Haibo Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8612930/publications.pdf

Version: 2024-02-01

430874 361022 1,305 61 18 35 citations h-index g-index papers 64 64 64 1422 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 2020, 9, 971-989.	5.8	274
2	Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nature Communications, $2016, 7, 13748$.	12.8	141
3	4D Printing: A Review on Recent Progresses. Micromachines, 2020, 11, 796.	2.9	115
4	Three-Dimensional Super-Resolution Morphology by Near-Field Assisted White-Light Interferometry. Scientific Reports, 2016, 6, 24703.	3.3	79
5	Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review. Optics and Laser Technology, 2021, 135, 106687.	4.6	67
6	Highâ€Throughput Fabrication and Modular Assembly of 3D Heterogeneous Microscale Tissues. Small, 2017, 13, 1602769.	10.0	63
7	Rapid Fabrication of Hydrogel Microstructures Using UV-Induced Projection Printing. Micromachines, 2015, 6, 1903-1913.	2.9	48
8	Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Science Advances, 2020, 6, eaba9628.	10.3	34
9	Fabrication of Waterproof Artificial Compound Eyes with Variable Field of View Based on the Bioinspiration from Natural Hierarchical Micro–Nanostructures. Nano-Micro Letters, 2020, 12, 166.	27.0	33
10	Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. Micromachines, 2021, 12, 96.	2.9	32
11	Highâ€Resolution and Controllable Nanodeposition Pattern of Ag Nanoparticles by Electrohydrodynamic Jet Printing Combined with Coffee Ring Effect. Advanced Materials Interfaces, 2019, 6, 1900912.	3.7	29
12	Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 48093-48100.	8.0	28
13	Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing. Nanotechnology Reviews, 2021, 10, 1046-1078.	5.8	24
14	Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels. Biomedical Microdevices, 2015, 17, 104.	2.8	23
15	Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field. Biomicrofluidics, 2015, 9, 014121.	2.4	22
16	Rapidly patterning micro/nano devices by directly assembling ions and nanomaterials. Scientific Reports, 2016, 6, 32106.	3.3	21
17	Patterning hypoxic multicellular spheroids in a 3D matrix – a promising method for antiâ€ŧumor drug screening. Biotechnology Journal, 2016, 11, 127-134.	3.5	20
18	Silver nanostructures synthesis via optically induced electrochemical deposition. Scientific Reports, 2016, 6, 28035.	3.3	19

#	Article	IF	CITATIONS
19	Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16715-16724.	8.0	18
20	Microlenses arrays: Fabrication, materials, and applications. Microscopy Research and Technique, 2021, 84, 2784-2806.	2.2	18
21	Modular and Customized Fabrication of 3D Functional Microgels for Bottomâ€Up Tissue Engineering and Drug Screening. Advanced Materials Technologies, 2020, 5, 1900847.	5.8	17
22	<i>In Situ</i> Electrohydrodynamic Jet Printing-Based Fabrication of Tunable Microlens Arrays. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39550-39560.	8.0	17
23	Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Biomedical Microdevices, 2016, 18, 107.	2.8	13
24	Probing the Bi-directional Interaction Between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochemical Research, 2017, 42, 1478-1487.	3.3	12
25	Recent advances in microfluidic technologies for separation of biological cells. Biomedical Microdevices, 2020, 22, 55.	2.8	12
26	Real-time red blood cell counting and osmolarity analysis using a photoacoustic-based microfluidic system. Lab on A Chip, 2021, 21, 2586-2593.	6.0	11
27	Correlative AFM and Scanning Microlens Microscopy for Timeâ€Efficient Multiscale Imaging. Advanced Science, 2022, 9, e2103902.	11.2	11
28	Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability. Applied Physics Letters, 2013, 103, 214101.	3.3	10
29	Scanning Super-Resolution Imaging in Enclosed Environment by Laser Tweezer Controlled Superlens. Biophysical Journal, 2020, 119, 2451-2460.	0.5	10
30	Di-electrophoresis assembly and fabrication of SWCNT field-effect transistor. Science Bulletin, 2009, 54, 4451-4457.	9.0	9
31	Optically induced electrohydrodynamic instability-based micro-patterning of fluidic thin films. Microfluidics and Nanofluidics, 2014, 16, 1097-1106.	2.2	8
32	Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography. Biomedical Microdevices, 2020, 22, 80.	2.8	7
33	Biomimetic construction of peritoneum to imitate peritoneal metastasis using digital micromirror device-based optical projection lithography. Lab on A Chip, 2020, 20, 3109-3119.	6.0	5
34	Atomic Force Microscopy for Tumor Research at Cell and Molecule Levels. Microscopy and Microanalysis, 2022, 28, 585-602.	0.4	5
35	Nanoscale welding by AFM tip induced electric field. , 2009, , .		4
36	Facile Method for Fabricating Microfluidic Chip Integrated with Microwell Arrays for Cell Trapping. Micromachines, 2019, 10, 719.	2.9	4

#	Article	IF	CITATIONS
37	Self-assembled microcage fabrication for manipulating and selectively capturing microparticles and cells. Optics Express, 2021, 29, 11144.	3.4	4
38	Purification of SWNTs using high-speed centrifugation. , 2008, , .		3
39	Large-scale assembly of Cu/CuO nanowires for nano-electronic device fabrication. Science China Technological Sciences, 2014, 57, 734-737.	4.0	3
40	Direct Writing of Silicon Oxide Nanopatterns Using Photonic Nanojets. Photonics, 2021, 8, 152.	2.0	3
41	Micropatterned Cellâ€Repellent Interface Using Femtosecond Laser Direct Writing to Engineer Controlled Cell Organization. Advanced Materials Technologies, 2021, 6, 2100178.	5.8	3
42	Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. Micromachines, 2022, 13, 75.	2.9	3
43	Density Regulation and Localization of Cell Clusters by Self-Assembled Femtosecond-Laser-Fabricated Micropillar Arrays. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58261-58269.	8.0	3
44	Fabrication of Three-dimensional Conductive Structures Using Direct Ink Writing., 2017,,.		2
45	Large-Scale Assembly and Mask-Free Fabrication of Graphene Transistors via Optically Induced Electrodeposition. Crystals, 2018, 8, 239.	2.2	2
46	Fabrication of a Flexible Capacitive Pressure Sensor Using Full Inkjet Printing. , 2019, , .		2
47	Wrist MEMS Sensor for Movements Recognition in Ball Games. , 2019, , .		2
48	Separation of mixed SWNTs and MWNTs by centrifugal force - an experimental study. , 2007, , .		1
49	Fabrication of Schottky Barrier Carbon Nanotube Field Effect Transistors Using Dielectrophoretic-Based Manipulation. Journal of Nanoscience and Nanotechnology, 2010, 10, 7000-7004.	0.9	1
50	AFM tip-induced dielectrophoresis for 3D manipulation of nanoparticles. , 2014, , .		1
51	Submicron processing using laser-induced photonic nanojet. , 2017, , .		1
52	Hydrogel Printing Based on UV-Induced Projection for Cell-Based Microarray Fabrication. Methods in Molecular Biology, 2018, 1771, 97-105.	0.9	1
53	Patterning Micro-Nano Structures Based on Tip-Assisted Electrohydrodynamic Jet Printing. , 2018, , .		1
54	Super-resolution Monitoring of React-on-demand Photo-assisted Electrochemical Printing via Microsphere Nanoscopy. , 2019, , .		1

#	Article	IF	CITATIONS
55	Recent Advances in Femtosecond Laser Fabrication: From Structures to Applications. IEEE Open Journal of Nanotechnology, 2021, 2, 161-177.	2.0	1
56	Characterization of interconnectivity of gelatin methacrylate hydrogels using photoacoustic imaging. Lab on A Chip, 2022, 22, 727-732.	6.0	1
57	Structuring of carbon nanotubes for field emission based movement sensors. , 2012, , .		0
58	Tumor cellular behaviors regulated by controlled microenvionment. , 2015, , .		0
59	Cellâ€Repellent Interfaces: Micropatterned Cellâ€Repellent Interface Using Femtosecond Laser Direct Writing to Engineer Controlled Cell Organization (Adv. Mater. Technol. 7/2021). Advanced Materials Technologies, 2021, 6, 2170038.	5.8	0
60	Simultaneous depth and viscoelasticity measurement of micro-structures using echo effect in a photoacoustic imaging system. , 2021, , .		0
61	Customized construction of microscale multi-component biostructures for cellular applications. Materials Science and Engineering C, 2022, 133, 112599.	7.3	O