Christophe Beroud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611016/publications.pdf

Version: 2024-02-01

22153 24258 110 12,751 130 59 citations h-index g-index papers 138 138 138 19168 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Research, 2009, 37, e67-e67.	14.5	2,206
2	Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Reviews Cancer, 2001, 1, 233-239.	28.4	587
3	The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations. Human Mutation, 2015, 36, 395-402.	2.5	507
4	Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study. American Journal of Human Genetics, 2007, 81, 454-466.	6.2	485
5	Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Human Mutation, 2009, 30, 934-945.	2.5	309
6	Update of the UMD-FBN1mutation database and creation of anFBN1polymorphism database. Human Mutation, 2003, 22, 199-208.	2. 5	299
7	Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis, 2002, 23, 759-768.	2.8	298
8	APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Research, 1996, 24, 121-124.	14.5	286
9	Diagnostic approach to the congenital muscular dystrophies. Neuromuscular Disorders, 2014, 24, 289-311.	0.6	275
10	p53 Website and analysis of p53 gene mutations in human cancer: Forging a link between epidemiology and carcinogenesis. Human Mutation, 2000, 15, 105-113.	2. 5	231
11	Comparison of Clinical Presentations and Outcomes Between Patients With <i>TGFBR2</i> and <i>FBN1</i> Mutations in Marfan Syndrome and Related Disorders. Circulation, 2009, 120, 2541-2549.	1.6	203
12	Consensus Statement on Standard of Care for Congenital Muscular Dystrophies. Journal of Child Neurology, 2010, 25, 1559-1581.	1.4	200
13	UMD (Universal Mutation Database): A generic software to build and analyze locus-specific databases. Human Mutation, 2000, 15, 86-94.	2.5	184
14	Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology, 2004, 39, 792-797.	7.3	184
15	Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Human Mutation, 2007, 28, 196-202.	2.5	178
16	Aortic Event Rate in the Marfan Population. Circulation, 2012, 125, 226-232.	1.6	165
17	RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research. Journal of General Internal Medicine, 2014, 29, 780-787.	2.6	159
18	Central nervous system hemangioblastomas, endolymphatic sac tumors, and von Hippel-Lindau disease. Neurosurgical Review, 2000, 23, 1-22.	2.4	147

#	Article	IF	CITATIONS
19	Clinical and Molecular Study of 320 Children With Marfan Syndrome and Related Type I Fibrillinopathies in a Series of 1009 Probands With Pathogenic $\langle i \rangle$ FBN1 $\langle i \rangle$ Mutations. Pediatrics, 2009, 123, 391-398.	2.1	146
20	Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Human Mutation, 2002, 20, 35-47.	2.5	137
21	The UMD-p53 database: New mutations and analysis tools. Human Mutation, 2003, 21, 176-181.	2.5	136
22	VarAFT: a variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Research, 2018, 46, W545-W553.	14.5	136
23	Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nature Reviews Cancer, 2006, 6, 83-90.	28.4	134
24	Cardiovascular manifestations in men and women carrying a FBN1 mutation. European Heart Journal, 2010, 31, 2223-2229.	2.2	133
25	p53 gene mutation: software and database. Nucleic Acids Research, 1998, 26, 200-204.	14.5	132
26	Mutations of the VHL gene in sporadic renal cell carcinoma: Definition of a risk factor for VHL patients to develop an RCC. Human Mutation, 1999, 13, 464-475.	2.5	126
27	DYT6 dystonia: Review of the literature and creation of the UMD locus-specific database (LSDB) for mutations in the THAP1 gene. Human Mutation, 2011, 32, 1213-1224.	2.5	126
28	The UMD TP53 database and website: update and revisions. Human Mutation, 2006, 27, 14-20.	2.5	125
29	Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. Journal of Neuromuscular Diseases, 2017, 4, 293-306.	2.6	125
30	APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Research, 1998, 26, 269-270.	14.5	119
31	Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Research, 1998, 26, 256-258.	14.5	119
32	Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Human Mutation, 2012, 33, 949-959.	2.5	115
33	Motor and respiratory heterogeneity in Duchenne patients: Implication for clinical trials. European Journal of Paediatric Neurology, 2012, 16, 149-160.	1.6	112
34	Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Human Mutation, 2007, 28, 183-195.	2.5	107
35	The UMD-LDLR database: additions to the software and 490 new entries to the database. Human Mutation, 2002, 20, 81-87.	2.5	105
36	Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Human Mutation, 2005, 26, 165-165.	2.5	104

#	Article	IF	Citations
37	UMDâ€Predictor: A Highâ€Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution. Human Mutation, 2016, 37, 439-446.	2.5	104
38	UMD (Universal Mutation Database): 2005 update. Human Mutation, 2005, 26, 184-191.	2.5	101
39	Locus Reference Genomic sequences: an improved basis for describing human DNA variants. Genome Medicine, 2010, 2, 24.	8.2	100
40	Marfan Database (third edition): new mutations and new routines for the software. Nucleic Acids Research, 1998, 26, 229-233.	14.5	97
41	Analysis of the <i>DYSF</i> mutational spectrum in a large cohort of patients. Human Mutation, 2009, 30, E345-E375.	2.5	97
42	A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood, 2015, 126, 1273-1280.	1.4	97
43	In-Frame Mutations in Exon 1 of SKI Cause Dominant Shprintzen-Goldberg Syndrome. American Journal of Human Genetics, 2012, 91, 950-957.	6.2	95
44	Significance of TP53 mutations in human cancer: A critical analysis of mutations at CpG dinucleotides. Human Mutation, 2003, 21, 192-200.	2.5	94
45	The TREAT-NMD Duchenne Muscular Dystrophy Registries: Conception, Design, and Utilization by Industry and Academia. Human Mutation, 2013, 34, 1449-1457.	2.5	94
46	Retinal hemangioblastoma in von Hippel-Lindau disease: a clinical and molecular study. Investigative Ophthalmology and Visual Science, 2002, 43, 3067-74.	3.3	91
47	The new Ghent criteria for Marfan syndrome: what do they change?. Clinical Genetics, 2012, 81, 433-442.	2.0	90
48	Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Research, 2012, 40, D992-D1002.	14.5	84
49	Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009 probands. Journal of Medical Genetics, 2008, 45, 384-390.	3.2	83
50	p53 gene mutation: software and database. Nucleic Acids Research, 1996, 24, 147-150.	14.5	82
51	New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS ONE, 2017, 12, e0175998.	2.5	82
52	Genotype-phenotype correlation in von Hippel-Lindau families with renal lesions. Human Mutation, 2004, 24, 215-224.	2.5	81
53	UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity-application to four genes: <i>FBN1</i> , <i>FBN2</i> , <i>FBN2</i> , and <i>TGFBR2</i> . Human Mutation, 2009, 30, 952-959.	2.5	80
54	Enrichment, Immunomorphological, and Genetic Characterization of Fetal Cells Circulating in Maternal Blood. American Journal of Pathology, 2002, 160, 51-58.	3.8	78

#	Article	IF	CITATIONS
55	108th ENMC International Workshop, 3rd Workshop of the MYO-CLUSTER project: EUROMEN, 7th International Emery-Dreifuss Muscular Dystrophy (EDMD) Workshop, 13–15 September 2002, Naarden, The Netherlands. Neuromuscular Disorders, 2003, 13, 508-515.	0.6	78
56	LDLR Database (second edition): new additions to the database and the software, and results of the first molecular analysis. Nucleic Acids Research, 1998, 26, 248-252.	14.5	77
57	Mapping the differences in care for 5,000 Spinal Muscular Atrophy patients, a survey of 24 national registries in North America, Australasia and Europe. Journal of Neurology, 2014, 261, 152-163.	3.6	76
58	Loss of Calmodulin- and Radial-Spoke-Associated Complex Protein CFAP251 Leads to Immotile Spermatozoa Lacking Mitochondria and Infertility in Men. American Journal of Human Genetics, 2018, 103, 413-420.	6.2	74
59	Meta-analysis of the p53 Mutation Database for Mutant p53 Biological Activity Reveals a Methodologic Bias in Mutation Detection. Clinical Cancer Research, 2006, 12, 62-69.	7.0	67
60	Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. European Journal of Human Genetics, 2009, 17, 491-501.	2.8	66
61	BRCA Share: A Collection of Clinical BRCA Gene Variants. Human Mutation, 2016, 37, 1318-1328.	2.5	57
62	Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Research, 1997, 25, 172-180.	14.5	50
63	The <i>FBN2</i> gene: new mutations, locus-specific database (Universal Mutation Database <i>FBN2</i>), and genotype-phenotype correlations. Human Mutation, 2009, 30, 181-190.	2.5	49
64	Dispelling myths about rare disease registry system development. Source Code for Biology and Medicine, 2013, 8, 21.	1.7	49
65	Dystrophinopathy caused by mid-intronic substitutions activating cryptic exons in the DMD gene. Neuromuscular Disorders, 2004, 14, 10-18.	0.6	46
66	Prenatal diagnosis of spinal muscular atrophy by genetic analysis of circulating fetal cells. Lancet, The, 2003, 361, 1013-1014.	13.7	45
67	Large genomic rearrangements in the CFTRgene contribute to CBAVD. BMC Medical Genetics, 2007, 8, 22.	2.1	42
68	Correlations of allelic imbalance of chromosome 14 with adverse prognostic parameters in 148 renal cell carcinomas., 1996, 17, 215-224.		41
69	Software and database for the analysis of mutations in the human FBN1 gene. Nucleic Acids Research, 1996, 24, 137-140.	14.5	41
70	Software and database for the analysis of mutations in the human WT1 gene. Nucleic Acids Research, 1998, 26, 271-274.	14.5	40
71	Pathogenic <i>FBN1</i> mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: Further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. American Journal of Medical Genetics, Part A, 2009, 149A, 854-860.	1.2	40
72	UMD-MEN1 Database: An Overview of the 370 MEN1 Variants Present in 1676 Patients From the French Population. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 753-764.	3.6	39

#	Article	IF	CITATIONS
73	UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes. Human Mutation, 2008, 29, E76-E87.	2.5	38
74	Pathogenic FBN1 Genetic Variation and Aortic Dissection in Patients With MarfanÂSyndrome. Journal of the American College of Cardiology, 2020, 75, 843-853.	2.8	38
75	UMD-DYSF, a novel locus specific database for the compilation and interactive analysis of mutations in the dysferlin gene. Human Mutation, 2012, 33, E2317-E2331.	2.5	35
76	Polymorphisms of MAMLD1 gene in hypospadias. Journal of Pediatric Urology, 2011, 7, 585-591.	1.1	33
77	Marfan Database (second edition): software and database for the analysis of mutations in the human FBN1 gene. Nucleic Acids Research, 1997, 25, 147-150.	14.5	32
78	Laminin α2 Deficiency-Related Muscular Dystrophy Mimicking Emery-Dreifuss andÂCollagen VI related Diseases. Journal of Neuromuscular Diseases, 2015, 2, 229-240.	2.6	30
79	High Prevalence of PRPH2 in Autosomal Dominant Retinitis Pigmentosa in France and Characterization of Biochemical and Clinical Features. American Journal of Ophthalmology, 2015, 159, 302-314.	3.3	29
80	How to Identify Pathogenic Mutations among All Those Variations: Variant Annotation and Filtration in the Genome Sequencing Era. Human Mutation, 2016, 37, 1272-1282.	2.5	28
81	Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. European Radiology, 2018, 28, 5293-5303.	4.5	28
82	A new locus-specific database (LSDB) for mutations in the <i>TGFBR2</i> gene: UMD- <i>TGFBR2</i> Human Mutation, 2008, 29, 33-38.	2.5	27
83	Clinical heterogeneity and a high proportion of novel mutations in a Chinese cohort of patients with dysferlinopathy. Neurology India, 2014, 62, 635.	0.4	27
84	Association of GSTT1 non-null and NAT1 slow/rapid genotypes with von Hippel-Lindau tumour suppressor gene transversions in sporadic renal cell carcinoma. Pharmacogenetics and Genomics, 2001, 11, 521-535.	5.7	26
85	MUT-TP53 2.0: a novel versatile matrix for statistical analysis of TP53 mutations in human cancera. Human Mutation, 2010, 31, 1020-1025.	2.5	26
86	Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics, 1990, 7, 434-438.	2.9	25
87	Transcriptional explorations of <i>CAPN3</i> identify novel splicing mutations, a largeâ€sized genomic deletion and evidence for messenger RNA decay. Clinical Genetics, 2007, 72, 582-592.	2.0	25
88	Highlighting the Dystonic Phenotype Related to <scp><i>GNAO1</i></scp> . Movement Disorders, 2022, 37, 1547-1554.	3.9	25
89	Novel heterozygous mutation in <i>ANO3</i> responsible for craniocervical dystonia. Movement Disorders, 2016, 31, 1251-1252.	3.9	24
90	Trichloroethylene exposure and somatic mutations of the VHL gene in patients with Renal Cell Carcinoma. Journal of Occupational Medicine and Toxicology, 2007, 2, 13.	2.2	23

#	Article	IF	Citations
91	UMD-CFTR: A database dedicated to CF and CFTR-related disorders. Human Mutation, 2010, 31, 1011-1019.	2.5	23
92	Identification of Splicing Defects Caused by Mutations in the Dysferlin Gene. Human Mutation, 2014, 35, 1532-1541.	2.5	22
93	Proposition of adjustments to the ACMGâ€AMP framework for the interpretation of <i>MEN1</i> missense variants. Human Mutation, 2019, 40, 661-674.	2.5	21
94	Improving molecular diagnosis of distal myopathies by targeted next-generation sequencing: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 340-342.	1.9	20
95	Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget, 2018, 9, 20058-20074.	1.8	20
96	Comparing targeted exome and whole exome approaches for genetic diagnosis of neuromuscular disorders. Applied & Translational Genomics, 2015, 7, 26-31.	2.1	18
97	Rare inherited disorders with renal involvement—approach to the patient. Kidney International, 2015, 87, 901-908.	5.2	18
98	The RD onnect Genomeâ€Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Human Mutation, 2022, , .	2.5	18
99	Report of the Sixth International Workshop on Human Chromosome 3 Mapping 1995. Cytogenetic and Genome Research, 1996, 72, 255-270.	1.1	17
100	p53 and APC gene mutations: software and databases. Nucleic Acids Research, 1997, 25, 138-138.	14.5	17
101	VarioML framework for comprehensive variation data representation and exchange. BMC Bioinformatics, 2012, 13, 254.	2.6	17
102	UMD-MLH1/MSH2/MSH6 databases: description and analysis of genetic variations in French Lynch syndrome families. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat036-bat036.	3.0	15
103	The UMD-APC Database, a Model of Nation-Wide Knowledge Base: Update with Data from 3,581 Variations. Human Mutation, 2014, 35, 532-536.	2.5	15
104	Clinical Significance of Aortic Root Modification Associated With Bicuspid Aortic Valve in Marfan Syndrome. Circulation: Cardiovascular Imaging, 2019, 12, e008129.	2.6	15
105	High incidence of renal tumours in vitamins A and E synthesis workers: A new cause of occupational cancer?. International Journal of Cancer, 2004, 108, 942-944.	5.1	14
106	Bioinformatics and Mutations Leading to Exon Skipping. Methods in Molecular Biology, 2012, 867, 17-35.	0.9	12
107	X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skeletal Muscle, 2020, 10, 23.	4.2	12
108	Negative genetic neonatal screening for cystic fibrosis caused by compound heterozygosity for two large <i>CFTR</i> rearrangements. Clinical Genetics, 2007, 72, 374-377.	2.0	11

#	Article	IF	CITATIONS
109	Exome Sequencing Identifies Two Variants of the Alkylglycerol Monooxygenase Gene as a Cause of Relapses in Visceral Leishmaniasis in Children, in Sudan. Journal of Infectious Diseases, 2017, 216, 22-28.	4.0	11
110	The French National Registry of patients with Facioscapulohumeral muscular dystrophy. Orphanet Journal of Rare Diseases, 2018, 13, 218.	2.7	11
111	Missense mutations of conserved glycine residues in fibrillin-1 highlight a potential subtype of cb-EGF-like domains. Human Mutation, 2010, 31, E1021-E1042.	2.5	9
112	Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2019, 12, e002500.	3.6	9
113	Standardisation of pathogenicity classification for somatic alterations in solid tumours and haematologic malignancies. European Journal of Cancer, 2021, 159, 1-15.	2.8	7
114	Actionable Genes, Core Databases, and Locus-Specific Databases. Human Mutation, 2016, 37, 1299-1307.	2.5	6
115	Surgical management of patients with Marfan syndrome: Evolution throughout the years. Archives of Cardiovascular Diseases, 2012, 105, 84-90.	1.6	5
116	WES/WGS Reporting of Mutations from Cardiovascular "Actionable―Genes in Clinical Practice: A Key Role for UMD Knowledgebases in the Era of Big Databases. Human Mutation, 2016, 37, 1308-1317.	2.5	5
117	Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort. Journal of Neurology, 2022, 269, 2414-2429.	3.6	5
118	The ELIXIR Human Copy Number Variations Community: building bioinformatics infrastructure for research. F1000Research, 2020, 9, 1229.	1.6	5
119	Diagnosis of pheochromocytoma and laparoscopic adrenalectomy in two anephric patients with von hippel-lindau disease. American Journal of Kidney Diseases, 2002, 39, e6.1-e6.4.	1.9	4
120	Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units. BMC Bioinformatics, 2011, 12, 135.	2.6	4
121	The IncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. Biomedicines, 2021, 9, 219.	3.2	4
122	Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscular Disorders, 2021, 31, 814-823.	0.6	4
123	Coverage analysis of lists of genes involved in heterogeneous genetic diseases following benchtop exome sequencing using the ion proton. Journal of Genetics, 2016, 95, 203-208.	0.7	3
124	Introducing the online version of the gene table for neuromuscular disease (nuclear genes only). Neuromuscular Disorders, 2005, 15, 88.	0.6	2
125	Genomic variations integrated database for <i>MUTYH</i> -associated adenomatous polyposis. Journal of Medical Genetics, 2015, 52, 25-27.	3.2	2
126	Correlations of allelic imbalance of chromosome 14 with adverse prognostic parameters in 148 renal cell carcinomas. Genes Chromosomes and Cancer, 1996, 17, 215-224.	2.8	2

#	Article	IF	CITATIONS
127	Convergence of patient- and physician-reported outcomes in the French National Registry of Facioscapulohumeral Dystrophy. Orphanet Journal of Rare Diseases, 2022, 17, 96.	2.7	2
128	Consideration surrounding incidental findings throughout multigene panel testing in cancer genetics. Clinical Genetics, 2016, 89, 267-268.	2.0	1
129	High-Throughput Sequencing in the Context of Human Genetic Diseases: Now and Tomorrow. Human Mutation, 2016, 37, 1247-1247.	2.5	O
130	Simple Sequence Mutations., 2017,, 217-230.		0