List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8615550/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The SALTENA Experiment: Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes. Bulletin of the American Meteorological Society, 2022, 103, E212-E229.                                          | 1.7 | 9         |
| 2  | The impact of ammonium on the distillation of organic carbon in PM2.5. Science of the Total Environment, 2022, 803, 150012.                                                                                                                  | 3.9 | 2         |
| 3  | Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & amp; Technology, 2022, 56, 770-778.                                                                     | 4.6 | 16        |
| 4  | Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. Science of the Total Environment, 2022, 808, 152191.                                                                              | 3.9 | 21        |
| 5  | Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental Science Atmospheres, 2022, 2, 146-164.                                                      | 0.9 | 6         |
| 6  | Influence of organic aerosol molecular composition on particle absorptive properties in autumn<br>Beijing. Atmospheric Chemistry and Physics, 2022, 22, 1251-1269.                                                                           | 1.9 | 8         |
| 7  | Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry.<br>Atmospheric Environment, 2022, 273, 118971.                                                                                                | 1.9 | 3         |
| 8  | Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities.<br>Nature Geoscience, 2022, 15, 255-261.                                                                                                       | 5.4 | 64        |
| 9  | Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469. | 1.9 | 9         |
| 10 | Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.                                                             | 3.9 | 6         |
| 11 | Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .                                                                          | 2.6 | 8         |
| 12 | Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban<br>Environment. Environmental Science & Technology, 2022, 56, 9936-9946.                                                                            | 4.6 | 19        |
| 13 | Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols.<br>Nature Geoscience, 2021, 14, 4-9.                                                                                                         | 5.4 | 40        |
| 14 | Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.                                                      | 1.5 | 18        |
| 15 | Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.                                                             | 1.6 | 74        |
| 16 | A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .                                                                                                     | 2.6 | 23        |
| 17 | Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .                                                             | 3.3 | 25        |
| 18 | Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China, Science of the Total Environment, 2021, 753, 142207.                                                                             | 3.9 | 21        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.                                                                                                                                                                        | 6.0 | 94        |
| 20 | Sulfuric acid–amine nucleation in urban Beijing. Atmospheric Chemistry and Physics, 2021, 21, 24, 2457-2468.                                                                                                                                                   | 1.9 | 70        |
| 21 | Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.                                                                                                                                     | 1.5 | 70        |
| 22 | Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes. Atmospheric Chemistry and Physics, 2021, 21, 4123-4147.                                                  | 1.9 | 23        |
| 23 | The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.                                                                                       | 1.5 | 53        |
| 24 | Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments. Environmental<br>Science & Technology, 2021, 55, 4410-4419.                                                                                                                   | 4.6 | 26        |
| 25 | Formation of nighttime sulfuric acid from the ozonolysis of alkenes in Beijing. Atmospheric<br>Chemistry and Physics, 2021, 21, 5499-5511.                                                                                                                     | 1.9 | 17        |
| 26 | An indicator for sulfuric acid–amine nucleation in atmospheric environments. Aerosol Science and<br>Technology, 2021, 55, 1059-1069.                                                                                                                           | 1.5 | 19        |
| 27 | Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules. Atmospheric Chemistry and Physics, 2021, 21, 8961-8977.                     | 1.9 | 12        |
| 28 | Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source<br>identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21,<br>11437-11452.                                             | 1.9 | 12        |
| 29 | Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing. Environmental<br>Science & Technology, 2021, 55, 10994-11005.                                                                                                                   | 4.6 | 34        |
| 30 | Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season<br>haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction.<br>Atmospheric Chemistry and Physics, 2021, 21, 12173-12187. | 1.9 | 10        |
| 31 | Ammonium nitrate promotes sulfate formation through uptake kinetic regime. Atmospheric Chemistry and Physics, 2021, 21, 13269-13286.                                                                                                                           | 1.9 | 24        |
| 32 | The driving factors of new particle formation and growth in the polluted boundary layer.<br>Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.                                                                                                          | 1.9 | 38        |
| 33 | Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban<br>Environment. Environmental Science & Technology, 2021, 55, 13646-13656.                                                                                             | 4.6 | 32        |
| 34 | Modeling the effect of reduced traffic due to COVID-19 measures on air quality using a chemical transport model: impacts on the Po Valley and the Swiss Plateau regions. Environmental Science Atmospheres, 2021, 1, 228-240.                                  | 0.9 | 12        |
| 35 | Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in northern Italy. Environmental Science Atmospheres, 2021, 1, 214-227.                                                                                         | 0.9 | 12        |
| 36 | Clear, transparent, and timely communication for fair authorship decisions: a practical guide.<br>Geoscience Communication, 2021, 4, 507-516.                                                                                                                  | 0.5 | 0         |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis. Atmospheric Chemistry and Physics, 2021, 21, 16453-16477.  | 1.9  | 13        |
| 38 | Unprecedented Ambient Sulfur Trioxide (SO <sub>3</sub> ) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.        | 3.9  | 34        |
| 39 | Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.                                | 2.0  | 54        |
| 40 | Size-dependent influence of NO <sub>x</sub> on the growth rates of organic aerosol particles.<br>Science Advances, 2020, 6, eaay4945.                                                                 | 4.7  | 61        |
| 41 | Uptake selectivity of methanesulfonic acid (MSA) on fine particles over polynya regions of the Ross<br>Sea, Antarctica. Atmospheric Chemistry and Physics, 2020, 20, 3259-3271.                       | 1.9  | 18        |
| 42 | Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. Atmospheric Chemistry and Physics, 2020, 20, 1941-1959.                                  | 1.9  | 46        |
| 43 | Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environmental<br>Science & Technology, 2020, 54, 8547-8557.                                                           | 4.6  | 78        |
| 44 | Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 1201-1216.                                                            | 1.9  | 52        |
| 45 | Overlooked organic vapor emissions from thawing Arctic permafrost. Environmental Research<br>Letters, 2020, 15, 104097.                                                                               | 2.2  | 17        |
| 46 | Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.                     | 1.9  | 42        |
| 47 | Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric<br>Chemistry and Physics, 2020, 20, 11809-11821.                                                        | 1.9  | 49        |
| 48 | Size-segregated particle number and mass concentrations from different emission sources in urban<br>Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.                                | 1.9  | 36        |
| 49 | The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions. Atmospheric Chemistry and Physics, 2020, 20, 13023-13040. | 1.9  | 37        |
| 50 | Molecular understanding of new-particle formation from <i>α</i> -pinene<br>between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.                                          | 1.9  | 68        |
| 51 | Atmospheric new particle formation in China. Atmospheric Chemistry and Physics, 2019, 19, 115-138.                                                                                                    | 1.9  | 118       |
| 52 | Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical<br>Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3,<br>873-883. | 1.2  | 52        |
| 53 | Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals:<br>A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.                 | 23.0 | 460       |
| 54 | A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmospheric<br>Chemistry and Physics, 2019, 19, 1971-1983.                                                      | 1.9  | 46        |

| #  | Article                                                                                                                                                                                                                            | IF               | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 55 | Novel insights on new particle formation derived from a pan-european observing system. Scientific Reports, 2018, 8, 1482.                                                                                                          | 1.6              | 39            |
| 56 | Formation of highly oxygenated organic molecules from aromatic compounds. Atmospheric Chemistry and Physics, 2018, 18, 1909-1921.                                                                                                  | 1.9              | 133           |
| 57 | Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule<br>productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.                                         | 1.9              | 21            |
| 58 | New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863. | 1.9              | 92            |
| 59 | Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.                                                            | 1.9              | 56            |
| 60 | Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.                                                                                                                     | 4.7              | 64            |
| 61 | Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.                                                                  | 1.9              | 34            |
| 62 | Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.                                                                                                       | 4.7              | 164           |
| 63 | Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 2018, 13, 103003.                                                                                                     | 2.2              | 308           |
| 64 | The role of<br>H <sub>2</sub> SO <sub>4</sub> -NH <sub&a<br>anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric<br/>Chemistry and Physics, 2018, 18, 13231-13243.</sub&a<br>             | amp;gt;3&<br>I:9 | amp;lt;/sub&a |
| 65 | Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.                                                                                                               | 6.0              | 415           |
| 66 | Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.                                | 3.3              | 118           |
| 67 | Hourly composition of gas and particle phase pollutants at a central urban background site in Milan,<br>Italy. Atmospheric Research, 2017, 186, 83-94.                                                                             | 1.8              | 30            |
| 68 | Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.                                                        | 1.2              | 198           |
| 69 | Long-term chemical analysis and organic aerosol source apportionment at nine sites in central<br>Europe: source identification and uncertainty assessment. Atmospheric Chemistry and Physics, 2017, 17,<br>13265-13282.            | 1.9              | 78            |
| 70 | The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.                                                      | 1.9              | 66            |
| 71 | The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.                                                                                                         | 1.9              | 50            |
| 72 | Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch<br>(Switzerland). Atmospheric Chemistry and Physics, 2017, 17, 2613-2629.                                                         | 1.9              | 24            |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.                                                                                                                  | 1.9  | 11        |
| 74 | Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric<br>pressure interface time-of-flight (CI-APi-TOF) mass spectrometry. Atmospheric Measurement<br>Techniques, 2016, 9, 2135-2145.     | 1.2  | 27        |
| 75 | Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison<br>with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres,<br>2016, 121, 1752-1775. | 1.2  | 99        |
| 76 | Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.                                                             | 1.2  | 16        |
| 77 | Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization<br>Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.                                   | 1.2  | 17        |
| 78 | Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances,<br>ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>12,377.                 | 1.2  | 71        |
| 79 | The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.                                                                                                             | 13.7 | 540       |
| 80 | lon-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.                                                                                                                                                     | 13.7 | 528       |
| 81 | New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.                                                                                                                 | 6.0  | 348       |
| 82 | Contribution of methane to aerosol carbon mass. Atmospheric Environment, 2016, 141, 41-47.                                                                                                                                         | 1.9  | 12        |
| 83 | Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.                             | 3.3  | 107       |
| 84 | Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.                                                       | 1.5  | 13        |
| 85 | Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.                                                                                                                                 | 6.0  | 289       |
| 86 | Contribution of new particle formation to the total aerosol concentration at the highâ€altitude site<br>Jungfraujoch (3580ÂmÂasl, Switzerland). Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>11,692.              | 1.2  | 21        |
| 87 | The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature<br>Communications, 2016, 7, 11594.                                                                                                 | 5.8  | 116       |
| 88 | Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD. Atmospheric Chemistry and Physics, 2016, 16, 13601-13618.                                                         | 1.9  | 24        |
| 89 | Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.                                                                                                     | 1.9  | 47        |
| 90 | Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments.<br>Atmospheric Chemistry and Physics, 2016, 16, 293-304.                                                                            | 1.9  | 29        |

| #   | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.                                                                                                                                                 | 1.9  | 46        |
| 92  | Thermodynamics of the formation of sulfuric acid dimers in the binary<br>(H <sub>2</sub> SO <sub>4</sub> –H <sub<br>and ternary<br/>(H<sub>2</sub>SO<sub>4</sub>–H<sub< td=""><td>1.9</td><td>27</td></sub<></sub<br>                                                                     | 1.9  | 27        |
| 93  | system. Atmospheric Chemistry and Physics, 2015, 15, 10701-10721.<br>Elemental composition and clustering behaviour of α-pinene oxidation products for different<br>oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.                                         | 1.9  | 17        |
| 94  | Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.                                                                                                                                                                | 1.9  | 11        |
| 95  | Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for<br>high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and<br>first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011. | 1.2  | 30        |
| 96  | On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation.<br>Atmospheric Chemistry and Physics, 2015, 15, 55-78.                                                                                                                                        | 1.9  | 84        |
| 97  | Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of<br>Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.                                                                                        | 4.6  | 51        |
| 98  | Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles.<br>Science, 2014, 344, 717-721.                                                                                                                                                               | 6.0  | 456       |
| 99  | Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under<br>atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of<br>America, 2014, 111, 15019-15024.                                                     | 3.3  | 208       |
| 100 | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.                                                                                                                                                                        | 13.7 | 774       |
| 101 | Characterization of positive clusters in the CLOUD nucleation experiments. , 2013, , .                                                                                                                                                                                                    |      | 0         |
| 102 | Ternary H[sub 2]SO[sub 4]-H[sub 2]O-NH[sub 3] neutral and charged nucleation rates for a wide range of atmospheric conditions. , 2013, , .                                                                                                                                                |      | 0         |
| 103 | Role of organics in particle nucleation: From the lab to global model. , 2013, , .                                                                                                                                                                                                        |      | 1         |
| 104 | Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as first steps of nucleation in the CLOUD experiment. , 2013, , .                                                                                                                |      | 0         |
| 105 | Aerosol nucleation and growth in a mixture of sulfuric acid/alpha-pinene oxidation products at the CERN CLOUD chamber. , 2013, , .                                                                                                                                                        |      | 0         |
| 106 | Particle nucleation events at the high Alpine station Jungfraujoch. , 2013, , .                                                                                                                                                                                                           |      | 0         |
| 107 | Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .                                                                                                                                                                           |      | 1         |
| 108 | Two-dimensional volatility basis set modeling of pinanediol oxidation in the CLOUD experiment. , 2013, ,                                                                                                                                                                                  |      | 1         |

7

.

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized<br>organic molecules. Proceedings of the National Academy of Sciences of the United States of America,<br>2013, 110, 17223-17228. | 3.3  | 300       |
| 110 | Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.                                                                                                        | 1.9  | 33        |
| 111 | Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.                                                       | 1.9  | 207       |
| 112 | On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber. Atmospheric Measurement Techniques, 2012, 5, 1719-1725.                                                                                          | 1.2  | 37        |
| 113 | Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign.<br>Atmospheric Measurement Techniques, 2012, 5, 2161-2167.                                                                             | 1.2  | 47        |
| 114 | Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.                                                                                                           | 13.7 | 1,114     |
| 115 | Determination of fatty alcohol ethoxylates with diphenic anhydride derivatization and liquid chromatography with spectrophotometric detection. Journal of Chromatography A, 2009, 1216, 3023-3030.                                | 1.8  | 15        |