2949.	10.4	18
48	Unusual phase-pure zinc blende and highly-crystalline $<$ b>As $<$ /b>-rich InAs $<$ sub> 1 â $^{^{\prime}}$ x $<$ /sub>Sb $<$ sub>x $<$ /sub> nanowires for high-mobility transistors. Journal of Materials Chemistry C, 2020, 8, 13189-13196.	5.5	3
49	Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect. Nano Research, 2020, 13, 3130-3136.	10.4	13
50	The origin of gate bias stress instability and hysteresis in monolayer WS2 transistors. Nano Research, 2020, 13, 3278-3285.	10.4	20
51	Flexible Nearâ€Infrared InGaSb Nanowire Array Detectors with Ultrafast Photoconductive Response Below 20 µ s. Advanced Optical Materials, 2020, 8, 2001201.	7.3	17
52	Face-selective tungstate ions drive zinc oxide nanowire growth direction and dopant incorporation. Communications Materials, 2020, 1, .	6.9	12
53	Perovskite Core–Shell Nanowire Transistors: Interfacial Transfer Doping and Surface Passivation. ACS Nano, 2020, 14, 12749-12760.	14.6	34
54	Enhanced performance of near-infrared photodetectors based on InGaAs nanowires enabled by a two-step growth method. Journal of Materials Chemistry C, 2020, 8, 17025-17033.	5.5	16

#	Article	IF	CITATIONS
55	Surfaceâ€Guided Formation of Amorphous Mixedâ€Metal Oxyhydroxides on Ultrathin MnO ₂ Nanosheet Arrays for Efficient Electrocatalytic Oxygen Evolution. Advanced Energy Materials, 2020, 10, 2001059.	19.5	87
56	Stable Hysteresis-Free MoS ₂ Transistors With Low-k/High-k Bilayer Gate Dielectrics. IEEE Electron Device Letters, 2020, 41, 1036-1039.	3.9	10
57	High-mobility In and Ga co-doped ZnO nanowires for high-performance transistors and ultraviolet photodetectors. Nanoscale, 2020, 12, 16153-16161.	5.6	20
58	Enhancing Performance of a GaAs/AlGaAs/GaAs Nanowire Photodetector Based on the Two-Dimensional Electron–Hole Tube Structure. Nano Letters, 2020, 20, 2654-2659.	9.1	106
59	Gate Bias Stress Instability and Hysteresis Characteristics of InAs Nanowire Field-Effect Transistors. ACS Applied Materials & Empty Interfaces, 2020, 12, 56330-56337.	8.0	13
60	Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Applied Materials & Diterfaces, 2019, 11, 33012-33021.	8.0	70
61	Cerium Phosphate as a Novel Cocatalyst Promoting NiCo ₂ O ₄ Nanowire Arrays for Efficient and Robust Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 5769-5776.	5.1	39
62	Incorporating mixed cations in quasi-2D perovskites for high-performance and flexible photodetectors. Nanoscale Horizons, 2019, 4, 1342-1352.	8.0	35
63	Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 21722-21729.	10.3	129
64	Utilizing a NaOH Promoter to Achieve Large Single-Domain Monolayer WS2 Films via Modified Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35238-35246.	8.0	19
65	Global Photocurrent Generation in Phototransistors Based on Singleâ€Walled Carbon Nanotubes toward Highly Sensitive Infrared Detection. Advanced Optical Materials, 2019, 7, 1900597.	7.3	15
66	Composition tunable inorganic Lead Halide Perovskites microstructures synthesized by single and two-step chemical vapor deposition methods. , 2019, , .		0
67	Two-Dimensional Cobalt Phosphate Hydroxide Nanosheets: A New Type of High-Performance Electrocatalysts with Intrinsic CoO ₆ Lattice Distortion for Water Oxidation. ACS Applied Materials & Distortion for Water Oxidation. ACS Applied Materials & Distortion for Water Oxidation.	8.0	31
68	High-Performance Transparent Ultraviolet Photodetectors Based on InGaZnO Superlattice Nanowire Arrays. ACS Nano, 2019, 13, 12042-12051.	14.6	43
69	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	10.3	422
70	Transparent metal-oxide nanowires and their applications in harsh electronics. Journal of Materials Chemistry C, 2019, 7, 202-217.	5.5	53
71	Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors. Nano Research, 2019, 12, 1796-1803.	10.4	20
72	Direct Vapor–Liquid–Solid Synthesis of All-Inorganic Perovskite Nanowires for High-Performance Electronics and Optoelectronics. ACS Nano, 2019, 13, 6060-6070.	14.6	93

#	Article	IF	CITATIONS
73	Optical Properties of In _{2<i>x</i>} Ga _{2â€"2<i>x</i>} O ₃ Nanowires Revealed by Photoacoustic Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19260-19266.	8.0	11
74	A unique sandwich structure of a CoMnP/Ni ₂ P/NiFe electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 12325-12332.	10.3	62
75	Enhanced Power Conversion Efficiency in Solutionâ€Processed Rigid CuIn(S,Se) 2 and Flexible Cu(In,Ga)Se 2 Solar Cells Utilizing Plasmonic Auâ€6iO 2 Coreâ€6hell Nanoparticles. Solar Rrl, 2019, 3, 1800343.	5.8	5
76	Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nature Communications, 2019, 10, 1664.	12.8	70
77	Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: a review for recent progress. Materials Today Chemistry, 2019, 12, 266-281.	3.5	82
78	Perovskite/Black Phosphorus/MoS ₂ Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. ACS Nano, 2019, 13, 4804-4813.	14.6	81
79	Selfâ€Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications. Advanced Materials Technologies, 2019, 4, 1800541.	5.8	62
80	Recent advances in flexible photodetectors based on 1D nanostructures. Journal of Semiconductors, 2019, 40, 111602.	3.7	15
81	MXene-based wearable bio-sensor. Journal of Semiconductors, 2019, 40, 110202.	3.7	1
82	Preface to the Special Issue on Flexible and Wearable Sensors for Robotics and Health. Journal of Semiconductors, 2019, 40, 110101.	3.7	0
83	Direct Visualization of Grain Boundaries in 2D Monolayer WS ₂ via Induced Growth of CdS Nanoparticle Chains. Small Methods, 2019, 3, 1800245.	8.6	26
84	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	4.7	133
85	Properties Engineering of Ill–V Nanowires for Electronic Application. Nanostructure Science and Technology, 2019, , 53-82.	0.1	0
86	Modulating Electrical Performances of In ₂ O ₃ Nanofiber Channel Thin Film Transistors via Sr Doping. Advanced Electronic Materials, 2019, 5, 1800707.	5.1	36
87	Recent advances in III-Sb nanowires: from synthesis to applications. Nanotechnology, 2019, 30, 202003.	2.6	26
88	Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 2018, 73, 1-36.	7.2	141
89	Comprehensive Understanding of the Spatial Configurations of CeO ₂ in NiO for the Electrocatalytic Oxygen Evolution Reaction: Embedded or Surfaceâ€Loaded. Advanced Functional Materials, 2018, 28, 1706056.	14.9	141
90	High-Index Faceted Porous Co ₃ O ₄ Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7079-7086.	8.0	179

#	Article	IF	CITATIONS
91	Roomâ€Temperature Red–Green–Blue Whisperingâ€Gallery Mode Lasing and Whiteâ€Light Emission from Cesium Lead Halide Perovskite (CsPbX ₃ , X = Cl, Br, I) Microstructures. Advanced Optical Materials, 2018, 6, 1700993.	7.3	47
92	Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1728-1733.	8.0	65
93	Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Research, 2018, 11, 3371-3384.	10.4	190
94	Thinâ€Film Transistors: ZnO Nanofiber Thinâ€Film Transistors with Lowâ€Operating Voltages (Adv.) Tj ETQq0 0 0	rgBT /Ov 5.1	erlock 10 Tf !
95	Enhanced performance of perovskite solar cells based on vertical TiO 2 nanotube arrays with full filling of CH 3 NH 3 PbI 3. Applied Surface Science, 2018, 451, 250-257.	6.1	32
96	Phosphorusâ€Doped MoS ₂ Nanosheets Supported on Carbon Cloths as Efficient Hydrogenâ€Generation Electrocatalysts. ChemCatChem, 2018, 10, 1571-1577.	3.7	55
97	Enhanced Negative Photoconductivity in InAs Nanowire Phototransistors Surfaceâ€Modified with Molecular Monolayers. Advanced Materials Interfaces, 2018, 5, 1701104.	3.7	24
98	ZnO Nanofiber Thinâ€Film Transistors with Lowâ€Operating Voltages. Advanced Electronic Materials, 2018, 4, 1700336.	5.1	32
99	High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks. Nano Research, 2018, 11, 1227-1237.	10.4	55
100	Orientation controlled GaSb nanowires: from growth to application. , 2018, , .		0
101	Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts, 2018, 8, 551.	3.5	45
102	Sub-kT/q switching in In ₂ O ₃ nanowire negative capacitance field-effect transistors. Nanoscale, 2018, 10, 19131-19139.	5.6	10
103	Nonpolar-Oriented Wurtzite InP Nanowires with Electron Mobility Approaching the Theoretical Limit. ACS Nano, 2018, 12, 10410-10418.	14.6	30
104	GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics. Crystals, 2018, 8, 347.	2.2	8
105	Semi-solid and solid frustrated Lewis pair catalysts. Chemical Society Reviews, 2018, 47, 5541-5553.	38.1	102
106	Controlled Growth of Heterostructured Ga/GaAs Nanowires with Sharp Schottky Barrier. Crystal Growth and Design, 2018, 18, 4438-4444.	3.0	4
107	Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements. Talanta, 2018, 189, 550-559.	5.5	20
108	Chalcogen passivation: an in-situ method to manipulate theÂmorphology and electrical property of GaAs nanowires. Scientific Reports, 2018, 8, 6928.	3.3	7

#	Article	lF	CITATIONS
109	Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 19019-19026.	8.0	75
110	Environmentally and Mechanically Stable Selenium $1D/2D$ Hybrid Structures for Broad-Range Photoresponse from Ultraviolet to Infrared Wavelengths. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 35477-35486.	8.0	39
111	Coupling of Nickel Boride and Ni(OH) ₂ Nanosheets with Hierarchical Interconnected Conductive Porous Structure Synergizes the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 4555-4561.	3.7	23
112	Towards high-mobility ln2xGa2–2xO3 nanowire field-effect transistors. Nano Research, 2018, 11, 5935-5945.	10.4	22
113	High-Performance Near-Infrared Photodetectors Based on p-Type SnX (X = S, Se) Nanowires Grown <i>via</i> Chemical Vapor Deposition. ACS Nano, 2018, 12, 7239-7245.	14.6	101
114	Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO ₂ Nanotube Arrays on Various Substrates. ACS Applied Materials & Interfaces, 2017, 9, 6265-6272.	8.0	10
115	Manipulating Ill–V Nanowire Transistor Performance via Surface Decoration of Metalâ€Oxide Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700260.	3.7	13
116	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	10.3	85
117	Is platinum a suitable counter electrode material for electrochemical hydrogen evolution reaction?. Science Bulletin, 2017, 62, 971-973.	9.0	59
118	Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy, 2017, 38, 290-296.	16.0	212
119	Controllable III–V nanowire growth via catalyst epitaxy. Journal of Materials Chemistry C, 2017, 5, 4393-4399.	5.5	17
120	Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟠111⟠©-Oriented GaSb Nanowires Enabled by Vapor–Solid–Solid Chemical Vapor Deposition. ACS Nano, 2017, 11, 4237-4246.	14.6	38
121	Recent developments in Ill–V semiconducting nanowires for high-performance photodetectors. Materials Chemistry Frontiers, 2017, 1, 630-645.	5.9	55
122	Photodetectors: Largeâ€Scale Synthesis of Freestanding Layerâ€Structured Pbl ₂ and MAPbl ₃ Nanosheets for Highâ€Performance Photodetection (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .	21.0	0
123	Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials, 2017, 7, 1700559.	19.5	247
124	Largeâ€Scale Synthesis of Freestanding Layerâ€Structured Pbl ₂ and MAPbl ₃ Nanosheets for Highâ€Performance Photodetection. Advanced Materials, 2017, 29, 1702759.	21.0	111
125	Co ₃ O ₄ Nanosheets with In-Plane Pores and Highly Active {112} Exposed Facets for High Performance Lithium Storage. Journal of Physical Chemistry C, 2017, 121, 19002-19009.	3.1	30
126	Hierarchical Nanostructures: Hierarchical Nanostructures: Design for Sustainable Water Splitting (Adv. Energy Mater. 23/2017). Advanced Energy Materials, 2017, 7, 1770135.	19.5	12

#	Article	IF	Citations
127	Nanowire Transistors: Manipulating Ill–V Nanowire Transistor Performance via Surface Decoration of Metalâ€Oxide Nanoparticles (Adv. Mater. Interfaces 12/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	0
128	Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching. Nanoscale Research Letters, 2017, 12, 385.	5.7	27
129	Performance Limits of the Selfâ€Aligned Nanowire Topâ€Gated MoS ₂ Transistors. Advanced Functional Materials, 2017, 27, 1602250.	14.9	37
130	Visible to near-infrared photodetectors based on MoS ₂ vertical Schottky junctions. Nanotechnology, 2017, 28, 484002.	2.6	73
131	Highâ€Sensitivity Floatingâ€Gate Phototransistors Based on WS ₂ and MoS ₂ . Advanced Functional Materials, 2016, 26, 6084-6090.	14.9	124
132	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for Highâ€Performance 2D Field Effect Transistors. Advanced Materials, 2016, 28, 2062-2069.	21.0	65
133	Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016, 27, 247-254.	16.0	196
134	Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures. Scientific Reports, 2016, 6, 34139.	3.3	17
135	Diameter Dependence of Planar Defects in InP Nanowires. Scientific Reports, 2016, 6, 32910.	3.3	13
136	Design and fabrication of 1-D semiconductor nanomaterials for high-performance photovoltaics. Science Bulletin, 2016, 61, 357-367.	9.0	14
137	INTEGRATING SEMICONDUCTOR NANOWIRES FOR HIGH PERFORMANCE FLEXIBLE ELECTRONIC CIRCUITS. , 2016, , 117-165.		0
138	Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method. Nanoscale Research Letters, 2016, 11, 191.	5.7	9
139	Highâ€Performance Ferroelectric Polymer Sideâ€Gated CdS Nanowire Ultraviolet Photodetectors. Advanced Functional Materials, 2016, 26, 7690-7696.	14.9	107
140	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. ACS Nano, 2016, 10, 8474-8481.	14.6	88
141	Sideâ€Gated In ₂ O ₃ Nanowire Ferroelectric FETs for Highâ€Performance Nonvolatile Memory Applications. Advanced Science, 2016, 3, 1600078.	11.2	41
142	Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays. ACS Nano, 2016, 10, 6283-6290.	14.6	22
143	High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics. Scientific Reports, 2015, 5, 16871.	3.3	20
144	Integration of Highâ€ <i>k</i> Oxide on MoS ₂ by Using Ozone Pretreatment for Highâ€Performance MoS ₂ Topâ€Gated Transistor with Thicknessâ€Dependent Carrier Scattering Investigation. Small, 2015, 11, 5932-5938.	10.0	74

#	Article	IF	CITATIONS
145	Thermoplasmonics-assisted nanoheterostructured Au-decorated CuInS2 nanoparticles: Matching solar spectrum absorption and its application on selective distillation of non-polar solvent systems by thermal solar energy. Nano Energy, 2015, 15, 470-478.	16.0	22
146	Modulating the Morphology and Electrical Properties of GaAs Nanowires via Catalyst Stabilization by Oxygen. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5591-5597.	8.0	16
147	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). Small, 2015, 11, 890-890.	10.0	2
148	Modulating Electrical Properties of InAs Nanowires <i>via</i> Molecular Monolayers. ACS Nano, 2015, 9, 7545-7552.	14.6	33
149	Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale, 2015, 7, 10078-10084.	5.6	163
150	Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13080-13086.	10.3	198
151	High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics. ACS Applied Materials & Diterfaces, 2015, 7, 20454-20459.	8.0	58
152	Approaching the Hole Mobility Limit of GaSb Nanowires. ACS Nano, 2015, 9, 9268-9275.	14.6	70
153	Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning. ACS Nano, 2015, 9, 8651-8654.	14.6	93
154	High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios. Small, 2015, 11, 936-942.	10.0	166
155	Floating Gate Memory-based Monolayer MoS ₂ Transistor with Metal Nanocrystals Embedded in the Gate Dielectrics. Small, 2015, 11, 208-213.	10.0	102
156	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8232-8232.	21.0	9
157	III–V Nanowires: Synthesis, Property Manipulations, and Device Applications. Journal of Nanomaterials, 2014, 2014, 1-14.	2.7	32
158	Patterning: Optical Nanoscale Patterning Through Surface-Textured Polymer Films (Advanced Optical) Tj ETQq0 C	07.gBT/C)verlock 10 Ti
159	Polymer-Confined Colloidal Monolayer: A Reusable Soft Photomask for Rapid Wafer-Scale Nanopatterning. ACS Applied Materials & Interfaces, 2014, 6, 20837-20841.	8.0	20
160	Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications. Pure and Applied Chemistry, 2014, 86, 557-573.	1.9	9
161	One-Dimensional Nanomaterials for Energy Applications. , 2014, , 75-120.		6
162	Optical Nanoscale Patterning Through Surfaceâ€Textured Polymer Films. Advanced Optical Materials, 2014, 2, 855-860.	7.3	16

#	Article	IF	Citations
163	Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor. Biosensors and Bioelectronics, 2014, 55, 141-148.	10.1	39
164	Interface Engineering for Highâ€Performance Topâ€Gated MoS ₂ Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6255-6261.	21.0	272
165	Hierarchical silicon nanostructured arrays via metal-assisted chemical etching. RSC Advances, 2014, 4, 50081-50085.	3.6	15
166	Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Advanced Materials, 2014, 26, 8203-8209.	21.0	168
167	Effect of Negatively Charged Impurity on Graphene Magnetic Rings. Journal of the Physical Society of Japan, 2014, 83, 034007.	1.6	5
168	Light Management with Nanostructures for Optoelectronic Devices. Journal of Physical Chemistry Letters, 2014, 5, 1479-1495.	4.6	147
169	Rational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting. ACS Nano, 2014, 8, 3752-3760.	14.6	106
170	Mechanistic Characteristics of Metal-Assisted Chemical Etching in GaAs. Journal of Physical Chemistry C, 2014, 118, 6903-6908.	3.1	24
171	Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nature Communications, 2014, 5, 5249.	12.8	102
172	Low-temperature growth of highly crystalline \hat{l}^2 -Ga2O3 nanowires by solid-source chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 347.	5.7	15
173	Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors. ACS Nano, 2014, 8, 3628-3635.	14.6	238
174	Formation mechanisms for the dominant kinks with different angles in InP nanowires. Nanoscale Research Letters, 2014, 9, 211.	5.7	9
175	Selective n-type doping in graphene via the aluminium nanoparticle decoration approach. Journal of Materials Chemistry C, 2014, 2, 5417-5421.	5. 5	27
176	Surface roughness induced electron mobility degradation in InAs nanowires. Nanotechnology, 2013, 24, 375202.	2.6	62
177	Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. Journal of Materials Chemistry A, 2013, 1, 9942.	10.3	77
178	Crystalline GaSb Nanowires Synthesized on Amorphous Substrates: From the Formation Mechanism to p-Channel Transistor Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10946-10952.	8.0	36
179	Controllable Electrical Properties of Metal-Doped In ₂ O ₃ Nanowires for High-Performance Enhancement-Mode Transistors. ACS Nano, 2013, 7, 804-810.	14.6	85
180	GaAs Nanowires: From Manipulation of Defect Formation to Controllable Electronic Transport Properties. ACS Nano, 2013, 7, 9138-9146.	14.6	41

#	Article	IF	Citations
181	Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. Nanoscale, 2013, 5, 9671.	5.6	32
182	Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. Physical Chemistry Chemical Physics, 2013, 15, 2654.	2.8	17
183	Diameter dependence of electron mobility in InGaAs nanowires. Applied Physics Letters, 2013, 102, .	3.3	31
184	Tunable Electronic Transport Properties of Metalâ€Clusterâ€Decorated Ill–V Nanowire Transistors. Advanced Materials, 2013, 25, 4445-4451.	21.0	68
185	Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors. Nano Letters, 2013, 13, 3287-3292.	9.1	132
186	Threshold Tuning of III-V Nanowire Transistors via Metal Clusters Decoration. ECS Transactions, 2013, 58, 113-118.	0.5	0
187	Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules. Applied Physics Letters, 2013, 103, 021115.	3.3	76
188	Stability and Low-Frequency Noise in InAs NW Parallel-Array Thin-Film Transistors. IEEE Electron Device Letters, 2013, 34, 765-767.	3.9	8
189	GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Applied Physics Letters, 2012, 101, .	3.3	36
190	Synthesis and Characterizations of Ternary InGaAs Nanowires by a Two-Step Growth Method for High-Performance Electronic Devices. ACS Nano, 2012, 6, 3624-3630.	14.6	86
191	High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. Journal of Materials Chemistry, 2012, 22, 10704.	6.7	33
192	One-dimensional nanostructured materials for solar energy harvesting. Nanomaterials and Energy, 2012, 1, 4-17.	0.2	31
193	Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sensors and Actuators B: Chemical, 2012, 169, 74-80.	7.8	122
194	Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates. Nanoscale Research Letters, 2012, 7, 632.	5.7	12
195	Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process. Crystal Growth and Design, 2012, 12, 6243-6249.	3.0	54
196	Stoichiometric Effect on Electrical, Optical, and Structural Properties of Composition-Tunable InxGa1–xAs Nanowires. ACS Nano, 2012, 6, 9320-9325.	14.6	41
197	Controllable p–n Switching Behaviors of GaAs Nanowires <i>via</i> an Interface Effect. ACS Nano, 2012, 6, 4428-4433.	14.6	61
198	Enhanced synthesis method to prepare crystalline GaAs nanowires with high growth yield. , 2011, , .		0

#	Article	IF	Citations
199	Kinetic Growth of Self-Formed In2O3 Nanodots via Phase Segregation: Ni/InAs System. ACS Nano, 2011, 5, 6637-6642.	14.6	6
200	Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology, 2011, 22, 285607.	2.6	51
201	Crystal phase and growth orientation dependence of GaAs nanowires on Ni _x Ga _y seeds via vapor-solid-solid mechanism. Applied Physics Letters, 2011, 99, 083114.	3.3	23
202	Highly active and enhanced photocatalytic silicon nanowire arrays. Nanoscale, 2011, 3, 3269.	5.6	92
203	Self-assembly of one-dimensional nanomaterials for cost-effective photovoltaics. International Journal of Nanoparticles, 2011, 4, 164.	0.3	11
204	Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn. Nano Letters, 2010, 10, 509-513.	9.1	57
205	Flexible Carbonâ€Nanofiber Connectors with Anisotropic Adhesion Properties. Small, 2010, 6, 22-26.	10.0	44
206	Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9, 821-826.	27.5	1,162
207	Nanoscale Structural Engineering via Phase Segregation: Auâ^'Ge System. Nano Letters, 2010, 10, 393-397.	9.1	23
208	Hybrid core-multishell nanowire forests for electrical connector applications. Applied Physics Letters, 2009, 94, 263110.	3.3	28
209	Monolayer doping and diameter-dependent electron mobility assessment of nanowires. , 2009, , .		4
210	Nanoscale doping of InAs via sulfur monolayers. Applied Physics Letters, 2009, 95, .	3.3	71
211	Wet and Dry Adhesion Properties of Selfâ€Selective Nanowire Connectors. Advanced Functional Materials, 2009, 19, 3098-3102.	14.9	31
212	Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials, 2009, 21, 3730-3743.	21.0	363
213	Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 2009, 8, 648-653.	27.5	997
214	Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing. Nano Letters, 2009, 9, 725-730.	9.1	148
215	Diameter-Dependent Electron Mobility of InAs Nanowires. Nano Letters, 2009, 9, 360-365.	9.1	353
216	Monolayer Resist for Patterned Contact Printing of Aligned Nanowire Arrays. Journal of the American Chemical Society, 2009, 131, 2102-2103.	13.7	70

#	Article	IF	Citations
217	Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Research, 2008, 1, 32-39.	10.4	70
218	Phosphine Oxide Monolayers on SiO ₂ Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4440-4442.	13.8	37
219	Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Materials, 2008, 7, 62-67.	27.5	311
220	Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Letters, 2008, 8, 20-25.	9.1	542
221	Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11066-11070.	7.1	233
222	Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction. Nano Letters, 2008, 8, 4528-4533.	9.1	61
223	Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Applied Physics Letters, 2007, 91, .	3.3	117
224	Generic Nanomaterial Positioning by Carrier and Stationary Phase Design. Nano Letters, 2007, 7, 2764-2768.	9.1	23
225	Phase separation in InxGa1â^'xN. Philosophical Magazine, 2007, 87, 1983-1998.	1.6	37
226	Zincblende and wurtzite phases in InN epilayers and their respective band transitions. Journal of Crystal Growth, 2006, 288, 225-229.	1.5	9
227	Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy. Solid State Communications, 2005, 135, 340-344.	1.9	46
228	Characterization of oxide precipitates in epitaxial InN by transmission electron microscopy. Applied Physics Letters, 2005, 87, 092102.	3.3	13
229	Effects of stoichiometry on electrical, optical, and structural properties of indium nitride. Journal of Applied Physics, 2005, 98, 093712.	2.5	28
230	Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 2004, 84, 2805-2807.	3.3	221
231	The influence of structural properties on conductivity and luminescence of MBE grown InN. Journal of Crystal Growth, 2004, 269, 111-118.	1.5	37