List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8614363/publications.pdf Version: 2024-02-01

		19608	17546
200	17,264	61	121
papers	citations	h-index	g-index
221	221	221	21659
all docs	docs citations	times ranked	citing authors

Δχει Ιμμοε

#	Article	IF	CITATIONS
1	Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 2005, 37, 391-400.	9.4	1,710
2	Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity that Marks Chromosomal Polycomb Sites. Cell, 2002, 111, 185-196.	13.5	1,398
3	Acetylation of general transcription factors by histone acetyltransferases. Current Biology, 1997, 7, 689-692.	1.8	578
4	Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. , 2005, 1, 143-145.		462
5	PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State. Molecular Cell, 2006, 24, 309-316.	4.5	361
6	Two distinct modes for propagation of histone PTMs across the cell cycle. Genes and Development, 2015, 29, 585-590.	2.7	334
7	Synergy between CD26/DPP-IV Inhibition and G-CSF Improves Cardiac Function after Acute Myocardial Infarction. Cell Stem Cell, 2009, 4, 313-323.	5.2	289
8	Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature, 2002, 419, 857-862.	13.7	283
9	Connecting Threads: Epigenetics and Metabolism. Cell, 2012, 148, 24-28.	13.5	282
10	hMOF Histone Acetyltransferase Is Required for Histone H4 Lysine 16 Acetylation in Mammalian Cells. Molecular and Cellular Biology, 2005, 25, 6798-6810.	1.1	281
11	Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO Journal, 2012, 31, 3157-3168.	3.5	279
12	Fast signals and slow marks: the dynamics of histone modifications. Trends in Biochemical Sciences, 2010, 35, 618-626.	3.7	268
13	Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge–Mediated Monocyte Adhesion. Circulation, 2021, 143, 254-266.	1.6	266
14	Phosphorylation of histone H3T6 by PKCβl controls demethylation at histone H3K4. Nature, 2010, 464, 792-796.	13.7	259
15	Replication Stress Interferes with Histone Recycling and Predeposition Marking of New Histones. Molecular Cell, 2010, 37, 736-743.	4.5	242
16	PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes and Development, 2007, 21, 3369-3380.	2.7	238
17	Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase. Immunity, 2019, 51, 997-1011.e7.	6.6	216
18	Mislocalization of the Centromeric Histone Variant CenH3/CENP-A in Human Cells Depends on the Chaperone DAXX. Molecular Cell, 2014, 53, 631-644.	4.5	214

#	Article	IF	CITATIONS
19	The HP1α–CAF1–SetDB1â€containing complex provides H3K9me1 for Suv39â€mediated K9me3 in pericentr heterochromatin. EMBO Reports, 2009, 10, 769-775.	ic 2.0	201
20	DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Research, 2015, 25, 911-929.	5.7	201
21	Physical and functional association of SU(VAR)3â€9 and HDAC1 inDrosophila. EMBO Reports, 2001, 2, 915-919.	2.0	186
22	Redundant Mechanisms to Form Silent Chromatin at Pericentromeric Regions Rely on BEND3 and DNA Methylation. Molecular Cell, 2014, 56, 580-594.	4.5	185
23	Transcriptional activation by Myc is under negative control by the transcription factor AP-2 EMBO Journal, 1995, 14, 1508-1519.	3.5	177
24	Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Reports, 2021, 35, 109126.	2.9	176
25	H3 Lysine 4 Is Acetylated at Active Gene Promoters and Is Regulated by H3 Lysine 4 Methylation. PLoS Genetics, 2011, 7, e1001354.	1.5	175
26	H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature, 2016, 534, 714-718.	13.7	172
27	dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO Journal, 2000, 19, 4332-4341.	3.5	167
28	OPA1 Processing Reconstituted in Yeast Depends on the Subunit Composition of the m-AAA Protease in Mitochondria. Molecular Biology of the Cell, 2007, 18, 3582-3590.	0.9	162
29	Dynamics of Adaptive Microevolution of Hypermutable <i>Pseudomonas aeruginosa</i> during Chronic Pulmonary Infection in Patients with Cystic Fibrosis. Journal of Infectious Diseases, 2009, 200, 118-130.	1.9	155
30	Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO Journal, 2007, 26, 4974-4984.	3.5	153
31	Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO Journal, 1998, 17, 520-534.	3.5	152
32	Transcription: Gene control by targeted histone acetylation. Current Biology, 1998, 8, R422-R424.	1.8	148
33	Activation of RNA Polymerase I Transcription by Cockayne Syndrome Group B Protein and Histone Methyltransferase G9a. Molecular Cell, 2007, 27, 585-595.	4.5	147
34	The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends in Biochemical Sciences, 2016, 41, 700-711.	3.7	143
35	An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2 Molecular and Cellular Biology, 1993, 13, 4174-4185.	1.1	136
36	Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3339-3344.	3.3	133

#	Article	lF	CITATIONS
37	The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO Journal, 2002, 21, 2430-2440.	3.5	132
38	Bioinformatic analysis of proteomics data. BMC Systems Biology, 2014, 8, S3.	3.0	131
39	A Î ³ -secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b. Nature Cell Biology, 2006, 8, 894-896.	4.6	130
40	Regulated Intramembrane Proteolysis of the Interleukin-1 Receptor II by α-, β-, and γ-Secretase. Journal of Biological Chemistry, 2007, 282, 11982-11995.	1.6	128
41	Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO Journal, 2001, 20, 3781-3788.	3.5	127
42	The Prion Curing Agent Guanidinium Chloride Specifically Inhibits ATP Hydrolysis by Hsp104. Journal of Biological Chemistry, 2004, 279, 7378-7383.	1.6	124
43	Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. Journal of Neuroimmunology, 2011, 233, 245-248.	1.1	119
44	Global and Specific Responses of the Histone Acetylome to Systematic Perturbation. Molecular Cell, 2015, 57, 559-571.	4.5	119
45	Impairment of prostate cancer cell growth by a selective and reversible lysineâ€specific demethylase 1 inhibitor. International Journal of Cancer, 2012, 131, 2704-2709.	2.3	118
46	Heptad-Specific Phosphorylation of RNA PolymeraseÂll CTD. Molecular Cell, 2016, 61, 305-314.	4.5	118
47	Life span extension by targeting a link between metabolism and histone acetylation in <i>Drosophila</i> . EMBO Reports, 2016, 17, 455-469.	2.0	116
48	HP1 Binding to Chromatin Methylated at H3K9 Is Enhanced by Auxiliary Factors. Molecular and Cellular Biology, 2007, 27, 453-465.	1.1	115
49	Df31 Protein and snoRNAs Maintain Accessible Higher-Order Structures of Chromatin. Molecular Cell, 2012, 48, 434-444.	4.5	108
50	A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics, 2004, 4, 1382-1396.	1.3	102
51	Sequential Establishment of Marks on Soluble Histones H3 and H4. Journal of Biological Chemistry, 2011, 286, 17714-17721.	1.6	100
52	Establishment of Histone Modifications after Chromatin Assembly. Nucleic Acids Research, 2009, 37, 5032-5040.	6.5	94
53	Stepwise Evolution of Essential Centromere Function in a <i>Drosophila</i> Neogene. Science, 2013, 340, 1211-1214.	6.0	94
54	Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome <i>b</i> synthesis and assembly. Journal of Cell Biology, 2011, 193, 1101-1114.	2.3	91

#	Article	IF	CITATIONS
55	Transcriptional Regulation of the AP-2α Promoter by BTEB-1 and AP-2rep, a Novel wt-1/egr-Related Zinc Finger Repressor. Molecular and Cellular Biology, 1999, 19, 194-204.	1.1	86
56	Epigenetics and Metabolism in Health and Disease. Frontiers in Genetics, 2018, 9, 361.	1.1	81
57	Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nature Communications, 2020, 11, 402.	5.8	76
58	Proteome analysis of mitochondrial outer membrane fromNeurospora crassa. Proteomics, 2006, 6, 72-80.	1.3	74
59	Interaction of HP1 and Brg1/Brm with the Globular Domain of Histone H3 Is Required for HP1-Mediated Repression. PLoS Genetics, 2009, 5, e1000769.	1.5	74
60	The Impact of One Carbon Metabolism on Histone Methylation. Frontiers in Genetics, 2019, 10, 764.	1.1	72
61	A Pair of Centromeric Proteins Mediates Reproductive Isolation in Drosophila Species. Developmental Cell, 2013, 27, 412-424.	3.1	71
62	p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption. EMBO Journal, 1999, 18, 5634-5652.	3.5	70
63	Assembly of methylated KDM1A and CHD1 drives androgen receptor–dependent transcription and translocation. Nature Structural and Molecular Biology, 2016, 23, 132-139.	3.6	70
64	SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Science Advances, 2019, 5, eaav3673.	4.7	70
65	Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Molecular Cell, 2018, 69, 48-61.e6.	4.5	66
66	MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. Journal of Cell Science, 2017, 130, 1570-1582.	1.2	64
67	Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum. Nature Communications, 2020, 11, 1485.	5.8	64
68	The genomic structure of the human AP-2 transcription factor. Nucleic Acids Research, 1994, 22, 1413-1420.	6.5	62
69	Proteins at the Polypeptide Tunnel Exit of the Yeast Mitochondrial Ribosome. Journal of Biological Chemistry, 2010, 285, 19022-19028.	1.6	62
70	The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Research, 2014, 42, 6405-6420.	6.5	61
71	Circadian Control of Fatty Acid Elongation by SIRT1 Protein-mediated Deacetylation of Acetyl-coenzyme A Synthetase 1. Journal of Biological Chemistry, 2014, 289, 6091-6097.	1.6	61
72	Histone Deacetylase Directs the Dominant Silencing of Transcription in Chromatin: Association with MeCP2 and the Mi-2 Chromodomain SWI/SNF ATPase. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 435-446.	2.0	61

#	Article	IF	CITATIONS
73	KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nature Structural and Molecular Biology, 2019, 26, 361-371.	3.6	57
74	Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Molecular Cell, 2021, 81, 1084-1099.e6.	4.5	57
75	Purification and Properties of theXenopusHat1 Acetyltransferase:Â Association with the 14-3-3 Proteins in the Oocyte Nucleusâ€. Biochemistry, 1999, 38, 13085-13093.	1.2	56
76	Coronin 1A, a novel player in integrin biology, controls neutrophil trafficking in innate immunity. Blood, 2017, 130, 847-858.	0.6	56
77	Adrenergic Signaling Strengthens Cardiac Myocyte Cohesion. Circulation Research, 2017, 120, 1305-1317.	2.0	55
78	The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development. Nucleic Acids Research, 2006, 34, 4609-4621.	6.5	54
79	Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes. Cell Reports, 2020, 30, 1223-1234.e8.	2.9	54
80	LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6. Oncogenesis, 2014, 3, e120-e120.	2.1	53
81	Methylation of histone H3 lysine 9 occurs during translation. Nucleic Acids Research, 2015, 43, 9097-9106.	6.5	52
82	Yersinia Protein Kinase YopO Is Activated by A Novel G-actin Binding Process. Journal of Biological Chemistry, 2007, 282, 2268-2277.	1.6	50
83	Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Molecular Biology of the Cell, 2012, 23, 4335-4346.	0.9	50
84	Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Developmental Cell, 2019, 51, 632-644.e6.	3.1	50
85	S-adenosyl- <scp>l</scp> -homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Science Advances, 2020, 6, .	4.7	49
86	Epigenetic regulators and histone modification. Briefings in Functional Genomics & Proteomics, 2006, 5, 222-227.	3.8	48
87	The analysis of histone modifications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1932-1939.	1.1	46
88	Monomethylation of Lysine 20 on Histone H4 Facilitates Chromatin Maturation. Molecular and Cellular Biology, 2009, 29, 57-67.	1.1	46
89	The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases. Biochemical Pharmacology, 2016, 102, 130-140.	2.0	46
90	PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex. Nature Communications, 2018, 9, 4300.	5.8	46

#	Article	IF	CITATIONS
91	Biomarker discovery from body fluids using mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 105-114.	1.2	45
92	Probing the Conformation of the ISWI ATPase Domain With Genetically Encoded Photoreactive Crosslinkers and Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.012088.	2.5	45
93	Mass spectrometric analysis of protein histidine phosphorylation. Amino Acids, 2007, 32, 347-357.	1.2	44
94	DOT1A-dependent H3K76 methylation is required for replication regulation in Trypanosoma brucei. Nucleic Acids Research, 2012, 40, 10302-10311.	6.5	43
95	Characterization of the insertase for Î ² -barrel proteins of the outer mitochondrial membrane. Journal of Cell Biology, 2012, 199, 599-611.	2.3	43
96	The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase. Molecular Biology of the Cell, 2014, 25, 3342-3349.	0.9	43
97	Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells. Journal of Molecular Biology, 2017, 429, 3814-3824.	2.0	43
98	Harmonization of quality metrics and power calculation in multi-omic studies. Nature Communications, 2020, 11, 3092.	5.8	43
99	The Use of Mass Spectrometry for the Analysis of Histone Modifications. Methods in Enzymology, 2003, 377, 111-130.	0.4	42
100	The N-Terminus of Drosophila SU(VAR)3â^'9 Mediates Dimerization and Regulates Its Methyltransferase Activityâ€. Biochemistry, 2004, 43, 3740-3749.	1.2	42
101	Site-specific acetylation of ISWI by GCN5. BMC Molecular Biology, 2007, 8, 73.	3.0	40
102	Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. Journal of Cell Biology, 2015, 211, 553-567.	2.3	40
103	Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Molecular Cell, 2020, 79, 1051-1065.e10.	4.5	40
104	Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25250-25259.	3.3	38
105	Stage-Specific Histone Modification Profiles Reveal Global Transitions in the Xenopus Embryonic Epigenome. PLoS ONE, 2011, 6, e22548.	1.1	37
106	Myb-binding Protein 1a (Mybbp1a) Regulates Levels and Processing of Pre-ribosomal RNA. Journal of Biological Chemistry, 2012, 287, 24365-24377.	1.6	37
107	PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget, 2014, 5, 12646-12664.	0.8	36
108	The Integrity of the HMR complex is necessary for centromeric binding and reproductive isolation in Drosophila. PLoS Genetics, 2021, 17, e1009744.	1.5	35

#	Article	IF	CITATIONS
109	ESC, ESCL and their roles in Polycomb Group mechanisms. Mechanisms of Development, 2008, 125, 527-541.	1.7	34
110	Epstein–Barr virus-mediated transformation of B cells induces global chromatin changes independent to the acquisition of proliferation. Nucleic Acids Research, 2014, 42, 249-263.	6.5	34
111	Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nature Communications, 2021, 12, 5996.	5.8	34
112	Modifications of the Histone N-Terminal Domains: Evidence for an "Epigenetic Code"?. Molecular Biotechnology, 2001, 17, 01-14.	1.3	33
113	Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development (Cambridge), 2018, 145, .	1.2	33
114	Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nature Communications, 2019, 10, 1421.	5.8	33
115	Analysis of Histone Modifications by Mass Spectrometry. Current Protocols in Protein Science, 2008, 51, Unit 14.10.	2.8	32
116	Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates. Molecular Biology of the Cell, 2020, 31, 753-767.	0.9	32
117	Every methyl counts – Epigenetic calculus. FEBS Letters, 2011, 585, 2001-2007.	1.3	31
118	MSL2 Combines Sensor and Effector Functions in Homeostatic Control of the Drosophila Dosage Compensation Machinery. Molecular Cell, 2012, 48, 647-654.	4.5	31
119	Clonal analysis of Inquilinus limosus isolates from six cystic fibrosis patients and specific serum antibody response. Journal of Medical Microbiology, 2006, 55, 1425-1433.	0.7	30
120	Shelterin and subtelomeric <scp>DNA</scp> sequences control nucleosome maintenance and genome stability. EMBO Reports, 2019, 20, .	2.0	30
121	Spt6 is a maintenance factor for centromeric CENP-A. Nature Communications, 2020, 11, 2919.	5.8	30
122	Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling. BMC Cell Biology, 2007, 8, 31.	3.0	29
123	The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Molecular Biology of the Cell, 2018, 29, 2386-2396.	0.9	29
124	Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster. Nucleic Acids Research, 2012, 40, 1536-1549.	6.5	28
125	Identification of novel <i>Drosophila</i> centromereâ€associated proteins. Proteomics, 2014, 14, 2167-2178.	1.3	28
126	Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster. PLoS ONE, 2008, 3, e1553.	1.1	26

#	Article	IF	CITATIONS
127	DEAD-box helicase DDX27 regulates 3′ end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Experimental Cell Research, 2015, 334, 146-159.	1.2	26
128	STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse. Scientific Data, 2019, 6, 256.	2.4	26
129	Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin. Experimental Cell Research, 2010, 316, 1662-1680.	1.2	23
130	Mouse cytomegalovirus egress protein pM50 interacts with cellular endophilin-A2. Cellular Microbiology, 2013, 15, 335-351.	1.1	23
131	Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II. Transcription, 2015, 6, 91-101.	1.7	22
132	Molecular Wiring of a Mitochondrial Translational Feedback Loop. Molecular Cell, 2020, 77, 887-900.e5.	4.5	22
133	Drosophila HP1c Is Regulated by an Auto-Regulatory Feedback Loop through Its Binding Partner Woc. PLoS ONE, 2009, 4, e5089.	1.1	21
134	PP32 and SET/TAF-lβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Research, 2017, 45, 11700-11710.	6.5	21
135	A novel proteomics approach to epigenetic profiling of circulating nucleosomes. Scientific Reports, 2021, 11, 7256.	1.6	21
136	Phosphorylation of SU(VAR)3â \in "9 by the Chromosomal Kinase JIL-1. PLoS ONE, 2010, 5, e10042.	1.1	21
137	In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry. Proteomics, 2016, 16, 437-447.	1.3	19
138	Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions. Cell Systems, 2016, 2, 49-58.	2.9	19
139	Histone Modifications: An Assembly Line for Active Chromatin?. Current Biology, 2003, 13, R22-R24.	1.8	18
140	NO Augments Endothelial Reactivity by Reducing Myoendothelial Calcium Signal Spreading. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2280-2290.	1.1	18
141	Analog-sensitive cell line identifies cellular substrates of CDK9. Oncotarget, 2019, 10, 6934-6943.	0.8	18
142	The sounds of silencehistone deacetylation meets histone methylation. Genetica, 2003, 117, 159-164.	0.5	17
143	Cross-talk between Type Three Secretion System and Metabolism in Yersinia. Journal of Biological Chemistry, 2009, 284, 12165-12177.	1.6	17
144	Reply to "Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases". Nature Chemical Biology, 2013, 9, 137-137.	3.9	17

#	Article	IF	CITATIONS
145	Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Scientific Reports, 2016, 6, 27401.	1.6	17
146	Histone Modifications in Stem Cell Development and Their Clinical Implications. Stem Cell Reports, 2020, 15, 1196-1205.	2.3	17
147	ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Research, 2017, 45, 244-254.	6.5	16
148	Trnp1 organizes diverse nuclear membraneâ€less compartments in neural stem cells. EMBO Journal, 2020, 39, e103373.	3.5	16
149	Analysis of Histone Modifications by Mass Spectrometry. Current Protocols in Protein Science, 2018, 92, e54.	2.8	15
150	The complete murine cDNA sequence of the transcription factor AP-2. Nucleic Acids Research, 1993, 21, 4844-4844.	6.5	14
151	Epigenetic reprogramming of cortical neurons through alteration of dopaminergic circuits. Molecular Psychiatry, 2014, 19, 1193-1200.	4.1	14
152	MIR sequences recruit zinc finger protein ZNF768 to expressed genes. Nucleic Acids Research, 2019, 47, 700-715.	6.5	14
153	Pumilio2 and Staufen2 selectively balance the synaptic proteome. Cell Reports, 2021, 35, 109279.	2.9	14
154	"Chromatomics―the analysis of the chromatome. Molecular BioSystems, 2005, 1, 112-116.	2.9	13
155	The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver*. Molecular and Cellular Proteomics, 2015, 14, 2764-2774.	2.5	13
156	MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Review of Proteomics, 2016, 13, 275-284.	1.3	13
157	BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing. IScience, 2020, 23, 101151.	1.9	13
158	The Drosophila speciation factor HMR localizes to genomic insulator sites. PLoS ONE, 2017, 12, e0171798.	1.1	13
159	A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin. Molecular and Cellular Proteomics, 2016, 15, 945-959.	2.5	12
160	Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling. Structure, 2018, 26, 282-294.e6.	1.6	11
161	A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation. Nucleic Acids Research, 2020, 48, 4161-4178.	6.5	11
162	Structure and Function of an Elongation Factor P Subfamily in Actinobacteria. Cell Reports, 2020, 30, 4332-4342.e5.	2.9	11

#	Article	IF	CITATIONS
163	Heterogeneous Antibody-Based Activity Assay for Lysine Specific Demethylase 1 (LSD1) on a Histone Peptide Substrate. Journal of Biomolecular Screening, 2014, 19, 973-978.	2.6	10
164	Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Research, 2019, 47, 11649-11666.	6.5	10
165	GSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes. Antioxidants, 2021, 10, 1128.	2.2	10
166	The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster. PLoS ONE, 2011, 6, e20761.	1.1	9
167	Altered Localization of Hybrid Incompatibility Proteins in Drosophila. Molecular Biology and Evolution, 2019, 36, 1783-1792.	3.5	9
168	Reduced peroxisomal import triggers peroxisomal retrograde signaling. Cell Reports, 2021, 34, 108653.	2.9	9
169	Investigation and Highly Accurate Prediction of Missed Tryptic Cleavages by Deep Learning. Journal of Proteome Research, 2021, 20, 3749-3757.	1.8	9
170	Phosphorylation of the HP1Î ² hinge region sequesters KAP1 in heterochromatin and promotes the exit from naÃ ⁻ ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423.	6.5	9
171	Identification of Drosophila centromere associated proteins by quantitative affinity purification-mass spectrometry. Data in Brief, 2015, 4, 544-550.	0.5	8
172	<i>Helicobacter hepaticus</i> is required for immune targeting of bacterial heat shock protein 60 and fatal colitis in mice. Gut Microbes, 2021, 13, 1-20.	4.3	8
173	RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex. PLoS ONE, 2013, 8, e65740.	1.1	7
174	New Approaches for Absolute Quantification of Stableâ€Isotopeâ€Labeled Peptide Standards for Targeted Proteomics Based on a UV Active Tag. Proteomics, 2020, 20, e2000007.	1.3	7
175	MALDI-IMS combined with shotgun proteomics identify and localize new factors in male infertility. Life Science Alliance, 2021, 4, e202000672.	1.3	7
176	H4K20 Methylation Is Differently Regulated by Dilution and Demethylation in Proliferating and Cell-Cycle-Arrested Xenopus Embryos. Cell Systems, 2020, 11, 653-662.e8.	2.9	6
177	Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. International Journal of Molecular Sciences, 2021, 22, 2345.	1.8	6
178	Multi-Reference Spectral Library Yields Almost Complete Coverage of Heterogeneous LC-MS/MS Data Sets. Journal of Proteome Research, 2019, 18, 1553-1566.	1.8	5
179	Exploring the Ion Channel TRPV2 and Testicular Macrophages in Mouse Testis. International Journal of Molecular Sciences, 2021, 22, 4727.	1.8	5
180	From <scp>HDAC</scp> i to <scp>KDAC</scp> i: we need to revisit nonâ€epigenetic pathways affected by inhibiting lysine deacetylases in therapy. EMBO Reports, 2016, 17, 1673-1673.	2.0	4

#	Article	IF	CITATIONS
181	A Drosophila cell-free system that senses DNA breaks and triggers phosphorylation signalling. Nucleic Acids Research, 2019, 47, 7444-7459.	6.5	4
182	Physical Activity Dynamically Regulates the Hippocampal Proteome along the Dorso-Ventral Axis. International Journal of Molecular Sciences, 2020, 21, 3501.	1.8	4
183	Dietary intervention improves health metrics and life expectancy of the genetically obese Titan mouse. Communications Biology, 2022, 5, 408.	2.0	4
184	Ablation of D2 autoreceptors causes epigenetic reprogramming of cortical neurons. Molecular Psychiatry, 2014, 19, 1153-1153.	4.1	3
185	Determining histone H4 acetylation patterns in human peripheral blood mononuclear cells using mass spectrometry. Clinical Mass Spectrometry, 2020, 15, 54-60.	1.9	3
186	ImShot: An Open-Source Software for Probabilistic Identification of Proteins In Situ and Visualization of Proteomics Data. Molecular and Cellular Proteomics, 2022, 21, 100242.	2.5	3
187	Data on the kinetics of in vitro assembled chromatin. Data in Brief, 2016, 8, 353-359.	0.5	2
188	Detection of Histone Modification Dynamics during the Cell Cycle by MS-Based Proteomics. Methods in Molecular Biology, 2018, 1832, 61-74.	0.4	2
189	A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. PLoS Biology, 2021, 19, e3001377.	2.6	2
190	A Focus on Chromatin Proteomics. Proteomics, 2016, 16, 379-380.	1.3	1
191	Measuring and Interpreting Oxygen Consumption Rates in Whole Fly Head Segments. Journal of Visualized Experiments, 2019, , .	0.2	1
192	Histone Modifications-Marks for Gene Expression?. Advances in Experimental Medicine and Biology, 2003, 544, 169-180.	0.8	1
193	Mapping protein networks in yeast mitochondria using proximity-dependent biotin identification coupled to proteomics. STAR Protocols, 2020, 1, 100219.	0.5	1
194	Lipids join the post-genomic era. Genome Biology, 2006, 7, 330.	13.9	0
195	Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. Journal of Cell Biology, 2011, 194, 155-155.	2.3	0
196	Inside front cover: In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry. Proteomics, 2016, 16, NA.	1.3	0
197	Discovery of Native Protein Complexes by Liquid Chromatography Followed byÂQuantitative Mass Spectrometry. Advances in Experimental Medicine and Biology, 2021, 1336, 105-128.	0.8	0
198	Histone Modifications:Methods and Techniques. Advances in Experimental Medicine and Biology, 2003, , 217-218.	0.8	0

#	Article	IF	CITATIONS
199	Kinetics of histone modifications during in vitro chromatin assembly. , 0, 2008, .		Ο
200	Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. Journal of Experimental Medicine, 2015, 212, 212120IA102.	4.2	0