Markus Ternes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/861380/publications.pdf

Version: 2024-02-01

43 papers 3,575 citations

201674

27

h-index

265206 42 g-index

45 all docs

45 docs citations

45 times ranked 3079 citing authors

#	Article	IF	CITATIONS
1	Symmetry mediated tunable molecular magnetism on a 2D material. Communications Physics, 2021, 4, .	5. 3	7
2	Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science, 2021, 372, 964-968.	12.6	32
3	Local stiffness and work function variations of hexagonal boron nitride on Cu(111). Beilstein Journal of Nanotechnology, 2021, 12, 559-565.	2.8	2
4	Resolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems. Journal of Physical Chemistry Letters, 2021, 12, 6320-6325.	4.6	14
5	Sensing the Spin of an Individual Ce Adatom. Physical Review Letters, 2020, 124, 167202.	7.8	11
6	Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science, 2019, 366, 623-627.	12.6	60
7	Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate. Nano Letters, 2018, 18, 1978-1983.	9.1	22
8	Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy. Progress in Surface Science, 2017, 92, 83-115.	8.3	47
9	Potential energy–driven spin manipulation via a controllable hydrogen ligand. Science Advances, 2017, 3, e1602060.	10.3	13
10	Correlation-driven transport asymmetries through coupled spins in a tunnel junction. Nature Communications, 2017, 8, 14119.	12.8	17
11	A molecular quantum spin network controlled by a single qubit. Science Advances, 2017, 3, e1701116.	10.3	40
12	Building Complex Kondo Impurities by Manipulating Entangled Spin Chains. Nano Letters, 2017, 17, 6203-6209.	9.1	23
13	Strong paramagnon scattering in single atom Pd contacts. Physical Review B, 2017, 96, .	3.2	4
14	Structural and magnetic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> FeMn</mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> FeMn</mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo> (</mml:mo> <mml:mrow> <mml:mi> x</mml:mi> on <mml:math< td=""><td>i><mml:m< td=""><td>o>=4/mml:mo</td></mml:m<></td></mml:math<></mml:mrow></mml:msub></mml:msub></mml:math>	i> <mml:m< td=""><td>o>=4/mml:mo</td></mml:m<>	o>=4/mml:mo
15	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:n Physical Review B, 2016, 94, . Tailoring the chiral magnetic interaction between two individual atoms. Nature Communications, 2016, 7, 10620.</mml:n </mml:msub></mml:mrow>	nn>2 <td>nl:mn>. 66</td>	nl:mn>. 66
16	Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules. Annual Review of Analytical Chemistry, 2016, 9, 473-498.	5.4	67
17	Exploring the phase diagram of the two-impurity Kondo problem. Nature Communications, 2015, 6, 10046.	12.8	50
18	Spin Polarization of the Split Kondo State. Physical Review Letters, 2015, 114, 076601.	7.8	44

#	Article	IF	CITATIONS
19	Quantum engineering of spin and anisotropy in magnetic molecular junctions. Nature Communications, 2015, 6, 8536.	12.8	68
20	Spin excitations and correlations in scanning tunneling spectroscopy. New Journal of Physics, 2015, 17, 063016.	2.9	152
21	Tracking Temperature-Dependent Relaxation Times of Ferritin Nanomagnets with a Wideband Quantum Spectrometer. Physical Review Letters, 2014, 113, 217204.	7.8	50
22	A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum. Review of Scientific Instruments, 2014, 85, 013701.	1.3	22
23	Lateral and Vertical Stiffness of the Epitaxial h-BN Monolayer on Rh(111). Nano Letters, 2014, 14, 3623-3627.	9.1	13
24	Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nature Communications, 2013, 4, 2110.	12.8	125
25	The Quantum Magnetism of Individual Manganese-12-Acetate Molecular Magnets Anchored at Surfaces. Nano Letters, 2012, 12, 518-521.	9.1	146
26	Interplay of Conductance, Force, and Structural Change in Metallic Point Contacts. Physical Review Letters, 2011, 106, 016802.	7.8	124
27	Creation, electronic properties, disorder, and melting of two-dimensional surface-state-mediated adatom superlattices. Progress in Surface Science, 2010, 85, 1-27.	8.3	32
28	Controlling the state of quantum spins with electric currents. Nature Physics, 2010, 6, 340-344.	16.7	277
29	Spin Excitations of a Kondo-Screened Atom Coupled to a Second Magnetic Atom. Physical Review Letters, 2009, 103, 107203.	7.8	111
30	Spectroscopic manifestations of the Kondo effect on single adatoms. Journal of Physics Condensed Matter, 2009, 21, 053001.	1.8	221
31	Melting of Two-Dimensional Adatom Superlattices Stabilized by Long-Range Electronic Interactions. Physical Review Letters, 2009, 102, 246102.	7.8	41
32	Atomic Manipulation on Metal Surfaces. Nanoscience and Technology, 2009, , 191-215.	1.5	0
33	The role of magnetic anisotropy in the Kondo effect. Nature Physics, 2008, 4, 847-850.	16.7	309
34	The Force Needed to Move an Atom on a Surface. Science, 2008, 319, 1066-1069.	12.6	415
35	Diatomic Molecular Switches to Enable the Observation of Very-Low-Energy Vibrations. Physical Review Letters, 2007, 99, 126104.	7.8	45
36	Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network. Science, 2007, 317, 1199-1203.	12.6	536

Markus Ternes

#	Article	IF	CITATIONS
37	Comment on "Fano Resonance for Anderson Impurity Systems― Physical Review Letters, 2006, 96, 019701; discussion 019702.	7.8	4
38	Subgap structure in asymmetric superconducting tunnel junctions. Physical Review B, 2006, 74, .	3.2	42
39	Creation of an Atomic Superlattice by Immersing Metallic Adatoms in a Two-Dimensional Electron Sea. Physical Review Letters, 2004, 92, 016101.	7.8	202
40	Scanning-Tunneling Spectroscopy of Surface-State Electrons Scattered by a Slightly Disordered Two-Dimensional Dilute "Solid― Ce on Ag(111). Physical Review Letters, 2004, 93, 146805.	7.8	40
41	Coverage-dependent self-organization: from individual adatoms to adatom superlattices. New Journal of Physics, 2004, 6, 16-16.	2.9	44
42	Segregation effects during GaAs overgrowth of InAs and InGaAs quantum dots studied by cross-sectional scanning tunneling microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1129-1132.	0.8	2
43	Atomic structure of InAs and InGaAs quantum dots determined by cross-sectional scanning tunneling microscopy. Journal of Crystal Growth, 2003, 248, 322-327.	1.5	20