Peter Licence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8613496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vapourisation of ionic liquids. Physical Chemistry Chemical Physics, 2007, 9, 982.	2.8	364
2	Green chemistry. Nature, 2007, 450, 810-812.	27.8	347
3	Photoelectron Spectroscopy of Ionic Liquid-Based Interfaces. Chemical Reviews, 2010, 110, 5158-5190.	47.7	261
4	Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plantThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002 Green Chemistry, 2003, 5, 99-104.	9.0	236
5	lonic Liquids in Vacuo:Â Analysis of Liquid Surfaces Using Ultra-High-Vacuum Techniques. Langmuir, 2006, 22, 9386-9392.	3.5	230
6	Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy. Chemical Communications, 2005, , 5633.	4.1	213
7	Understanding microwave heating effects in single mode type cavities—theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 4750.	2.8	163
8	Synthesis of benzimidazoles in high-temperature waterThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002.Electronic supplementary information (ESI) available: analytical data for compounds 3a–f and 5g–j. See http://www.rsc.org/suppdata/gc/b2/b212394k/. Green Chemistry, 2003, 5, 187-192.	9.0	161
9	Measuring and predicting ΔvapH298 values of ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 8544.	2.8	155
10	Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 378-382.	4.6	145
11	Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS. Physical Chemistry Chemical Physics, 2011, 13, 2797-2808.	2.8	144
12	Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. Physical Chemistry Chemical Physics, 2014, 16, 15278-15288.	2.8	142
13	X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues. Physical Chemistry Chemical Physics, 2011, 13, 15244.	2.8	130
14	Continuous catalytic reactions in supercritical fluids. Applied Catalysis A: General, 2001, 222, 119-131.	4.3	124
15	Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Composites Science and Technology, 2012, 72, 1909-1917.	7.8	124
16	Fatigue life evaluation of aligned plant fibre composites through S–N curves and constant-life diagrams. Composites Science and Technology, 2013, 74, 139-149.	7.8	111
17	Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the support. Journal of Catalysis, 2010, 269, 150-160.	6.2	107
18	High vacuum distillation of ionic liquids and separation of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2010, 12, 1772.	2.8	104

#	Article	IF	CITATIONS
19	Continuous Asymmetric Hydrogenation in Supercritical Carbon Dioxide using an Immobilised Homogeneous Catalyst. Advanced Synthesis and Catalysis, 2006, 348, 1605-1610.	4.3	80
20	Vaporisation of an ionic liquid near room temperature. Physical Chemistry Chemical Physics, 2010, 12, 8893.	2.8	79
21	Non-classical diffusion in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 10147.	2.8	78
22	Xâ€ray Photoelectron Spectroscopy of Pyridiniumâ€Based Ionic Liquids: Comparison to Imidazolium―and Pyrrolidiniumâ€Based Analogues. ChemPhysChem, 2015, 16, 2211-2218.	2.1	77
23	Water adsorption on a liquid surface. Chemical Communications, 2007, , 4866.	4.1	76
24	Continuous catalytic asymmetric hydrogenation in supercritical CO2. Green Chemistry, 2004, 6, 521.	9.0	71
25	Chlorostannate(II) Ionic Liquids: Speciation, Lewis Acidity, and Oxidative Stability. Inorganic Chemistry, 2013, 52, 1710-1721.	4.0	71
26	Pyrrolidinium-Based Ionic Liquids. 1-Butyl-1-methyl Pyrrolidinium Dicyanoamide: Thermochemical Measurement, Mass Spectrometry, and ab Initio Calculations. Journal of Physical Chemistry B, 2008, 112, 11734-11742.	2.6	69
27	Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radical. Macromolecules, 2008, 41, 2814-2820.	4.8	68
28	Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes. Chemical Society Reviews, 2010, 39, 4185.	38.1	68
29	Tuning the electronic environment of cations and anions using ionic liquid mixtures. Chemical Science, 2014, 5, 2573-2579.	7.4	68
30	Supercritical fluids: A route to palladium-aerogel nanocomposites. Journal of Materials Chemistry, 2004, 14, 1212.	6.7	67
31	The enthalpies of vaporisation of ionic liquids: new measurements and predictions. Physical Chemistry Chemical Physics, 2012, 14, 3181.	2.8	66
32	Selective Monoprotection of 1,n-Terminal Diols in Supercritical Carbon Dioxide:Â A Striking Example of Solvent Tunable Desymmetrization. Journal of the American Chemical Society, 2005, 127, 293-298.	13.7	65
33	Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies. Physical Chemistry Chemical Physics, 2011, 13, 17737.	2.8	62
34	Spectroelectrochemistry at ultrahigh vacuum: in situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy. Chemical Communications, 2009, , 5817.	4.1	61
35	Ecotoxicity assessment of dicationic versus monocationic ionic liquids as a more environmentally friendly alternative. Ecotoxicology and Environmental Safety, 2018, 150, 129-135.	6.0	61
36	The tensile behavior of offâ€axis loaded plant fiber composites: An insight on the nonlinear stress–strain response. Polymer Composites, 2012, 33, 1494-1504.	4.6	60

#	Article	IF	CITATIONS
37	Reactive DESI-MS Imaging of Biological Tissues with Dicationic Ion-Pairing Compounds. Analytical Chemistry, 2015, 87, 3286-3293.	6.5	60
38	Large-aperture variable-volume view cell for the determination of phase-equilibria in high pressure systems and supercritical fluids. Review of Scientific Instruments, 2004, 75, 3233-3236.	1.3	57
39	Heterogeneous Electron Transfer Kinetics at the Ionic Liquid/Metal Interface Studied Using Cyclic Voltammetry and Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2008, 112, 13292-13299.	2.6	57
40	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide:Â An Investigation into Stabilizer Anchor Group. Macromolecules, 2005, 38, 3271-3282.	4.8	56
41	On the real catalytically active species for CO2 fixation into cyclic carbonates under near ambient conditions: Dissociation equilibrium of [BMIm][Fe(NO)2Cl2] dependant on reaction temperature. Applied Catalysis B: Environmental, 2019, 245, 240-250.	20.2	55
42	Effect of Viscosity on Steady-State Voltammetry and Scanning Electrochemical Microscopy in Room Temperature Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 4442-4450.	2.6	51
43	Vaporisation of a Dicationic Ionic Liquid. ChemPhysChem, 2009, 10, 337-340.	2.1	50
44	XPS of guanidinium ionic liquids: a comparison of charge distribution in nitrogenous cations. Physical Chemistry Chemical Physics, 2015, 17, 11839-11847.	2.8	50
45	Hydrogen Oxidation and Oxygen Reduction at Platinum in Protic Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 18048-18056.	3.1	49
46	Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide. Physical Chemistry Chemical Physics, 2010, 12, 10793.	2.8	48
47	Iodide/triiodide electrochemistry in ionic liquids: Effect of viscosity on mass transport, voltammetry and scanning electrochemical microscopy. Electrochimica Acta, 2011, 56, 10313-10320.	5.2	47
48	Hydroxyethylcellulose surface treatment of natural fibres: the new â€~twist' in yarn preparation and optimization for composites applicability. Journal of Materials Science, 2012, 47, 2700-2711.	3.7	47
49	Friedelâ~'Crafts Alkylation of Anisole in Supercritical Carbon Dioxide:Â A Comparative Study of Catalysts. Organic Process Research and Development, 2005, 9, 451-456.	2.7	45
50	An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics, 2010, 12, 1982.	2.8	45
51	Continuous heterogeneous catalytic oxidation of primary and secondary alcohols in scCO2. Green Chemistry, 2010, 12, 310.	9.0	43
52	Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7548.	2.8	43
53	Speciation of chloroindate(iii) ionic liquids. Dalton Transactions, 2010, 39, 8679.	3.3	42
54	The vapour of imidazolium-based ionic liquids: a mass spectrometry study. Physical Chemistry Chemical Physics, 2011, 13, 16841.	2.8	42

#	Article	IF	CITATIONS
55	Acidity and basicity of halometallate-based ionic liquids from X-ray photoelectron spectroscopy. RSC Advances, 2013, 3, 9436.	3.6	42
56	Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 1339-1353.	2.8	42
57	The Coâ€Entrapment of a Homogeneous Catalyst and an Ionic Liquid by a Sol–gel Method: Recyclable Ionogel Hydrogenation Catalysts. Chemistry - A European Journal, 2009, 15, 7094-7100.	3.3	41
58	On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study. Physical Chemistry Chemical Physics, 2011, 13, 10155.	2.8	41
59	Mechanical Property Characterization of Aligned Plant Yarn Reinforced Thermoset Matrix Composites Manufactured via Vacuum Infusion. Polymer-Plastics Technology and Engineering, 2014, 53, 239-253.	1.9	40
60	Synthesis and CO2Solubility Studies of Poly(ether carbonate)s and Poly(ether ester)s Produced by Step Growth Polymerization. Macromolecules, 2005, 38, 1691-1698.	4.8	39
61	Xâ€Ray Photoelectron Spectroscopy of Ferrocenyl―and Ferroceniumâ€Based Ionic Liquids. ChemPhysChem, 2012, 13, 1917-1926.	2.1	39
62	Does the influence of substituents impact upon the surface composition of pyrrolidinium-based ionic liquids? An angle resolved XPS study. Physical Chemistry Chemical Physics, 2012, 14, 5229.	2.8	38
63	In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines. Journal of Hazardous Materials, 2020, 385, 121513.	12.4	37
64	Green Chemistry in Ethiopia: the cleaner extraction of essential oils from Artemisia afra: a comparison of clean technology with conventional methodology. Green Chemistry, 2005, 7, 352.	9.0	36
65	RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids. Journal of Materials Chemistry, 2009, 19, 2679.	6.7	36
66	The immobilisation of phenoxaphosphine-modified xanthene-type ligand on polysiloxane support and application thereof in the hydroformylation reaction. Journal of Molecular Catalysis A, 2004, 224, 145-152.	4.8	34
67	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	6.7	34
68	The automation of continuous reactions in supercritical CO2: the acid-catalysed etherification of short chain alcohols. Green Chemistry, 2005, 7, 456.	9.0	33
69	Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide:Â Effects of Poly(dimethylsiloxane) Macromonomer on Molecular Weight and Morphology of Poly(vinylidene) Tj ETQq1 1 0.7	784&&4 rg	BT \$2 verlock
70	Moringa stenopetala seed oil as a potential feedstock for biodiesel production in Ethiopia. Green Chemistry, 2010, 12, 316.	9.0	32
71	Dielectric spectroscopy: a technique for the determination of water coordination within ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 2947.	2.8	30
72	NMR as a probe of nanostructured domains in ionic liquids: Does domain segregation explain increased performance of free radical polymerisation?. Chemical Science, 2011, 2, 1810.	7.4	29

#	Article	IF	CITATIONS
73	UN sustainable development goals: How can sustainable/green chemistry contribute? By doing things differently. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 146-149.	5.9	29
74	Rewritable Imaging on the Surface of Frozen Ionic Liquids. Angewandte Chemie - International Edition, 2007, 46, 4163-4165.	13.8	28
75	Tuning cation–anion interactions in ionic liquids by changing the conformational flexibility of the cation. Chemical Communications, 2014, 50, 12080-12083.	4.1	27
76	The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene. Applied and Environmental Microbiology, 2015, 81, 2625-2634.	3.1	27
77	Tunable Ionic Control of Polymeric Films for Inkjet Based 3D Printing. ACS Sustainable Chemistry and Engineering, 2018, 6, 3984-3991.	6.7	27
78	Borane-substituted imidazol-2-ylidenes: syntheses in vacuo. Dalton Transactions, 2011, 40, 1463.	3.3	26
79	Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids. Electrochemistry Communications, 2012, 23, 122-124.	4.7	26
80	The synthesis of o-cyclohexylphenol in supercritical carbon dioxide: towards a continuous two-step reaction. Green Chemistry, 2007, 9, 797.	9.0	25
81	Thermally-Stable Imidazolium Dicationic Ionic Liquids with Pyridine Functional Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 8762-8772.	6.7	25
82	Vaporisation of a Dicationic Ionic Liquid Revisited. ChemPhysChem, 2010, 11, 3673-3677.	2.1	23
83	The 13 Principles of Green Chemistry and Engineering for a Greener Africa. Green Chemistry, 2011, 13, 1059.	9.0	23
84	Expectations for Manuscripts Contributing to the Field of Solvents in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 14627-14629.	6.7	23
85	Studies of the Interaction of Ionic Liquid and Gas in a Small-Diameter Bubble Column. Industrial & Engineering Chemistry Research, 2009, 48, 7938-7944.	3.7	22
86	Advancing the Use of Sustainability Metrics. ACS Sustainable Chemistry and Engineering, 2015, 3, 2359-2360.	6.7	22
87	Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catalysis, 2020, 10, 13904-13912.	11.2	22
88	Directly probing the effect of the solvent on a catalyst electronic environment using X-ray photoelectron spectroscopy. RSC Advances, 2015, 5, 35958-35965.	3.6	21
89	Spectroscopic analysis of 1-butyl-2,3-dimethylimidazolium ionic liquids: Cation-anion interactions. Chemical Physics Letters, 2017, 674, 86-89.	2.6	21
90	A New Approach to Sustainability: A Moore's Law for Chemistry. Angewandte Chemie - International Edition, 2018, 57, 12590-12591.	13.8	21

#	Article	IF	CITATIONS
91	Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11691-11699.	6.7	21
92	The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chemistry and Engineering, 2021, 9, 8015-8017.	6.7	20
93	Probing Solvation in Ionic Liquids via the Electrochemistry of the DPPH Radical. Journal of the American Chemical Society, 2012, 134, 15636-15639.	13.7	19
94	Supramolecular architectures of symmetrical dicationic ionic liquid based systems. CrystEngComm, 2012, 14, 4886.	2.6	19
95	Inâ€Situ XPS Monitoring of Bulk Ionic Liquid Reactions: Shedding Light on Organic Reaction Mechanisms. Angewandte Chemie - International Edition, 2012, 51, 4789-4791.	13.8	19
96	Enzymatic synthesis of epoxy fatty acid starch ester in ionic liquid–organic solvent mixture from vernonia oil. Starch/Staerke, 2014, 66, 385-392.	2.1	19
97	Tuning the electronic environment of the anion by using binary ionic liquid mixtures. Chemical Physics Letters, 2017, 681, 40-43.	2.6	19
98	Enantiomerically pure 2,2-dibromocyclopropanecarboxylic acids, simple chiral building blocks. Tetrahedron, 1999, 55, 2773-2784.	1.9	18
99	The influence of domain segregation in ionic liquids upon controlled polymerisation mechanisms: RAFT polymerisation. Polymer Chemistry, 2013, 4, 1337-1344.	3.9	17
100	The use of dicationic ion-pairing compounds to enhance the ambient detection of surface lipids in positive ionization mode using desorption electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 616-624.	1.5	17
101	The impact of cation acidity and alkyl substituents on the cation–anion interactions of 1-alkyl-2,3-dimethylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 11058-11065.	2.8	17
102	The Formation and Role of Oxide Layers on Pt during Hydrazine Oxidation in Protic Ionic Liquids. ChemElectroChem, 2014, 1, 281-288.	3.4	16
103	Thermal stability of dialkylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids: <i>ex situ</i> bulk heating to complement <i>in situ</i> mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 16786-16800.	2.8	16
104	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering</i> : An Initiative by the Editors. ACS Sustainable Chemistry and Engineering, 2021, 9, 3977-3978.	6.7	16
105	Supercritical fluids: green solvents for green chemistry?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150018.	3.4	15
106	Expectations for Manuscripts on Catalysis in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 4995-4996.	6.7	14
107	Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustainable Chemistry and Engineering, 2021, 9, 4293-4295.	6.7	14
108	Continuous-flow alkene metathesis: the model reaction of 1-octene catalyzed by Re2O7/γ-Al2O3 with supercritical CO2 as a carrier. Green Chemistry, 2012, 14, 2727.	9.0	13

#	Article	IF	CITATIONS
109	Probing liquid behaviour by helium atom scattering: surface structure and phase transitions of an ionic liquid on Au(111). Chemical Science, 2014, 5, 667-676.	7.4	13
110	Study of the Stability of 1-Alkyl-3-methylimidazolium Hexafluoroantimonate(V) Based Ionic Liquids Using X-ray Photoelectron Spectroscopy. ACS Sustainable Chemistry and Engineering, 2016, 4, 5953-5962.	6.7	13
111	X-ray photoelectron spectroscopy of trihalide ionic liquids: Comparison to halide-based analogues, anion basicity and beam damage. Chemical Physics Letters, 2017, 679, 207-211.	2.6	13
112	Resolving X-ray photoelectron spectra of ionic liquids with difference spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 114-123.	2.8	13
113	"Supercriticalityâ€; a dramatic but safe demonstration of the critical point. Green Chemistry, 2004, 6, 352-354.	9.0	12
114	X-ray photoelectron spectroscopy as a probe of rhodium-ligand interaction in ionic liquids. Chemical Physics Letters, 2016, 645, 53-58.	2.6	12
115	Synthesis and characterization data of monocationic and dicationic ionic liquids or molten salts. Data in Brief, 2018, 19, 769-788.	1.0	12
116	Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces. Nature Communications, 2021, 12, 4965.	12.8	12
117	Luminescent dansyl-based ionic liquids from amino acids and methylcarbonate onium salt precursors: synthesis and photobehaviour. Green Chemistry, 2015, 17, 538-550.	9.0	11
118	An ARXPS and ERXPS study of quaternary ammonium and phosphonium ionic liquids: utilising a high energy Ag Lα′ X-ray source. Physical Chemistry Chemical Physics, 2016, 18, 6122-6131.	2.8	11
119	Comment on "Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids― Industrial & Engineering Chemistry Research, 2007, 46, 6061-6062.	3.7	10
120	Synthesis of starch vernolate in 1â€butylâ€3â€methylimidazolium chloride ionic liquid. Starch/Staerke, 2015, 67, 200-203.	2.1	10
121	C–F Bond Activation of a Perfluorinated Ligand Leading to Nucleophilic Fluorination of an Organic Electrophile. Organometallics, 2020, 39, 2116-2124.	2.3	10
122	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	6.7	9
123	Halometallate ionic liquids: thermal properties, decomposition pathways, and life cycle considerations. Green Chemistry, 2022, 24, 5800-5812.	9.0	9
124	Can a Siphon Work In Vacuo?. Journal of Chemical Education, 2011, 88, 1547-1550.	2.3	8
125	Phase behaviour and conductivity of supporting electrolytes in supercritical difluoromethane and 1,1-difluoroethane. Physical Chemistry Chemical Physics, 2016, 18, 14359-14369.	2.8	8
126	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	6.7	8

#	Article	IF	CITATIONS
127	Probing the impact of the N3-substituted alkyl chain on the electronic environment of the cation and the anion for 1,3-dialkylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 17394-17400.	2.8	8
128	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	2.6	8
129	Linking the Thermal and Electronic Properties of Functional Dicationic Salts with Their Molecular Structures. ACS Sustainable Chemistry and Engineering, 2021, 9, 6224-6234.	6.7	8
130	Probing the electronic environment of binary and ternary ionic liquid mixtures by X-ray photoelectron spectroscopy. Chemical Physics Letters, 2017, 686, 74-77.	2.6	7
131	X-ray photoelectron spectroscopy of piperidinium ionic liquids: a comparison to the charge delocalised pyridinium analogues. Physical Chemistry Chemical Physics, 2020, 22, 11976-11983.	2.8	7
132	Ionic Liquids–Cobalt(II) Thermochromic Complexes: How the Structure Tunability Affects "Self-Contained―Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 4064-4075.	6.7	7
133	COLLABORATIONS: Empowering Green Chemists in Ethiopia. Science, 2007, 316, 1849-1850.	12.6	6
134	The impact of sulfur functionalisation on nitrogen-based ionic liquid cations. Chemical Communications, 2018, 54, 11403-11406.	4.1	6
135	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	6.7	6
136	Experimental measurement and prediction of ionic liquid ionisation energies. Physical Chemistry Chemical Physics, 2021, 23, 20957-20973.	2.8	6
137	Ferrocenylhydroxyquinolines. Polyhedron, 1996, 15, 4087-4092.	2.2	5
138	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	6.7	5
139	Probing the electronic structure of ether functionalised ionic liquids using X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 1624-1631.	2.8	5
140	Expectations for Manuscripts with Nanoscience and Nanotechnology Elements in <i>ACS Sustainable Chemistry & amp; Engineering </i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 7751-7752.	6.7	5
141	High Yielding Continuous-Flow Synthesis of Norketamine. Organic Process Research and Development, 2022, 26, 1145-1151.	2.7	5
142	Nucleophilic Fluorination Catalyzed by a Cyclometallated Rhodium Complex. Organometallics, 2022, 41, 883-891.	2.3	5
143	The synthesis and characterisation of bis(phenylpyridylphosphino)ethane. Journal of Organometallic Chemistry, 2000, 598, 103-107.	1.8	4
144	Ein neuer Blick auf Nachhaltigkeit: ein Mooresches Gesetz für die Chemie. Angewandte Chemie, 2018, 130, 12770-12771.	2.0	4

#	Article	IF	CITATIONS
145	Expectations for Papers on Photochemistry, Photoelectrochemistry, and Electrochemistry for Energy Conversion and Storage in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 3038-3039.	6.7	4
146	Expectations for Manuscripts Contributing to the Field on Management of Synthetic Chemicals in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 3376-3378.	6.7	4
147	In Situ Sulfidation of Pd/C: A Straightforward Method for Chemoselective Conjugate Reduction by Continuous Hydrogenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 16814-16819.	6.7	3
148	The first Green Chemistry workshop in Ethiopia. Green Chemistry, 2005, 7, 401.	9.0	2
149	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	6.7	2
150	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	6.7	2
151	Thermolysis of Organofluoroborate Ionic Liquids to NHC-Organofluoroborates. ACS Sustainable Chemistry and Engineering, 2020, 8, 16386-16390.	6.7	2
152	Expectations for Manuscripts on Industrial Ecology in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 9599-9600.	6.7	2
153	<i>ACS Sustainable Chemistry & Engineering</i> Welcomes Expanded Editorial Boards with New Initiatives. ACS Sustainable Chemistry and Engineering, 2021, 9, 1-2.	6.7	2
154	ACS Sustainable Chemistry & Engineering Welcomes Manuscripts on Advanced E-Waste Recycling. ACS Sustainable Chemistry and Engineering, 2021, 9, 3624-3625.	6.7	2
155	An Introduction To Supercritical Fluids: From Bench Scale to Commercial Plant. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2008, , 171-191.	0.1	2
156	scCO2-Flow Asymmetric Hydrogenation. Synfacts, 2006, 2006, 1288-1288.	0.0	1
157	The Impact of <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2015, 3, 1262-1262.	6.7	1
158	Introducing the Inaugural <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2016, 4, 2898-2898.	6.7	1
159	Effect of dicationic ionic liquids on lyotropic liquid crystals formed by a binary system composed of Triton-X 100 and water. Molecular Crystals and Liquid Crystals, 2017, 657, 95-101.	0.9	1
160	ACS Sustainable Chemistry & Engineering Virtual Special Issue on Advanced Reaction Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 12638-12638.	6.7	1
161	Constant Renewal: An Open Call for <i>ACS Sustainable Chemistry & Engineering</i> Editorial Advisory Board and Early Career Board Members. ACS Sustainable Chemistry and Engineering, 2020, 8, 12731-12732.	6.7	1
162	Global Recognition for Green and Sustainable Chemistry and Engineering. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	1

#	Article	IF	CITATIONS
163	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	6.7	1
164	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	6.7	1
165	Recent Developments in the Use of Supercritical CO2 in Synthetic Organic Chemistry. ChemInform, 2003, 34, no.	0.0	0
166	ACS Sustainable Chemistry & Engineering's Impact Factor Rises. ACS Sustainable Chemistry and Engineering, 2016, 4, 3597-3597.	6.7	0
167	Associate Editor Peter Licence's Reflections on Three Very Busy Years. ACS Sustainable Chemistry and Engineering, 2016, 4, 4491-4491.	6.7	0
168	Total Re-COIL: The Sixth International Congress on Ionic Liquids Special Issue. ACS Sustainable Chemistry and Engineering, 2016, 4, 370-370.	6.7	0
169	<i>ACS Sustainable Chemistry & Engineering</i> 's Impact Factor Continues To Rise. ACS Sustainable Chemistry and Engineering, 2017, 5, 5617-5617.	6.7	0
170	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	6.7	0
171	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	6.7	0
172	Sustainable Development Through Academic-Industrial Partnerships: A Perspective on the Chemical Sciences. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1196-1209.	0.1	0
173	Sustainable Development Through Academic-Industrial Partnerships: A Perspective on the Chemical Sciences. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-14.	0.1	0
174	Diffuse Reflection Infrared Fourier Transform Spectroscopy and Partial Least Squares Regression Analysis for Temperature Prediction of Irreversible Thermochromic Paints. Applied Spectroscopy, 2022, , 000370282110657.	2.2	0