James R Klinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8616148/publications.pdf Version: 2024-02-01

IAMES P KLINCEP

#	Article	IF	CITATIONS
1	Remote 6-Minute-Walk Testing in Patients with Pulmonary Hypertension: A Pilot Study. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 851-854.	5.6	8
2	Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 3211-3224.	3.8	16
3	Hispanic Ethnicity and Social Determinants of Health in Pulmonary Arterial Hypertension: The Pulmonary Hypertension Association Registry. Annals of the American Thoracic Society, 2022, 19, 1459-1468.	3.2	13
4	Delphi consensus recommendation for optimization of pulmonary hypertension therapy focusing on switching from a phosphodiesterase 5 inhibitor to riociguat. Pulmonary Circulation, 2022, 12, e12055.	1.7	6
5	Mesenchymal Stromal Cell Extracellular Vesicles - A New Approach for Preventing Bronchopulmonary Dysplasia?. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	1
6	Riociguat: Clinical research and evolving role in therapy. British Journal of Clinical Pharmacology, 2021, 87, 2645-2662.	2.4	18
7	EmPHasis-10 as a measure of health-related quality of life in pulmonary arterial hypertension: data from PHAR. European Respiratory Journal, 2021, 57, 2000414.	6.7	24
8	Prediction of Health-related Quality of Life and Hospitalization in Pulmonary Arterial Hypertension: The Pulmonary Hypertension Association Registry. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 761-764.	5.6	12
9	Insights from the Menstrual Cycle in Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2021, 18, 218-228.	3.2	15
10	Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 573-584.	10.7	85
11	Health disparities and treatment approaches in portopulmonary hypertension and idiopathic pulmonary arterial hypertension: an analysis of the Pulmonary Hypertension Association Registry. Pulmonary Circulation, 2021, 11, 1-10.	1.7	17
12	Treatment of Pulmonary Hypertension Associated With COPD. Chest, 2021, 160, 409-410.	0.8	2
13	Effect of dose, dosing intervals, and hypoxic stress on the reversal of pulmonary hypertension by mesenchymal stem cell extracellular vesicles. Pulmonary Circulation, 2021, 11, 1-11.	1.7	3
14	Novel Pharmacological Targets for Pulmonary Arterial Hypertension. , 2021, 11, 2297-2349.		5
15	Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 577-587.	2.9	54
16	Guidelines for the Treatment of Pulmonary Arterial Hypertension. Lung, 2020, 198, 581-596.	3.3	37
17	Prevalence and risk factors of pulmonary hypertension among adult patients with HIV infection in Ethiopia. Pulmonary Circulation, 2020, 10, 204589402097151.	1.7	4
18	Residence at moderately high altitude and its relationship with WHO Group 1 pulmonary arterial hypertension symptom severity and clinical characteristics: the Pulmonary Hypertension Association Registry. Pulmonary Circulation, 2020, 10, 1-8.	1.7	5

#	Article	IF	CITATIONS
19	Identifying potential parameters associated with response to switching from a PDE5i to riociguat in RESPITE. International Journal of Cardiology, 2020, 317, 188-192.	1.7	5
20	Rapid development of pulmonary hypertension and right ventricular failure due to large vessel intravascular microcrystalline cellulosis in an intravenous drug user. Pulmonary Circulation, 2020, 10, 1-3.	1.7	4
21	Alternative Splicing of the Cardiac Sodium Channel in Pulmonary Arterial Hypertension. Chest, 2020, 158, 735-738.	0.8	6
22	Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: considerations for use in pulmonary vascular disease. European Respiratory Journal, 2020, 55, 1901313.	6.7	10
23	Late Breaking Abstract - Switching from PDE5i to riociguat in patients with PAH: The REPLACE study. , 2020, , .		2
24	Response. Chest, 2019, 156, 187-188.	0.8	0
25	Low dose 100 cGy irradiation as a potential therapy for pulmonary hypertension. Journal of Cellular Physiology, 2019, 234, 21193-21198.	4.1	9
26	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122
27	Therapy for Pulmonary Arterial Hypertension in Adults. Chest, 2019, 155, 565-586.	0.8	216
28	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	6.7	776
29	Chronic Thromboembolic Pulmonary Hypertension. Heart Failure Clinics, 2018, 14, 339-351.	2.1	19
30	Anastrozole in Pulmonary Arterial Hypertension. A Randomized, Double-Blind, Placebo-controlled Trial. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 360-368.	5.6	88
31	Riociguat: Mode of Action and Clinical Development in Pulmonary Hypertension. Chest, 2017, 151, 468-480.	0.8	79
32	Rationale and study design of RESPITE: An open-label, phase 3b study of riociguat in patients with pulmonary arterial hypertension who demonstrate an insufficient response to treatment with phosphodiesterase-5 inhibitors. Respiratory Medicine, 2017, 122, S18-S22.	2.9	15
33	The Nitric Oxide Pathway in Pulmonary Vascular Disease. American Journal of Cardiology, 2017, 120, S71-S79.	1.6	79
34	RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. European Respiratory Journal, 2017, 50, 1602425.	6.7	113
35	Ask The Expert: What Are Some Pitfalls and Promises of the Current PAH Treatment Guidelines?. Advances in Pulmonary Hypertension, 2017, 15, 182-183.	0.1	0
36	Plasma nitrite/nitrate levels: a new biomarker for pulmonary arterial hypertension?. European Respiratory Journal, 2016, 48, 1265-1267.	6.7	5

#	Article	IF	CITATIONS
37	Group III Pulmonary Hypertension. Cardiology Clinics, 2016, 34, 413-433.	2.2	70
38	Socioeconomic Status Affects Pulmonary Hypertension Disease Severity at Time of First Evaluation. Pulmonary Circulation, 2016, 6, 191-195.	1.7	27
39	Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110, 319-330.	3.8	196
40	Modulation of cGMP Synthesis and Metabolism. Respiratory Medicine, 2015, , 355-375.	0.1	1
41	Sepsis and Pulmonary Arterial Hypertension in the ICU. Advances in Pulmonary Hypertension, 2015, 13, 188-196.	0.1	4
42	Pharmacologic Therapy for Pulmonary Arterial Hypertension in Adults. Chest, 2014, 146, 449-475.	0.8	237
43	Cost-effectiveness of Dalteparin vs Unfractionated Heparin for the Prevention of Venous Thromboembolism in Critically III Patients. JAMA - Journal of the American Medical Association, 2014, 312, 2135.	7.4	50
44	Effects of Dose and Age on Adverse Events Associated with Tadalafil in the Treatment of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2014, 4, 45-52.	1.7	5
45	Economic evaluation of the prophylaxis for thromboembolism in critical care trial (E-PROTECT): study protocol for a randomized controlled trial. Trials, 2014, 15, 502.	1.6	10
46	Nitric Oxide Deficiency and Endothelial Dysfunction in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 639-646.	5.6	165
47	Oral Therapies for Pulmonary Arterial Hypertension. Clinics in Chest Medicine, 2013, 34, 811-824.	2.1	6
48	Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A. Journal of Applied Physiology, 2013, 114, 307-315.	2.5	8
49	WHO Group 1 pulmonary arterial hypertension: Current and investigative therapies. Progress in Cardiovascular Diseases, 2012, 55, 89-103.	3.1	27
50	Initial Risk Assessment for Pulmonary Hypertension in Patients with COPD. Lung, 2012, 190, 83-89.	3.3	17
51	Transfer of Monocrotaline-Induced Pulmonary Hypertension to Healthy Mice Via Microparticles. Blood, 2012, 120, 5190-5190.	1.4	0
52	C-type natriuretic peptide does not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade. Life Sciences, 2011, 89, 460-466.	4.3	10
53	Tadalafil for the treatment of pulmonary arterial hypertension. Expert Review of Respiratory Medicine, 2011, 5, 315-328.	2.5	7
54	Long-Term Pulmonary Hemodynamic Effects of Ambrisentan in Pulmonary Arterial Hypertension. American Journal of Cardiology, 2011, 108, 302-307.	1.6	44

#	Article	IF	CITATIONS
55	Echocardiographic Evidence of Pulmonary Hypertension is Associated with Increased 1-year Mortality in Patients Admitted with Chronic Obstructive Pulmonary Disease. Lung, 2011, 189, 207-212.	3.3	33
56	Pulmonary Hypertension in a Stable Community-Based COPD Population. Lung, 2011, 189, 377-382.	3.3	35
57	Tadalafil in Geriatric Patients With Pulmonary Arterial Hypertension. Chest, 2010, 138, 367A.	0.8	3
58	Cardiac atria are the primary source of ANP release in hypoxia-adapted rats. Life Sciences, 2010, 87, 382-389.	4.3	11
59	Brain natriuretic peptide in pulmonary arterial hypertension: biomarker and potential therapeutic agent. Drug Design, Development and Therapy, 2009, 3, 269.	4.3	48
60	Marrow Cell Infusion Attenuates Vascular Remodeling in a Murine Model of Monocrotaline-Induced Pulmonary Hypertension. Stem Cells and Development, 2009, 18, 773-781.	2.1	16
61	Pulmonary Arterial Hypertension in Pregnancy. , 2009, , 285-312.		0
62	Diagnosis and Management of Pulmonary Hypertension Associated With Pulmonary Fibrosis. Advances in Pulmonary Hypertension, 2009, 8, 141-147.	0.1	0
63	Pulmonary Arterial Hypertension: An Overview. Seminars in Cardiothoracic and Vascular Anesthesia, 2007, 11, 96-103.	1.0	3
64	Pulmonary hypertension in the intensive care unit: Critical role of the right ventricle*. Critical Care Medicine, 2007, 35, 2210-2211.	0.9	9
65	The Nitric Oxide/cGMP Signaling Pathway in Pulmonary Hypertension. Clinics in Chest Medicine, 2007, 28, 143-167.	2.1	74
66	Rottlerin causes pulmonary edema in vivo: a possible role for PKCδ. Journal of Applied Physiology, 2007, 103, 2084-2094.	2.5	25
67	Natriuretic peptides differentially attenuate thrombin-induced barrier dysfunction in pulmonary microvascular endothelial cells. Experimental Cell Research, 2006, 312, 401-410.	2.6	34
68	Pulmonary Hemodynamic Responses to Brain Natriuretic Peptide and Sildenafil in Patients With Pulmonary Arterial Hypertension. Chest, 2006, 129, 417-425.	0.8	90
69	Acute Cardiopulmonary Hemodynamic Effects of Brain Natriuretic Peptide in Patients With Pulmonary Arterial Hypertension. Chest, 2005, 128, 618S-619S.	0.8	8
70	Pulmonary hypertension: inhaled nitric oxide, sildenafil and natriuretic peptides. Current Opinion in Pharmacology, 2005, 5, 245-250.	3.5	47
71	Acute and chronic effects of sildenafil in patients with pulmonary arterial hypertension. Respiratory Medicine, 2005, 99, 1501-1510.	2.9	79
72	Synergistic Effects of ANP and Sildenafil on cGMP Levels and Amelioration of Acute Hypoxic Pulmonary Hypertension. Experimental Biology and Medicine, 2004, 229, 920-925.	2.4	38

#	Article	IF	CITATIONS
73	Pulmonary Edema Caused by Inhaled Nitric Oxide Therapy in Two Patients With Pulmonary Hypertension Associated With the CREST Syndrome. Chest, 2002, 121, 656-659.	0.8	48
74	Inhaled nitric oxide in ARDS. Critical Care Clinics, 2002, 18, 45-68.	2.6	27
75	Targeted disruption of the gene for natriuretic peptide receptor-A worsens hypoxia-induced cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H58-H65.	3.2	36
76	Vasoresponsiveness of Sarcoidosis-Associated Pulmonary Hypertension. Chest, 2001, 120, 866-872.	0.8	121
77	Genetic disruption of atrial natriuretic peptide causes pulmonary hypertension in normoxic and hypoxic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L868-L874.	2.9	38
78	Brain natriuretic peptide inhibits hypoxic pulmonary hypertension in rats. Journal of Applied Physiology, 1998, 84, 1646-1652.	2.5	50
79	C-Receptor Ligand Blocks Pulmonary Clearance of Atrial Natriuretic Peptide in Isolated Rat Lungs. Experimental Biology and Medicine, 1992, 201, 154-158.	2.4	11
80	Right Ventricular Dysfunction in Chronic Obstructive Pulmonary Disease*. Chest, 1991, 99, 715-723.	0.8	88
81	Reply to: Remote 6-minute Walk Testing in Patients with Pulmonary Hypertension: Further Validation Needed?. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	0