Valentina Emiliani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8613941/publications.pdf

Version: 2024-02-01

51 papers	3,538 citations	29 h-index	214800 47 g-index
60	60	60	2929
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolutionary divergence of locomotion in two related vertebrate species. Cell Reports, 2022, 38, 110585.	6.4	12
2	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	3.3	17
3	BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nature Communications, 2021, 12, 4527.	12.8	73
4	Scanless two-photon excitation with temporal focusing. Nature Methods, 2020, 17, 571-581.	19.0	80
5	Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Scientific Reports, 2019, 9, 7603.	3.3	25
6	<i>In vivo</i> sub-millisecond two-photon optogenetics with temporally focused patterned light. Journal of Neuroscience, 2019, 39, 1785-18.	3.6	53
7	Compressive three-dimensional super-resolution microscopy with speckle-saturated fluorescence excitation. Nature Communications, 2019, 10, 1327.	12.8	39
8	ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. Journal of Clinical Investigation, 2019, 129, 2145-2162.	8.2	37
9	Towards circuit optogenetics. Current Opinion in Neurobiology, 2018, 50, 179-189.	4.2	74
10	Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Frontiers in Cellular Neuroscience, 2018, 12, 469.	3.7	25
11	Optimized Chronos sets the clock for optogenetic hearing restoration. EMBO Journal, 2018, 37, .	7.8	O
12	Computer-aided neurophysiology and imaging with open-source <i>Physlmage</i> . Journal of Neurophysiology, 2018, 120, 23-36.	1.8	5
13	Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Reports, 2018, 24, 1243-1253.e5.	6.4	77
14	Two-Photon Optogenetics by Computer-Generated Holography. Neuromethods, 2018, , 175-197.	0.3	13
15	Multiplexed temporally focused light shaping for high-resolution multi-cell targeting. Optica, 2018, 5, 1478.	9.3	42
16	Imaging membrane potential changes from dendritic spines using computer-generated holography. Neurophotonics, 2017, 4, 031211.	3.3	23
17	Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos. Journal of Neuroscience, 2017, 37, 10679-10689.	3.6	100
18	Recent advances in patterned photostimulation for optogenetics. Journal of Optics (United Kingdom), 2017, 19, 113001.	2.2	79

#	Article	IF	Citations
19	Temporally precise single-cell-resolution optogenetics. Nature Neuroscience, 2017, 20, 1796-1806.	14.8	227
20	Vortex-free phase profiles for uniform patterning with computer-generated holography. Optics Express, 2017, 25, 12640.	3.4	22
21	Two-Photon Holographic Stimulation of ReaChR. Frontiers in Cellular Neuroscience, 2016, 10, 234.	3.7	63
22	Computer Generated Holography with Intensity-Graded Patterns. Frontiers in Cellular Neuroscience, 2016, 10, 236.	3.7	17
23	Three-dimensional spatiotemporal focusing of holographic patterns. Nature Communications, 2016, 7, 11928.	12.8	114
24	Superresolution Imaging of Optical Vortices in a Speckle Pattern. Physical Review Letters, 2016, 116, 093904.	7.8	24
25	Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation. Neurophotonics, 2016, 3, 041806.	3.3	6
26	Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures. Neurophotonics, 2015, 2, 021007.	3.3	27
27	All-Optical Interrogation of Neural Circuits. Journal of Neuroscience, 2015, 35, 13917-13926.	3.6	320
28	Optogenetics and wave front shaping. , 2015, , .		0
29	Wave Front Shaping and Optogenetics. , 2015, , .		0
30	Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy. PLoS ONE, 2015, 10, e0143681.	2.5	17
31	Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. ELife, $2015,4,.$	6.0	76
32	A FIBERSCOPE FOR SPATIALLY SELECTIVE PHOTOACTIVATION AND FUNCTIONAL FLUORESCENCE IMAGING IN FREELY BEHAVING MICE. , $2015, $, .		0
33	The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons. Frontiers in Cellular Neuroscience, 2014, 8, 127.	3.7	18
34	When can temporally focused excitation be axially shifted by dispersion?. Optics Express, 2014, 22, 7087.	3.4	14
35	Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope. Neuron, 2014, 84, 1157-1169.	8.1	163
36	Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Molecular Biology of the Cell, 2014, 25, 3195-3209.	2.1	65

#	Article	IF	CITATIONS
37	Zero-order suppression for two-photon holographic excitation. Optics Letters, 2014, 39, 5953.	3.3	24
38	STED microscope with Spiral Phase Contrast. Scientific Reports, 2013, 3, 2050.	3.3	30
39	Emergence of Population Bursts from Simultaneous Activation of Small Subsets of preBötzinger Complex Inspiratory Neurons. Journal of Neuroscience, 2013, 33, 3332-3338.	3.6	70
40	Functional patterned multiphoton excitation deep inside scattering tissue. Nature Photonics, 2013, 7, 274-278.	31.4	103
41	Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation. Biomedical Optics Express, 2013, 4, 2869.	2.9	77
42	Two-photon optogenetics. Progress in Brain Research, 2012, 196, 119-143.	1.4	84
43	Reshaping the optical dimension in optogenetics. Current Opinion in Neurobiology, 2012, 22, 128-137.	4.2	60
44	Three-dimensional holographic photostimulation of the dendritic arbor. Journal of Neural Engineering, 2011, 8, 046002.	3.5	70
45	Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19504-19509.	7.1	143
46	Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 2010, 7, 848-854.	19.0	400
47	Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices. PLoS ONE, 2010, 5, e9431.	2.5	48
48	Good shape photolysis. , 2009, , .		0
49	Temporal focusing with spatially modulated excitation. Optics Express, 2009, 17, 5391.	3.4	52
50	Holographic photolysis of caged neurotransmitters. Nature Methods, 2008, 5, 821-827.	19.0	236
51	Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Optics Express, 2008, 16, 22039.	3.4	140