Eunsook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609826/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Characterization of a Pathogen-Inducible Bidirectional Promoter from Hot Pepper (<i>Capsicum annuum</i>). Molecular Plant-Microbe Interactions, 2020, 33, 1330-1339.	2.6	6
2	Spatial chloroplast-to-nucleus signalling involving plastid–nuclear complexes and stromules. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190405.	4.0	52
3	A human pathogenic bacterium <i>Shigella</i> proliferates in plants through adoption of type III effectors for shigellosis. Plant, Cell and Environment, 2019, 42, 2962-2978.	5.7	18
4	<scp>PDC</scp> 1, a pyruvate/αâ€ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (<i>Cucumis melo</i> L.) fruit. Plant Journal, 2019, 98, 112-125.	5.7	26
5	The Coiled-Coil and Leucine-Rich Repeat Domain of the Potyvirus Resistance Protein Pvr4 Has a Distinct Role in Signaling and Pathogen Recognition. Molecular Plant-Microbe Interactions, 2018, 31, 906-913.	2.6	30
6	Plant–microbe interactions: organelles and the cytoskeleton in action. New Phytologist, 2018, 217, 1012-1028.	7.3	52
7	Split Green Fluorescent Protein System to Visualize Effectors Delivered from Bacteria During Infection. Journal of Visualized Experiments, 2018, , .	0.3	0
8	Dynamic coordination of plastid morphological change by cytoskeleton for chloroplast-nucleus communication during plant immune responses. Plant Signaling and Behavior, 2018, 13, 1-3.	2.4	9
9	Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity. ELife, 2018, 7, .	6.0	76
10	Spatiotemporal Monitoring of <i>Pseudomonas syringae</i> Effectors via Type III Secretion Using Split Fluorescent Protein Fragments. Plant Cell, 2017, 29, 1571-1584.	6.6	61
11	Comparative analyses of ubiquitin-like <i>ATG8</i> and cysteine protease <i>ATG4</i> autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4. Autophagy, 2016, 12, 2054-2068.	9.1	50
12	The RAB GTPase RABA1e localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 treatment. Plant Signaling and Behavior, 2016, 11, e984520.	2.4	11
13	Class XI Myosins Move Specific Organelles in Pollen Tubes and are Required for Normal Fertility and Pollen Tube Growth in Arabidopsis. Plant Physiology, 2015, 169, pp.01161.2015.	4.8	60
14	Chloroplast Stromules Function during Innate Immunity. Developmental Cell, 2015, 34, 45-57.	7.0	278
15	<i>Arabidopsis</i> ATG4 cysteine proteases specificity toward ATG8 substrates. Autophagy, 2014, 10, 926-927.	9.1	11
16	Proteomics of Endosomal Compartments from Plants Case Study: Isolation of Trans-Golgi Network Vesicles. Methods in Molecular Biology, 2014, 1209, 179-187.	0.9	5
17	Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 2014, 165, 1019-1034.	4.8	47
18	Differential processing of <i>Arabidopsis</i> ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 863-868.	7.1	93

EUNSOOK PARK

#	Article	IF	CITATIONS
19	Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth. PLoS ONE, 2013, 8, e76745.	2.5	57
20	<i>Trans</i> â€Golgi Network—An Intersection of Trafficking Cell Wall Components ^F . Journal of Integrative Plant Biology, 2012, 54, 875-886.	8.5	48
21	The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 2009, 5, 6.	4.3	223
22	The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development, 2000, 14, 2366-2376.	5.9	650