
Ali Sadeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensorized Foam Actuator with Intrinsic Proprioception and Tunable Stiffness Behavior for Soft Robots. Advanced Intelligent Systems, 2021, 3, 2100022.	6.1	4
2	Passive Morphological Adaptation for Obstacle Avoidance in a Self-Growing Robot Produced by Additive Manufacturing. Soft Robotics, 2020, 7, 85-94.	8.0	40
3	Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton. Frontiers in Neurorobotics, 2020, 14, 31.	2.8	37
4	A Soft Sensorized Foot Module to Understand Anisotropic Terrains During Soft Robot Locomotion. IEEE Robotics and Automation Letters, 2020, 5, 4055-4061.	5.1	4
5	INFORA: A Novel Inflatable Origami-based Actuator. , 2019, , .		2
6	A Vacuum Powered Soft Textile-Based Clutch. Actuators, 2019, 8, 47.	2.3	14
7	Octopusâ€Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments. Advanced Intelligent Systems, 2019, 1, 1900041.	6.1	73
8	Characterization of the Growing From the Tip as Robot Locomotion Strategy. Frontiers in Robotics and Al, 2019, 6, 45.	3.2	11
9	Octopusâ€Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments. Advanced Intelligent Systems, 2019, 1, 1970061.	6.1	6
10	Remotely Lightâ€Powered Soft Fluidic Actuators Based on Plasmonicâ€Driven Phase Transitions in Elastic Constraint. Advanced Materials, 2019, 31, e1905671.	21.0	26
11	A Wearable Sensory Textileâ€Based Clutch with High Blocking Force. Advanced Engineering Materials, 2019, 21, 1900886.	3.5	14
12	Antagonistic Pneumatic Actuators with Variable Stiffness for Soft Robotic Applications. , 2019, , .		11
13	Dynamic Obstacles Detection for Robotic Soil Explorations*. , 2019, , .		1
14	Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics. Biosystems and Biorobotics, 2019, , 49-52.	0.3	5
15	Natural Triboelectric Generators: Energy Conversion at the Cuticle of Living Plants (Adv. Funct.) Tj ETQq1 1 0.78	³⁴³ 14,ŗg ^{B⊺} 14.9	[/Overlock]
16	Continuous Growth in Plant-Inspired Robots Through 3D Additive Manufacturing. , 2018, , .		10
17	Energy Conversion at the Cuticle of Living Plants. Advanced Functional Materials, 2018, 28, 1806689.	14.9	49
18	Toward Growing Robots: A Historical Evolution from Cellular to Plant-Inspired Robotics. Frontiers in Robotics and Al, 2018, 5, 16.	3.2	51

Ali Sadeghi

#	Article	IF	CITATIONS
19	Swarming Behavior Emerging from the Uptake–Kinetics Feedback Control in a Plant-Root-Inspired Robot. Applied Sciences (Switzerland), 2018, 8, 47.	2.5	13
20	Modular Continuum Manipulator: Analysis and Characterization of Its Basic Module. Biomimetics, 2018, 3, 3.	3.3	31
21	A plant-inspired kinematic model for growing robots. , 2018, , .		9
22	Soft sucker shoe for anti-slippage application. , 2018, , .		2
23	An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements. Bioinspiration and Biomimetics, 2018, 13, 015003.	2.9	33
24	A plant-inspired robot with soft differential bending capabilities. Bioinspiration and Biomimetics, 2017, 12, 015001.	2.9	60
25	Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies. Soft Robotics, 2017, 4, 211-223.	8.0	161
26	SIMBA: Tendon-Driven Modular Continuum Arm with Soft Reconfigurable Gripper. Frontiers in Robotics and Al, 2017, 4, .	3.2	45
27	Soft-Legged Wheel-Based Robot with Terrestrial Locomotion Abilities. Frontiers in Robotics and AI, 2016, 3, .	3.2	8
28	Circumnutations as a penetration strategy in a plant-root-inspired robot. , 2016, , .		33
29	Unveiling the kinematics of the avoidance response in maize (Zea mays) primary roots. Biologia (Poland), 2016, 71, 161-168.	1.5	1
30	Electrorheological Valves for Flexible Fluidic Actuators. Soft Robotics, 2016, 3, 34-41.	8.0	56
31	Revealing bending and force in a soft body through a plant root inspired approach. Scientific Reports, 2015, 5, 8788.	3.3	45
32	Triboelectric smart machine elements and self-powered encoder. Nano Energy, 2015, 13, 92-102.	16.0	17
33	A Novel Soft Metalâ€Polymer Composite for Multidirectional Pressure Energy Harvesting. Advanced Energy Materials, 2014, 4, 1400024.	19.5	30
34	Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Applied Surface Science, 2014, 323, 82-87.	6.1	25
35	A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors. PLoS ONE, 2014, 9, e90139.	2.5	117

Robotic mechanism for soil penetration inspired by plant root. , 2013, , .

Ali Sadeghi

#	Article	IF	CITATIONS
37	Embodied Behavior of Plant Roots in Obstacle Avoidance. Lecture Notes in Computer Science, 2013, , 431-433.	1.3	2
38	Plant Root Strategies for Robotic Soil Penetration. Lecture Notes in Computer Science, 2013, , 447-449.	1.3	11
39	Innovative soft robots based on electro-rheological fluids. , 2012, , .		41
40	Design and development of innovative adhesive suckers inspired by the tube feet of sea urchins. , 2012, , .		14
41	Analysis, simulation, and implementation of a human-inspired pole climbing robot. Robotica, 2012, 30, 279-287.	1.9	30
42	The evolution of UT pole climbing robots. , 2010, , .		17
43	A human-inspired pole climbing robot. , 2008, , .		2