C Oliver Kappe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609500/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catalysis Today, 2022, 383, 55-63.	4.4	24
2	Chemoselective Electrochemical Oxidation of Secondary Alcohols Using a Recyclable Chloride-Based Mediator. Synlett, 2022, 33, 166-170.	1.8	4
3	Automated and continuous synthesis of drug substances. Chemical Engineering Research and Design, 2022, 177, 493-501.	5.6	6
4	Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition–Oxidative Aldehyde Esterification Sequence Using <i>in Situ</i> -Generated Persulfuric Acid as Oxidant. Organic Letters, 2022, 24, 1066-1071.	4.6	19
5	Autonomous Multiâ€Step and Multiâ€Objective Optimization Facilitated by Realâ€Time Process Analytics. Advanced Science, 2022, 9, e2105547.	11.2	37
6	Practical Guidelines for the Safe Use of Fluorine Gas Employing Continuous Flow Technology. Journal of Chemical Health and Safety, 2022, 29, 165-174.	2.1	12
7	Automated flow and real-time analytics approach for screening functional group tolerance in heterogeneous catalytic reactions. Catalysis Science and Technology, 2022, 12, 1799-1811.	4.1	6
8	Photochemical Deracemization of a Medicinallyâ€Relevant Benzopyran using an Oscillatory Flow Reactor. Chemistry - A European Journal, 2022, 28, .	3.3	16
9	Artificial neural networks and data fusion enable concentration predictions for inline process analytics. , 2022, 1, 405-412.		3
10	Electrochemical Oxidation of Alcohols Using Nickel Oxide Hydroxide as Heterogeneous Electrocatalyst in Batch and Continuous Flow. Organic Process Research and Development, 2022, 26, 1486-1495.	2.7	17
11	<i>N</i> â€Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2022, 364, 1998-2008.	4.3	9
12	Sustainable Synthesis of Noroxymorphone via a Key Electrochemical N-Demethylation Step. ACS Sustainable Chemistry and Engineering, 2022, 10, 8988-8996.	6.7	5
13	Continuous flow processing of bismuth-photocatalyzed atom transfer radical addition reactions using an oscillatory flow reactor. Green Chemistry, 2021, 23, 2685-2693.	9.0	28
14	A continuous flow bromodimethylsulfonium bromide generator: application to the synthesis of 2-arylaziridines from styrenes. Journal of Flow Chemistry, 2021, 11, 117-125.	1.9	9
15	Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C ₃) Functionalization of Highly Strained 1â€Azabicyclo[1.1.0]butanes. Angewandte Chemie - International Edition, 2021, 60, 6395-6399.	13.8	28
16	Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C 3) Functionalization of Highly Strained 1â€Azabicyclo[1.1.0]butanes. Angewandte Chemie, 2021, 133, 6465-6469.	2.0	11
17	Development and Assembly of a Flow Cell for Singleâ€Pass Continuous Electroorganic Synthesis Using Laserâ€Cut Components. Chemistry Methods, 2021, 1, 36-41.	3.8	19
18	Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry, 2021, 23, 5625-5632.	9.0	19

#	Article	IF	CITATIONS
19	Sustainable electrochemical decarboxylative acetoxylation of aminoacids in batch and continuous flow. Green Chemistry, 2021, 23, 2382-2390.	9.0	18
20	Process intensification of ozonolysis reactions using dedicated microstructured reactors. Reaction Chemistry and Engineering, 2021, 6, 2253-2258.	3.7	13
21	Flash Chemistry Approach to Organometallic <i>C</i> -Glycosylation for the Synthesis of Remdesivir. Organic Process Research and Development, 2021, 25, 1015-1021.	2.7	25
22	Oneâ€pot multistep electrochemical strategy for the modular synthesis of epoxides, glycols, and aldehydes from alkenes. Electrochemical Science Advances, 2021, 1, e2100002.	2.8	8
23	Advanced Realâ€īime Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie, 2021, 133, 8220-8229.	2.0	19
24	Advanced Realâ€īime Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie - International Edition, 2021, 60, 8139-8148.	13.8	98
25	Electrochemically Enabled Oneâ€Pot Multistep Synthesis of C19 Androgen Steroids. Chemistry - A European Journal, 2021, 27, 6044-6049.	3.3	5
26	Rücktitelbild: Advanced Realâ€Time Process Analytics for Multistep Synthesis in Continuous Flow (Angew. Chem. 15/2021). Angewandte Chemie, 2021, 133, 8640-8640.	2.0	0
27	Synthesis of the Lipophilic Amine Tail of Abediterol Enabled by Multiphase Flow Transformations. Organic Process Research and Development, 2021, 25, 947-959.	2.7	8
28	Intensified Continuous Flow Synthesis and Workup of 1,5-Disubstituted Tetrazoles Enhanced by Real-Time Process Analytics. Organic Process Research and Development, 2021, 25, 1206-1214.	2.7	15
29	Sustainable Aldehyde Oxidations in Continuous Flow Using <i>in Situ</i> -Generated Performic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 5519-5525.	6.7	15
30	Comparative Life Cycle Assessment of Different Production Processes for Waterborne Polyurethane Dispersions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8980-8989.	6.7	15
31	Cu-catalyzed aerobic oxidation of diphenyl sulfide to diphenyl sulfoxide within a segmented flow regime: Modeling of a consecutive reaction network and reactor characterization. Chemical Engineering Journal, 2021, 416, 129045.	12.7	14
32	Catalytic Static Mixer-Enabled Hydrogenation of a Key Fenebrutinib Intermediate: Real-Time Analysis for a Stable and Scalable Process. Organic Process Research and Development, 2021, 25, 1988-1995.	2.7	12
33	Electrochemical α-Arylation of Ketones via Anodic Oxidation of In Situ Generated Silyl Enol Ethers. Journal of Organic Chemistry, 2021, 86, 16026-16034.	3.2	2
34	A small footprint oxycodone generator based on continuous flow technology and real-time analytics. Journal of Flow Chemistry, 2021, 11, 707-715.	1.9	1
35	Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Letters, 2021, 82, 153351.	1.4	6
36	Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry Methods, 2021, 1, 454-467.	3.8	41

#	Article	IF	CITATIONS
37	Continuous Flow Synthesis of a Blocked Polyisocyanate: Process Intensification, Reaction Monitoring Via In-Line FTIR Analysis, and Comparative Life Cycle Assessment. Organic Process Research and Development, 2021, 25, 2367-2379.	2.7	4
38	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	9.0	62
39	<i>N</i> -Chloroamines as substrates for metal-free photochemical atom-transfer radical addition reactions in continuous flow. Reaction Chemistry and Engineering, 2021, 6, 2434-2441.	3.7	10
40	Enabling Techniques for Organic Synthesis. Journal of Organic Chemistry, 2021, 86, 14242-14244.	3.2	6
41	Challenges and Directions for Green Chemical Engineering—Role of Nanoscale Materials. , 2020, , 1-18.		11
42	Continuous photochemical benzylic bromination using <i>in situ</i> generated Br ₂ : process intensification towards optimal PMI and throughput. Green Chemistry, 2020, 22, 448-454.	9.0	41
43	Continuousâ€Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex. ChemSusChem, 2020, 13, 1800-1807.	6.8	13
44	Organophotocatalytic Nâ€Demethylation of Oxycodone Using Molecular Oxygen. Chemistry - A European Journal, 2020, 26, 2973-2979.	3.3	22
45	Flow Chemistry Enabling Efficient Synthesis. Organic Process Research and Development, 2020, 24, 1779-1780.	2.7	5
46	Frontispiece: Membrane Microreactors for the Onâ€Demand Generation, Separation, and Reaction of Gases. Chemistry - A European Journal, 2020, 26, .	3.3	0
47	A novel pathway for the thermolysis of <i>N</i> -nitrosoanthranilates using flash vacuum pyrolysis leading to 7-aminophthalides. Organic and Biomolecular Chemistry, 2020, 18, 8371-8375.	2.8	1
48	Optimization and Scale-Up of the Continuous Flow Acetylation and Nitration of 4-Fluoro-2-methoxyaniline to Prepare a Key Building Block of Osimertinib. Organic Process Research and Development, 2020, 24, 2217-2227.	2.7	25
49	Telescoped Continuous Flow Synthesis of Optically Active γ-Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Organic Letters, 2020, 22, 8122-8126.	4.6	45
50	Oscillatory flow reactors for synthetic chemistry applications. Journal of Flow Chemistry, 2020, 10, 475-490.	1.9	69
51	Electrochemical <i>N</i> -Demethylation of 14-Hydroxy Morphinans: Sustainable Access to Opioid Antagonists. Organic Letters, 2020, 22, 6891-6896.	4.6	17
52	Optimization and sustainability assessment of a continuous flow Ru-catalyzed ester hydrogenation for an important precursor of a l²2-adrenergic receptor agonist. Green Chemistry, 2020, 22, 5762-5770.	9.0	16
53	A High‥ielding Synthesis of EIDDâ€⊋801 from Uridine**. European Journal of Organic Chemistry, 2020, 2020, 6736-6739.	2.4	29
54	Continuous Flow <i>C</i> -Glycosylation via Metal–Halogen Exchange: Process Understanding and Improvements toward Efficient Manufacturing of Remdesivir. Organic Process Research and Development, 2020, 24, 2362-2368.	2.7	29

#	Article	IF	CITATIONS
55	Organomagnesium Based Flash Chemistry: Continuous Flow Generation and Utilization of Halomethylmagnesium Intermediates. Organic Letters, 2020, 22, 7537-7541.	4.6	21
56	Continuous flow synthesis of arylhydrazines <i>via</i> nickel/photoredox coupling of <i>tert</i> -butyl carbazate with aryl halides. Chemical Communications, 2020, 56, 14621-14624.	4.1	9
57	On the Regioselectivity of the Gould–Jacobs Reaction: Gasâ€Phase Versus Solutionâ€Phase Thermolysis. European Journal of Organic Chemistry, 2020, 2020, 7051-7061.	2.4	5
58	A modular 3D printed isothermal heat flow calorimeter for reaction calorimetry in continuous flow. Reaction Chemistry and Engineering, 2020, 5, 1410-1420.	3.7	13
59	The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow. Accounts of Chemical Research, 2020, 53, 1330-1341.	15.6	98
60	Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Organic Process Research and Development, 2020, 24, 2208-2216.	2.7	50
61	Continuous flow synthesis of aryl aldehydes by Pd-catalyzed formylation of phenol-derived aryl fluorosulfonates using syngas. RSC Advances, 2020, 10, 22449-22453.	3.6	10
62	A Continuous Flow Cell for Highâ€Temperature/Highâ€Pressure Electroorganic Synthesis. ChemElectroChem, 2020, 7, 2777-2783.	3.4	9
63	Membrane Microreactors for the Onâ€Demand Generation, Separation, and Reaction of Gases. Chemistry - A European Journal, 2020, 26, 13108-13117.	3.3	19
64	Acyl azide generation and amide bond formation in continuous-flow for the synthesis of peptides. Reaction Chemistry and Engineering, 2020, 5, 645-650.	3.7	12
65	Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie, 2020, 132, 8200-8204.	2.0	21
66	Translating batch electrochemistry to single-pass continuous flow conditions: an organic chemist's guide. Journal of Flow Chemistry, 2020, 10, 181-190.	1.9	79
67	Multivariate analysis of inline benchtop NMR data enables rapid optimization of a complex nitration in flow. Reaction Chemistry and Engineering, 2020, 5, 677-684.	3.7	34
68	Phase dependent encapsulation and release profile of ZIF-based biocomposites. Chemical Science, 2020, 11, 3397-3404.	7.4	70
69	Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie - International Edition, 2020, 59, 8123-8127.	13.8	55
70	An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604.	3.7	68
71	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry Collections, 2020, , 67-110.	0.5	5
72	Recent advances toward sustainable flow photochemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100351.	5.9	60

#	Article	IF	CITATIONS
73	My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren't Microwaves. Chemical Record, 2019, 19, 15-39.	5.8	55
74	Implementing Hydrogen Atom Transfer (HAT) Catalysis for Rapid and Selective Reductive Photoredox Transformations in Continuous Flow. European Journal of Organic Chemistry, 2019, 2019, 5807-5811.	2.4	20
75	Scalable Wolff–Kishner Reductions in Extreme Process Windows Using a Silicon Carbide Flow Reactor. Organic Process Research and Development, 2019, 23, 2445-2455.	2.7	22
76	Oxygen sensors for flow reactors – measuring dissolved oxygen in organic solvents. Reaction Chemistry and Engineering, 2019, 4, 2081-2087.	3.7	5
77	Cathodic C–H Trifluoromethylation of Arenes and Heteroarenes Enabled by an in Situ-Generated Triflyltriethylammonium Complex. Organic Letters, 2019, 21, 7970-7975.	4.6	47
78	Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 393-401.	3.7	35
79	Continuous generation, in-line quantification and utilization of nitrosyl chloride in photonitrosation reactions. Reaction Chemistry and Engineering, 2019, 4, 738-746.	3.7	23
80	Towards a Scalable Synthesis of 2â€Oxabicyclo[2.2.0]hexâ€5â€enâ€3â€one Using Flow Photochemistry. ChemPhotoChem, 2019, 3, 229-232.	3.0	15
81	Continuous-flow protocol for the synthesis of enantiomerically pure intermediates of anti epilepsy and anti tuberculosis active pharmaceutical ingredients. Organic and Biomolecular Chemistry, 2019, 17, 1552-1557.	2.8	15
82	Photochemical benzylic bromination in continuous flow using BrCCl3 and its application to telescoped p-methoxybenzyl protection. Organic and Biomolecular Chemistry, 2019, 17, 1384-1388.	2.8	13
83	HCN on Tap: On-Demand Continuous Production of Anhydrous HCN for Organic Synthesis. Organic Letters, 2019, 21, 5326-5330.	4.6	19
84	Visible-Light-Mediated Iodoperfluoroalkylation of Alkenes in Flow and Its Application to the Synthesis of a Key Fulvestrant Intermediate. Organic Letters, 2019, 21, 5341-5345.	4.6	81
85	Design and Optimization of a Continuous Stirred Tank Reactor Cascade for Membrane-Based Diazomethane Production: Synthesis of α-Chloroketones. Organic Process Research and Development, 2019, 23, 1359-1368.	2.7	19
86	On the reactivity of anodically generated trifluoromethyl radicals toward aryl alkynes in organic/aqueous media. Organic and Biomolecular Chemistry, 2019, 17, 3529-3537.	2.8	20
87	Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. Reaction Chemistry and Engineering, 2019, 4, 1571-1578.	3.7	90
88	Visible Lightâ€Promoted Beckmann Rearrangements: Separating Sequential Photochemical and Thermal Phenomena in a Continuous Flow Reactor. European Journal of Organic Chemistry, 2019, 2019, 2163-2171.	2.4	21
89	Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors. Journal of Flow Chemistry, 2019, 9, 27-34.	1.9	15
90	Continuous Flow Synthesis of Methyl Oximino Acetoacetate: Accessing Greener Purification Methods with Inline Liquid–Liquid Extraction and Membrane Separation Technology. ACS Sustainable Chemistry and Engineering, 2019, 7, 20088-20096.	6.7	18

#	Article	IF	CITATIONS
91	Continuous Flow Synthesis of Terminal Epoxides from Ketones Using in Situ Generated Bromomethyl Lithium. Organic Letters, 2019, 21, 10094-10098.	4.6	22
92	Multigram-scale flow synthesis of the chiral key intermediate of (â^')-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chemical Science, 2019, 10, 11141-11146.	7.4	56
93	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	2.7	52
94	Continuousâ€Flow Pd atalyzed Carbonylation of Aryl Chlorides with Carbon Monoxide at Elevated Temperature and Pressure. ChemCatChem, 2019, 11, 997-1001.	3.7	4
95	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry, 2019, 377, 2.	5.8	99
96	Continuousâ€flow Synthesis of Aryl Aldehydes by Pdâ€ɛatalyzed Formylation of Aryl Bromides Using Carbon Monoxide and Hydrogen. ChemSusChem, 2019, 12, 326-337.	6.8	15
97	Process Intensification and Integration Studies for the Generation of a Key Aminoimidazole Intermediate in the Synthesis of Lanabecestat. Organic Process Research and Development, 2018, 22, 633-640.	2.7	4
98	The journal of flow chemistry $\hat{a} \in$ " off to a new start. Journal of Flow Chemistry, 2018, 8, 1-1.	1.9	0
99	Continuous flow multistep synthesis of α-functionalized esters via lithium enolate intermediates. Tetrahedron, 2018, 74, 3113-3117.	1.9	16
100	Utilization of fluoroform for difluoromethylation in continuous flow: a concise synthesis of α-difluoromethyl-amino acids. Green Chemistry, 2018, 20, 108-112.	9.0	35
101	Sequential \hat{I}_{\pm} -lithiation and aerobic oxidation of an arylacetic acid - continuous-flow synthesis of cyclopentyl mandelic acid. Journal of Flow Chemistry, 2018, 8, 109-116.	1.9	12
102	Catalystâ€Free Oxytrifluoromethylation of Alkenes through Paired Electrolysis in Organicâ€Aqueous Media. Chemistry - A European Journal, 2018, 24, 17234-17238.	3.3	61
103	Scalable Continuous Flow Process for the Synthesis of Eflornithine Using Fluoroform as Difluoromethyl Source. Organic Process Research and Development, 2018, 22, 1553-1563.	2.7	35
104	Continuous multistep synthesis of 2-(azidomethyl)oxazoles. Beilstein Journal of Organic Chemistry, 2018, 14, 506-514.	2.2	14
105	Continuous Flow Photochemical Benzylic Bromination of a Key Intermediate in the Synthesis of a 2-Oxazolidinone. ChemPhotoChem, 2018, 2, 906-912.	3.0	17
106	Design and construction of an open source-based photometer and its applications in flow chemistry. Reaction Chemistry and Engineering, 2018, 3, 478-486.	3.7	14
107	Kreislaufwirtschaft: Industrieabfall als Rohstoff. Nachrichten Aus Der Chemie, 2018, 66, 511-513.	0.0	Ο
108	Continuous flow synthesis of indoles by Pd-catalyzed deoxygenation of 2-nitrostilbenes with carbon monoxide. RSC Advances, 2017, 7, 10469-10478.	3.6	19

#	Article	IF	CITATIONS
109	A Continuousâ€Flow Process for Palladiumâ€Catalyzed Olefin Cleavage by using Oxygen within the Explosive Regime. ChemCatChem, 2017, 9, 3298-3302.	3.7	21
110	Reaction Calorimetry in Microreactor Environments—Measuring Heat of Reaction by Isothermal Heat Flux Calorimetry. Organic Process Research and Development, 2017, 21, 763-770.	2.7	24
111	Design and Development of Pdâ€Catalyzed Aerobic <i>N</i> â€Demethylation Strategies for the Synthesis of Noroxymorphone in Continuous Flow Mode. European Journal of Organic Chemistry, 2017, 2017, 914-927.	2.4	19
112	Halogenation of organic compounds using continuous flow and microreactor technology. Reaction Chemistry and Engineering, 2017, 2, 7-19.	3.7	93
113	Hydrogen sulfide chemistry in continuous flow: Efficient synthesis of 2-oxopropanethioamide. Journal of Flow Chemistry, 2017, 7, 29-32.	1.9	6
114	Development of a Continuous-Flow Sonogashira Cross-Coupling Protocol using Propyne Gas under Process Intensified Conditions. Organic Process Research and Development, 2017, 21, 878-884.	2.7	22
115	Why flow means green $\hat{a} \in$ Evaluating the merits of continuous processing in the context of sustainability. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 6-12.	5.9	124
116	Continuous Flow Synthesis of a Key 1,4-Benzoxazinone Intermediate via a Nitration/Hydrogenation/Cyclization Sequence. Organic Process Research and Development, 2017, 21, 125-132.	2.7	25
117	Lab-scale production of anhydrous diazomethane using membrane separation technology. Nature Protocols, 2017, 12, 2138-2147.	12.0	39
118	Integration of Bromine and Cyanogen Bromide Generators for the Continuousâ€Flow Synthesis of Cyclic Guanidines. Angewandte Chemie, 2017, 129, 13974-13977.	2.0	7
119	Integration of Bromine and Cyanogen Bromide Generators for the Continuousâ€Flow Synthesis of Cyclic Guanidines. Angewandte Chemie - International Edition, 2017, 56, 13786-13789.	13.8	43
120	Synthesis of Mepivacaine and Its Analogues by a Continuousâ€Flow Tandem Hydrogenation/Reductive Amination Strategy. European Journal of Organic Chemistry, 2017, 2017, 6511-6517.	2.4	27
121	Forbidden chemistries — paths to a sustainable future engaging continuous processing. Journal of Flow Chemistry, 2017, 7, 65-71.	1.9	82
122	Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. Reaction Chemistry and Engineering, 2017, 2, 919-927.	3.7	73
123	Continuous Flow Synthesis of Carbonylated Heterocycles via Pd-Catalyzed Oxidative Carbonylation Using CO and O ₂ at Elevated Temperatures and Pressures. Organic Process Research and Development, 2017, 21, 1080-1087.	2.7	32
124	An Integrated Continuousâ€Flow Synthesis of a Key Oxazolidine Intermediate to Noroxymorphone from Naturally Occurring Opioids. European Journal of Organic Chemistry, 2017, 2017, 6505-6510.	2.4	17
125	The Use of Molecular Oxygen in Pharmaceutical Manufacturing: Is Flow the Way to Go?. ChemSusChem, 2017, 10, 32-41.	6.8	104
126	Continuous Flow Homolytic Aromatic Substitution with Electrophilic Radicals: A Fast and Scalable Protocol for Trifluoromethylation. Chemistry - A European Journal, 2017, 23, 176-186.	3.3	31

#	Article	IF	CITATIONS
127	A special perspectives issue on the future of flow chemistry. Journal of Flow Chemistry, 2017, 7, 59.	1.9	Ο
128	Continuous-flow difluoromethylation with chlorodifluoromethane under biphasic conditions. Journal of Flow Chemistry, 2017, 7, 46-51.	1.9	12
129	Front Cover: An Integrated Continuous-Flow Synthesis of a Key Oxazolidine Intermediate to Noroxymorphone from Naturally Occurring Opioids (Eur. J. Org. Chem. 44/2017). European Journal of Organic Chemistry, 2017, 2017, 6462-6462.	2.4	0
130	Laboratory-Scale Membrane Reactor for the Generation of Anhydrous Diazomethane. Journal of Organic Chemistry, 2016, 81, 5814-5823.	3.2	52
131	One-pot synthesis of α-haloketones employing a membrane-based semibatch diazomethane generator. Journal of Flow Chemistry, 2016, 6, 211-217.	1.9	16
132	Diazo Strategy for the Synthesis of Pyridazines: Pivotal Impact of the Configuration of the Diazo Precursor on the Process. Chemistry - A European Journal, 2016, 22, 174-184.	3.3	10
133	A laboratory-scale continuous flow chlorine generator for organic synthesis. Reaction Chemistry and Engineering, 2016, 1, 472-476.	3.7	43
134	Continuous-Flow Electrophilic Amination of Arenes and Schmidt Reaction of Carboxylic Acids Utilizing the Superacidic Trimethylsilyl Azide/Triflic Acid Reagent System. Journal of Organic Chemistry, 2016, 81, 9372-9380.	3.2	11
135	Toward the Synthesis of Noroxymorphone via Aerobic Palladium-Catalyzed Continuous Flow <i>N</i> -Demethylation Strategies. ACS Sustainable Chemistry and Engineering, 2016, 4, 6048-6061.	6.7	36
136	Design and Performance Validation of a Conductively Heated Sealed-Vessel Reactor for Organic Synthesis. Journal of Organic Chemistry, 2016, 81, 11788-11801.	3.2	39
137	Batch―and Continuousâ€Flow Aerobic Oxidation of 14â€Hydroxy Opioids to 1,3â€Oxazolidines—A Concise Synthesis of Noroxymorphone. Chemistry - A European Journal, 2016, 22, 10393-10398.	3.3	34
138	Safe generation and use of bromine azide under continuous flow conditions – selective 1,2-bromoazidation of olefins. Organic and Biomolecular Chemistry, 2016, 14, 853-857.	2.8	30
139	Copper/Nafionâ€Catalyzed Hydroarylation Process Involving Ketenimine Intermediates: A Novel and Synthetic Approach to 4â€Sulfonamidoquinolineâ€2â€ones and Derivatives Thereof. Advanced Synthesis and Catalysis, 2016, 358, 50-55.	4.3	21
140	Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow. Catalysis Science and Technology, 2016, 6, 4695-4699.	4.1	28
141	Generation and Synthetic Application of Trifluoromethyl Diazomethane Utilizing Continuous Flow Technologies. Organic Letters, 2016, 18, 1076-1079.	4.6	82
142	Selective Olefin Reduction in Thebaine Using Hydrazine Hydrate and O ₂ under Intensified Continuous Flow Conditions. Organic Process Research and Development, 2016, 20, 376-385.	2.7	17
143	Continuousâ€Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angewandte Chemie - International Edition, 2015, 54, 6688-6728.	13.8	1,164
144	Lightâ€Induced CH Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides. Chemistry - A European Journal, 2015, 21, 12894-12898.	3.3	47

#	Article	IF	CITATIONS
145	Nafionâ€Hâ€Catalyzed Highâ€Temperature/Highâ€Pressure Synthesis of a Triarylmethane in Continuousâ€Flow Mode. Chemical Engineering and Technology, 2015, 38, 1743-1748.	1.5	5
146	Process Intensified Flow Synthesis of 1 <i>H</i> -4-Substituted Imidazoles: Toward the Continuous Production of Daclatasvir. ACS Sustainable Chemistry and Engineering, 2015, 3, 3445-3453.	6.7	37
147	Continuous Synthesis of Hydantoins: Intensifying the Bucherer–Bergs Reaction. Synlett, 2015, 27, 83-87.	1.8	18
148	Continuous Flow Preparation of Iron Oxide Nanoparticles Supported on Porous Silicates. ChemCatChem, 2015, 7, 276-282.	3.7	6
149	Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin. Biochemical Pharmacology, 2015, 93, 470-481.	4.4	7
150	Benchmarking Immobilized Di- and Triarylphosphine Palladium Catalysts for Continuous-Flow Cross-Coupling Reactions: Efficiency, Durability, and Metal Leaching Studies. ACS Catalysis, 2015, 5, 1303-1312.	11.2	65
151	Continuous Flow Reduction of Artemisinic Acid Utilizing Multiâ€Injection Strategies—Closing the Gap Towards a Fully Continuous Synthesis of Antimalarial Drugs. Chemistry - A European Journal, 2015, 21, 4368-4376.	3.3	37
152	Chiral Chlorohydrins from the Biocatalyzed Reduction of Chloroketones: Chiral Building Blocks for Antiretroviral Drugs. ChemCatChem, 2015, 7, 984-992.	3.7	28
153	TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovascular Research, 2015, 106, 163-173.	3.8	69
154	Development of a Continuous Flow Sulfoxide Imidation Protocol Using Azide Sources under Superacidic Conditions. Organic Process Research and Development, 2015, 19, 1062-1067.	2.7	45
155	Aerobic Oxidations in Continuous Flow. Topics in Organometallic Chemistry, 2015, , 97-136.	0.7	25
156	A Sequential Ugi Multicomponent/Cu-Catalyzed Azide–Alkyne Cycloaddition Approach for the Continuous Flow Generation of Cyclic Peptoids. Journal of Organic Chemistry, 2015, 80, 4590-4602.	3.2	62
157	Singletâ€Oxygen Oxidation of 5â€Hydroxymethylfurfural in Continuous Flow. ChemSusChem, 2015, 8, 1648-1651.	6.8	54
158	A detailed investigation of the multicomponent reaction of salicylaldehyde, ethyl acetoacetate and isocyanides under microwave heating. Tetrahedron, 2015, 71, 7159-7169.	1.9	11
159	Nanoprecipitation of native pea starches treated in alkaline media at various temperatures employing a dedicated microwave reactor. Starch/Staerke, 2014, 66, 124-131.	2.1	7
160	A microwave approach to the synthesis of certain 4-substituted phenyl-6-phenyl-3-cyano-2-pyridones. Journal of the Serbian Chemical Society, 2014, 79, 759-765.	0.8	7
161	Flash carboxylation: fast lithiation–carboxylation sequence at room temperature in continuous flow. RSC Advances, 2014, 4, 13430.	3.6	37
162	Continuous Flow Synthesis of α-Halo Ketones: Essential Building Blocks of Antiretroviral Agents. Journal of Organic Chemistry, 2014, 79, 1555-1562.	3.2	92

#	Article	IF	CITATIONS
163	Microwave mediated preparation of nanoparticles from wx corn starch employing nanoprecipitation. Starch/Staerke, 2014, 66, 316-325.	2.1	27
164	A Scalable Procedure for Light-Induced Benzylic Brominations in Continuous Flow. Journal of Organic Chemistry, 2014, 79, 223-229.	3.2	91
165	Continuous flow synthesis of β-amino acids from α-amino acids via Arndt–Eistert homologation. RSC Advances, 2014, 4, 37419-37422.	3.6	46
166	Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids. Developmental Cell, 2014, 29, 729-739.	7.0	78
167	Immobilized Transition Metals as Catalysts for Crossâ€Couplings in Continuous Flow—A Critical Assessment of the Reaction Mechanism and Metal Leaching. ChemCatChem, 2014, 6, 3286-3305.	3.7	163
168	A Continuous-Flow Protocol for Light-Induced Benzylic Fluorinations. Journal of Organic Chemistry, 2014, 79, 8486-8490.	3.2	91
169	Effect of configuration of 2-vinyldiazocarbonyl compounds on their reactivity: experimental and computational study. Organic and Biomolecular Chemistry, 2014, 12, 682-689.	2.8	14
170	A Critical Investigation on the Occurrence of Microwave Effects in Emulsion Polymerizations. Macromolecular Chemistry and Physics, 2014, 215, 2318-2326.	2.2	5
171	Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazineâ€Mediated Nitro Reductions in Continuous Flow. ChemSusChem, 2014, 7, 3122-3131.	6.8	54
172	Shifting Chemical Equilibria in Flow—Efficient Decarbonylation Driven by Annular Flow Regimes. Angewandte Chemie - International Edition, 2014, 53, 11557-11561.	13.8	31
173	Continuous Flow α-Trifluoromethylation of Ketones by Metal-Free Visible Light Photoredox Catalysis. Organic Letters, 2014, 16, 896-899.	4.6	141
174	A Critical Investigation on the Existence of Selective Microwave Absorption in the Synthesis of CdSe Quantum Dots. Australian Journal of Chemistry, 2014, 67, 1180.	0.9	1
175	Anthropogenic reaction parameters – the missing link between chemical intuition and the available chemical space. Chemical Society Reviews, 2014, 43, 5387-5399.	38.1	34
176	Combined batch and continuous flow procedure to the chemo-enzymatic synthesis of biaryl moiety of Odanacatib. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 101-107.	1.8	21
177	Chemistry of pyrrolizidine alkaloids revisited—semi-synthetic microwave and continuous-flow approaches toward Crotalaria-alkaloids. Tetrahedron Letters, 2014, 55, 4181-4184.	1.4	12
178	Sequential Nitration/Hydrogenation Protocol for the Synthesis of Triaminophloroglucinol: Safe Generation and Use of an Explosive Intermediate under Continuous-Flow Conditions. Organic Process Research and Development, 2014, 18, 1360-1366.	2.7	59
179	8. The Microwave-to-flow paradigm: translating batch microwave chemistry to continuous-flow processes. , 2014, , 251-258.		Ο
180	Design and evaluation of improved magnetic stir bars for single-mode microwave reactors. Organic and Biomolecular Chemistry, 2013, 11, 4949.	2.8	14

#	Article	IF	CITATIONS
181	Continuousâ€Flow Synthesis of CdSe Quantum Dots: A Sizeâ€Tunable and Scalable Approach. Chemistry - A European Journal, 2013, 19, 11629-11636.	3.3	40
182	A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitorAtazanavir. Organic and Biomolecular Chemistry, 2013, 11, 6806-6813.	2.8	56
183	Simulating Microwave Chemistry in a Resistanceâ€Heated Autoclave Made of Semiconducting Silicon Carbide Ceramic. Chemistry - A European Journal, 2013, 19, 15827-15830.	3.3	9
184	Continuous Flow Generation and Reactions of Anhydrous Diazomethane Using a Teflon AF-2400 Tube-in-Tube Reactor. Organic Letters, 2013, 15, 5590-5593.	4.6	163
185	Direct Preparation of Nitriles from Carboxylic Acids in Continuous Flow. Journal of Organic Chemistry, 2013, 78, 10567-10571.	3.2	47
186	Homogeneous Liquid-Phase Oxidation of Ethylbenzene to Acetophenone in Continuous Flow Mode. ACS Catalysis, 2013, 3, 2669-2676.	11.2	64
187	In Situ Generation of Diimide from Hydrazine and Oxygen: Continuousâ€Flow Transfer Hydrogenation of Olefins. Angewandte Chemie - International Edition, 2013, 52, 10241-10244.	13.8	76
188	On the Importance of Accurate Internal Temperature Measurements in the Microwave Dielectric Heating of Viscous Systems and Polymer Synthesis. Macromolecular Chemistry and Physics, 2013, 214, 423-434.	2.2	35
189	Direct aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solvent. Green Chemistry, 2013, 15, 320.	9.0	88
190	Microwave Effects in Organic Synthesis: Myth or Reality?. Angewandte Chemie - International Edition, 2013, 52, 1088-1094.	13.8	457
191	Versatile low-loaded mechanochemically synthesized supported iron oxide nanoparticles for continuous flow alkylations. RSC Advances, 2013, 3, 16292.	3.6	19
192	On the Fischer Indole Synthesis of 7-Ethyltryptophol—Mechanistic and Process Intensification Studies under Continuous Flow Conditions. Organic Process Research and Development, 2013, 17, 294-302.	2.7	26
193	Unraveling the Mysteries of Microwave Chemistry Using Silicon Carbide Reactor Technology. Accounts of Chemical Research, 2013, 46, 1579-1587.	15.6	95
194	How to measure reaction temperature in microwave-heated transformations. Chemical Society Reviews, 2013, 42, 4977.	38.1	167
195	Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chemistry, 2013, 15, 1530.	9.0	100
196	In situ preparation of silver nanocomposites on cellulosic fibers – Microwave vs. conventional heating. Carbohydrate Polymers, 2013, 94, 677-686.	10.2	61
197	Continuous Flow Synthesis of <i>n</i> -Alkyl Chlorides in a High-Temperature Microreactor Environment. Organic Process Research and Development, 2013, 17, 152-157.	2.7	29
198	Hydrazine-mediated Reduction of Nitro and Azide Functionalities Catalyzed by Highly Active and Reusable Magnetic Iron Oxide Nanocrystals. Journal of Organic Chemistry, 2013, 78, 4530-4542.	3.2	136

#	Article	IF	CITATIONS
199	Continuousâ€Flow Synthesis of Adipic Acid from Cyclohexene Using Hydrogen Peroxide in Highâ€Temperature Explosive Regimes. ChemSusChem, 2013, 6, 978-982.	6.8	49
200	Reply to the Correspondence on Microwave Effects in Organic Synthesis. Angewandte Chemie - International Edition, 2013, 52, 7924-7928.	13.8	67
201	Phase-Transfer Catalysis: Mixing Effects in Continuous-Flow Liquid/Liquid O- and S-Alkylation Processes. Synlett, 2013, 24, 2393-2396.	1.8	16
202	A TRPC3 Blocker, Ethyl-1-(4-(2,3,3-Trichloroacrylamide)Phenyl)-5-(Trifluoromethyl)-1H-Pyrazole-4-Carboxylate (Pyr3), Prevents Stent-Induced Arterial Remodeling. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 33-40.	2.5	38
203	Influence of temperature on the apparent molar masses and sizes of pregelatinized wx corn in aqueous media determined using asymmetrical flow field-flow fractionation. Starch/Staerke, 2013, 65, 954-961.	2.1	2
204	The <i>Journal of Flow Chemistry</i> off to a Good Start and already Highly Cited. Journal of Flow Chemistry, 2013, 3, 1-2.	1.9	0
205	In Situ Generation of Diimide from Hydrazine and Oxygen: Continuousâ€Flow Transfer Hydrogenation of Olefins. Angewandte Chemie, 2013, 125, 10431-10434.	2.0	26
206	Continuous-Flow Production of Photocatalytically Active Titanium Dioxide Nanocrystals and Its Application to the Photocatalytic Addition of <i>N,N</i> -Dimethylaniline to <i>N</i> -Methylmaleimide. Journal of Flow Chemistry, 2013, 3, 109-113.	1.9	30
207	Safe Generation and Synthetic Utilization of Hydrazoic Acid in a Continuous Flow Reactor. Journal of Flow Chemistry, 2012, 2, 8-19.	1.9	41
208	Profile of the "Christian Doppler Laboratory for Microwave Chemistry―at the Karl-Franzens-University of Graz. Green Processing and Synthesis, 2012, 1, .	3.4	0
209	Flash Flow Pyrolysis: Mimicking Flash Vacuum Pyrolysis in a High-Temperature/High-Pressure Liquid-Phase Microreactor Environment. Journal of Organic Chemistry, 2012, 77, 2463-2473.	3.2	59
210	An Experimental and Computational Assessment of Acid-Catalyzed Azide-Nitrile Cycloadditions. Journal of Organic Chemistry, 2012, 77, 10882-10890.	3.2	35
211	Novel pyrazole compounds for pharmacological discrimination between receptorâ€operated and storeâ€operated <scp><scp>Ca²⁺</scp> entry pathways. British Journal of Pharmacology, 2012, 167, 1712-1722.</scp>	5.4	160
212	On the mechanism of the Dakin–West reaction. Organic and Biomolecular Chemistry, 2012, 10, 9013.	2.8	11
213	Can electromagnetic fields influence the structure and enzymatic digest of proteins? A critical evaluation of microwave-assisted proteomics protocols. Journal of Proteomics, 2012, 75, 5533-5543.	2.4	42
214	TRPC3 Expression Modulates Store-Operated Currents in RBL-2H3 Cells. Biophysical Journal, 2012, 102, 534a.	0.5	0
215	Inâ€Situ Generated Iron Oxide Nanocrystals as Efficient and Selective Catalysts for the Reduction of Nitroarenes using a Continuous Flow Method. Angewandte Chemie - International Edition, 2012, 51, 10190-10193.	13.8	184
216	Insights into the microwave-assisted preparation of supported iron oxide nanoparticles on silica-type mesoporous materials. Green Chemistry, 2012, 14, 393-402.	9.0	30

#	Article	IF	CITATIONS
217	Methylation using dimethylcarbonate catalysed by ionic liquids under continuous flow conditions. Green Chemistry, 2012, 14, 3071.	9.0	50
218	Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?. Nanoscale, 2012, 4, 7435.	5.6	25
219	Microwave-assisted continuous flow synthesis on industrial scale. Green Processing and Synthesis, 2012, 1, .	3.4	50
220	Treatment of wx corn starch dispersions in a microwave reactor and their hydrodynamic properties determined using asymmetrical flow fieldâ€flow fractionation. Starch/Staerke, 2012, 64, 652-656.	2.1	4
221	Characterization of Microwaveâ€Induced Electric Discharge Phenomena in Metal–Solvent Mixtures. ChemistryOpen, 2012, 1, 39-48.	1.9	65
222	A Critical Assessment of the Specific Role of Microwave Irradiation in the Synthesis of ZnO Micro―and Nanostructured Materials. Chemistry - A European Journal, 2012, 18, 5724-5731.	3.3	34
223	Direct Arylation of Benzene with Aryl Bromides using Highâ€Temperature/Highâ€Pressure Process Windows: Expanding the Scope of CH Activation Chemistry. Chemistry - A European Journal, 2012, 18, 5047-5055.	3.3	39
224	Copperâ€Catalyzed Formation of CO Bonds by Direct αâ€CH Bond Activation of Ethers Using Stoichiometric Amounts of Peroxide in Batch and Continuousâ€Flow Formats. Chemistry - A European Journal, 2012, 18, 6124-6128.	3.3	96
225	Parallel microwave chemistry in silicon carbide microtiter platforms: a review. Molecular Diversity, 2012, 16, 5-25.	3.9	25
226	High-temperature continuous flow synthesis of 1,3,4-oxadiazoles via N-acylation of 5-substituted tetrazoles. Tetrahedron Letters, 2012, 53, 952-955.	1.4	32
227	High-speed microwave assisted synthesis of SEA0400—a selective inhibitor of the Na+/Ca2+ exchanger. Tetrahedron Letters, 2012, 53, 3731-3734.	1.4	13
228	Congratulations to Professor Albert Padwa on his 75th Birthday. Heterocycles, 2012, 84, 1.	0.7	0
229	A miniaturized microtiter plate protocol for the determination of selenomethionine in selenized yeast via enzymatic hydrolysis of protein-bound selenium. Analytical Methods, 2011, 3, 738.	2.7	9
230	Microwave-Assisted and Continuous Flow Multistep Synthesis of 4-(Pyrazol-1-yl)carboxanilides. Journal of Organic Chemistry, 2011, 76, 6657-6669.	3.2	69
231	A Scalable Two-Step Continuous Flow Synthesis of Nabumetone and Related 4-Aryl-2-butanones. Organic Process Research and Development, 2011, 15, 858-870.	2.7	68
232	Investigation of the Formation of CuInS ₂ Nanoparticles by the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses. Inorganic Chemistry, 2011, 50, 193-200.	4.0	84
233	A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chemistry, 2011, 13, 794.	9.0	301
234	Microwave-Assisted Grafting to MCM-41 Silica and its Application as Catalyst in Flow Chemistry. Australian Journal of Chemistry, 2011, 64, 1522.	0.9	14

#	Article	IF	CITATIONS
235	Continuous Flow Ozonolysis in a Laboratory Scale Reactor. Organic Letters, 2011, 13, 984-987.	4.6	116
236	PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10556-10561.	7.1	79
237	A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions. Analytica Chimica Acta, 2011, 707, 76-83.	5.4	12
238	Palladium-Catalyzed Direct Arylation of Heteroaromatic Compounds: Improved Conditions Utilizing Controlled Microwave Heating. Journal of Organic Chemistry, 2011, 76, 8138-8142.	3.2	120
239	Scale-Up of Microwave-Assisted Reactions in a Multimode Bench-Top Reactor. Organic Process Research and Development, 2011, 15, 841-854.	2.7	60
240	Mechanistic Insights on Azideâ^'Nitrile Cycloadditions: On the Dialkyltin Oxideâ^'Trimethylsilyl Azide Route and a New Vilsmeierâ^'Haack-Type Organocatalyst. Journal of the American Chemical Society, 2011, 133, 4465-4475.	13.7	94
241	Unusual behavior in the reactivity of 5-substituted-1 <i>H</i> -tetrazoles in a resistively heated microreactor. Beilstein Journal of Organic Chemistry, 2011, 7, 503-517.	2.2	25
242	Microwave-assisted forced degradation using high-throughput microtiter platforms. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 867-873.	2.8	16
243	Rapid Nickel-Catalyzed Suzukiâ`'Miyaura Cross-Couplings of Aryl Carbamates and Sulfamates Utilizing Microwave Heating. Journal of Organic Chemistry, 2011, 76, 1507-1510.	3.2	124
244	Continuousâ€flow syntheses of heterocycles. Journal of Heterocyclic Chemistry, 2011, 48, 11-30.	2.6	54
245	Bis(diethylamino)(pentafluorophenyl)phosphane - a Push-Pull Phosphane Available for Coordination. European Journal of Inorganic Chemistry, 2011, 2011, 2588-2596.	2.0	17
246	Heterogeneous Catalytic Hydrogenation Reactions in Continuousâ€Flow Reactors. ChemSusChem, 2011, 4, 300-316.	6.8	321
247	Activation and Deactivation of a Chemical Transformation by an Electromagnetic Field: Evidence for Specific Microwave Effects in the Formation of Grignard Reagents. Angewandte Chemie - International Edition, 2011, 50, 7636-7640.	13.8	95
248	Microwaveâ€Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 11312-11359.	13.8	686
249	The Microwaveâ€ŧoâ€Flow Paradigm: Translating Highâ€Temperature Batch Microwave Chemistry to Scalable Continuousâ€Flow Processes. Chemistry - A European Journal, 2011, 17, 11956-11968.	3.3	205
250	A Two‣tep Continuousâ€Flow Synthesis of <i>N</i> â€(2â€Aminoethyl)acylamides through Ringâ€Opening/Hydrogenation of Oxazolines. Chemistry - A European Journal, 2011, 17, 13146-13150.	3.3	32
251	Microwave-assisted nickel(II) acetylacetonate-catalyzed arylation of aldehydes with arylboronic acids. Tetrahedron Letters, 2011, 52, 1677-1679.	1.4	20
252	Structure–Activity Relationships and Molecular Docking of Novel Dihydropyrimidineâ€Based Mitotic Eg5 Inhibitors. ChemMedChem, 2010, 5, 1760-1769.	3.2	36

#	Article	IF	CITATIONS
253	Continuous Flow Organic Synthesis under Highâ€Temperature/Pressure Conditions. Chemistry - an Asian Journal, 2010, 5, 1274-1289.	3.3	170
254	Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Molecular Diversity, 2010, 14, 869-888.	3.9	64
255	Mechanistic Insights into Copper(I)â€Catalyzed Azideâ€Alkyne Cycloadditions using Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2010, 352, 323-328.	4.3	109
256	Toward a Continuousâ€Flow Synthesis of Boscalid [®] . Advanced Synthesis and Catalysis, 2010, 352, 3089-3097.	4.3	109
257	Sintered Silicon Carbide: A New Ceramic Vessel Material for Microwave Chemistry in Singleâ€Mode Reactors. Chemistry - A European Journal, 2010, 16, 12182-12194.	3.3	103
258	Synthesis of 5â€Substituted 1 <i>H</i> â€Tetrazoles from Nitriles and Hydrazoic Acid by Using a Safe and Scalable Highâ€Temperature Microreactor Approach. Angewandte Chemie - International Edition, 2010, 49, 7101-7105.	13.8	167
259	Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms. Journal of Chromatography A, 2010, 1217, 167-170.	3.7	20
260	Microwave-assisted high-throughput acid hydrolysis in silicon carbide microtiter platforms—A rapid and low volume sample preparation technique for total amino acid analysis in proteins and peptides. Journal of Chromatography A, 2010, 1217, 7826-7832.	3.7	25
261	Synthesis of poly(ε-caprolactone) diols and EO–CL block copolymers and their characterization by liquid chromatography and MALDI-TOF-MS. European Polymer Journal, 2010, 46, 494-505.	5.4	22
262	The microwave-assisted synthesis of 5-arylazo-4,6-disubstituted-3-cyano-2-pyridone dyes. Dyes and Pigments, 2010, 85, 73-78.	3.7	30
263	Heterocyclic BINAP Analogues. Advances in Heterocyclic Chemistry, 2010, 99, 33-59.	1.7	14
264	Structural Basis for Inhibition of Eg5 by Dihydropyrimidines: Stereoselectivity of Antimitotic Inhibitors Enastron, Dimethylenastron and Fluorastrol. Journal of Medicinal Chemistry, 2010, 53, 5676-5683.	6.4	126
265	Understanding microwave heating effects in single mode type cavities—theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 4750.	2.8	163
266	An Investigation of Wall Effects in Microwave-Assisted Ring-Closing Metathesis and Cyclotrimerization Reactions. Journal of Organic Chemistry, 2010, 75, 5278-5288.	3.2	70
267	Diversity-Oriented Synthesis of Dibenzoazocines and Dibenzoazepines via a Microwave-Assisted Intramolecular A ³ -Coupling Reaction. Organic Letters, 2010, 12, 2774-2777.	4.6	65
268	A Unified Mechanistic View on the Moritaâ^'Baylisâ^'Hillman Reaction: Computational and Experimental Investigations. Journal of Organic Chemistry, 2010, 75, 8615-8626.	3.2	60
269	Click chemistry under non-classical reaction conditions. Chemical Society Reviews, 2010, 39, 1280-1290.	38.1	342
270	Direct Solid-Phase Synthesis of the β-Amyloid (1â^'42) Peptide Using Controlled Microwave Heating. Journal of Organic Chemistry, 2010, 75, 2103-2106.	3.2	68

#	Article	IF	CITATIONS
271	On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionic liquids. Organic and Biomolecular Chemistry, 2010, 8, 114-121.	2.8	96
272	Translating High-Temperature Microwave Chemistry to Scalable Continuous Flow Processes. Organic Process Research and Development, 2010, 14, 215-224.	2.7	133
273	Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide. Physical Chemistry Chemical Physics, 2010, 12, 10793.	2.8	48
274	Accessing Novel Process Windows in a Highâ€Temperature/Pressure Capillary Flow Reactor. Chemical Engineering and Technology, 2009, 32, 1702-1716.	1.5	69
275	Heterogeneous Versus Homogeneous Palladium Catalysts for Ligandless Mizoroki–Heck Reactions: A Comparison of Batch/Microwave and Continuousâ€Flow Processing. Chemistry - A European Journal, 2009, 15, 1001-1010.	3.3	153
276	Microwaveâ€Assisted Crossâ€Coupling and Hydrogenation Chemistry by Using Heterogeneous Transitionâ€Metal Catalysts: An Evaluation of the Role of Selective Catalyst Heating. Chemistry - A European Journal, 2009, 15, 11608-11618.	3.3	71
277	Highâ€5peed Microwaveâ€Assisted Synthesis of the Trifluoromethylpyrazolâ€Derived Canonical Transient Receptor Potential (TRPC) Channel Inhibitor Pyr3. ChemMedChem, 2009, 4, 1816-1818.	3.2	32
278	Continuous Flow Hydrogenation of Functionalized Pyridines. European Journal of Organic Chemistry, 2009, 1327-1334.	2.4	75
279	Continuousâ€Flow Microreactor Chemistry under Highâ€Temperature/Pressure Conditions. European Journal of Organic Chemistry, 2009, 2009, 1321-1325.	2.4	148
280	The Liebeskind–Srogl CC Crossâ€Coupling Reaction. Angewandte Chemie - International Edition, 2009, 48, 2276-2286.	13.8	297
281	Microwave Chemistry in Silicon Carbide Reaction Vials: Separating Thermal from Nonthermal Effects. Angewandte Chemie - International Edition, 2009, 48, 8321-8324.	13.8	220
282	Bisquinolones as chiral fluorophores – A combined experimental and computational study of absorption and emission characteristics. Journal of Molecular Structure, 2009, 929, 85-96.	3.6	11
283	Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Molecular Diversity, 2009, 13, 71-193.	3.9	413
284	Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics. Molecular Diversity, 2009, 13, 529-543.	3.9	38
285	Microwave-assisted aliphatic fluorine–chlorine exchange using triethylamine trihydrofluoride (TREAT-HF). Tetrahedron Letters, 2009, 50, 3665-3668.	1.4	70
286	Amphiphilic polymers based on higher alkylene oxides. Journal of Chromatography A, 2009, 1216, 1167-1173.	3.7	26
287	An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques. Journal of Chromatography A, 2009, 1216, 5875-5881.	3.7	18
288	Microwave-assisted polymerization of higher alkylene oxides. European Polymer Journal, 2009, 45, 899-910.	5.4	29

#	Article	IF	CITATIONS
289	Characterization of poly(ethylene glycol)-b-poly(ε-caprolactone) by liquid chromatography under critical conditions: Influence of catalysts and reaction conditions on product composition. European Polymer Journal, 2009, 45, 2338-2347.	5.4	19
290	Microwave-Assisted Carbonyl Chemistry for the Undergraduate Laboratory. Journal of Chemical Education, 2009, 86, 227.	2.3	23
291	Parallel Microwave Synthesis of 2-Styrylquinazolin-4(3 <i>H</i>)-ones in a High-Throughput Platform Using HPLC/GC Vials as Reaction Vessels. ACS Combinatorial Science, 2009, 11, 676-684.	3.3	23
292	Kinetic Resolution of <i>rac</i> -1-Phenylethanol with Immobilized Lipases: A Critical Comparison of Microwave and Conventional Heating Protocols ^{â^¥} . Journal of Organic Chemistry, 2009, 74, 6157-6162.	3.2	70
293	Palladium(0)-Catalyzed, Copper(I)-Mediated Coupling of Cyclic Thioamides with Alkenylboronic Acids, Organostannanes, and Siloxanes. Journal of Organic Chemistry, 2009, 74, 5118-5121.	3.2	46
294	High-Throughput Experimentation Platform: Parallel Microwave Chemistry in HPLC/GC Vials. ACS Combinatorial Science, 2009, 11, 460-468.	3.3	39
295	Can Molecular Sieves be Used as Water Scavengers in Microwave Chemistry?. Australian Journal of Chemistry, 2009, 62, 244.	0.9	11
296	On the Energy Efficiency of Microwaveâ€Assisted Organic Reactions. ChemSusChem, 2008, 1, 123-132.	6.8	134
297	Tetraâ€ <i>tert</i> â€butyltrioxabicyclo[3.3.1]nonadienedicarboxylic Acid: Optical Resolution, Absolute Configuration and Application in Chiral Discrimination. European Journal of Organic Chemistry, 2008, 2008, 3382-3388.	2.4	9
298	Copperâ€Catalyzed CC Coupling of Thiol Esters and Boronic Acids under Aerobic Conditions. Angewandte Chemie - International Edition, 2008, 47, 3674-3676.	13.8	79
299	Palladium(0) Nanoparticles on Classâ€Polymer Composite Materials as Recyclable Catalysts: A Comparison Study on their Use in Batch and Continuous Flow Processes. Advanced Synthesis and Catalysis, 2008, 350, 717-730.	4.3	99
300	Integration of high speed microwave chemistry and a statistical â€~design of experiment' approach for the synthesis of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 2008, 64, 2035-2041.	1.9	26
301	Multicomponent cyclocondensation reactions of aminoazoles, arylpyruvic acids and aldehydes with controlled chemoselectivity. Tetrahedron, 2008, 64, 11041-11049.	1.9	59
302	Microwave-assisted one-pot diboration/Suzuki cross-couplings. A rapid route to tetrasubstituted alkenes. Tetrahedron Letters, 2008, 49, 4831-4835.	1.4	41
303	Microwave assisted synthesis and characterization of end functionalized poly(propylene oxide) as model compounds. European Polymer Journal, 2008, 44, 144-154.	5.4	36
304	Tuning of Chemo- and Regioselectivities in Multicomponent Condensations of 5-Aminopyrazoles, Dimedone, and Aldehydes. Journal of Organic Chemistry, 2008, 73, 5110-5118.	3.2	169
305	Adventures In Microwave-assisted Organic Synthesis: Contributions From The Kappe Laboratory 2000–2005. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2008, , 225-251.	0.1	3
306	Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies. Journal of Organic Chemistry, 2008, 73, 7532-7542.	3.2	162

#	Article	IF	CITATIONS
307	Microwave-Assisted Catalyst-Free Transesterification of Triglycerides with 1-Butanol under Supercritical Conditions. Energy & amp; Fuels, 2008, 22, 643-645.	5.1	75
308	Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 2008, 37, 1127.	38.1	704
309	Synthesis of Bisquinolone-Based Mono- and Diphosphine Ligands of the Aza-BINAP Type. Journal of Organic Chemistry, 2008, 73, 4755-4758.	3.2	25
310	Investigating the Existence of Nonthermal/Specific Microwave Effects Using Silicon Carbide Heating Elements as Power Modulators. Journal of Organic Chemistry, 2008, 73, 6321-6329.	3.2	122
311	Nonthermal Microwave Effects Revisited:  On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry. Journal of Organic Chemistry, 2008, 73, 36-47.	3.2	482
312	Electro-oxidation of Biginelli Dihydropyrimidones. ECS Transactions, 2007, 3, 41-55.	0.5	0
313	Microwave-Assisted Selective 5â€2-O-Trityl Protection of Inosine Derivatives. Synlett, 2007, 2007, 1733-1735.	1.8	1
314	Synthesis of 5-Aroyldihydropyrimidinones via Liebeskind-Srogl Thiol Ester-Boronic Acid Cross-Couplings. Synlett, 2007, 2007, 0043-0046.	1.8	6
315	Parallel Processing of Microwave-Assisted Organic Transformations. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 735-750.	1.1	24
316	One-Pot, Multicomponent Route to Pyrazoloquinolizinones. Organic Letters, 2007, 9, 1691-1694.	4.6	80
317	Microwave-Assisted Asymmetric Organocatalysis. A Probe for Nonthermal Microwave Effects and the Concept of Simultaneous Cooling. Journal of Organic Chemistry, 2007, 72, 1417-1424.	3.2	191
318	Palladium(0)-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids with Cyclic Thioamides. Selective Carbonâ~'Carbon Bond Formation for the Functionalization of Heterocyclesâ€. Journal of Organic Chemistry, 2007, 72, 4440-4448.	3.2	121
319	Desulfitative Carbon–Carbon Cross-Coupling of Thioamide Fragments with Boronic Acids. Advanced Synthesis and Catalysis, 2007, 349, 448-452.	4.3	53
320	Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 2007, 107, 2563-2591.	47.7	1,012
321	Microwave-Assisted Solution- and Solid-Phase Synthesis of 2-Amino-4-arylpyrimidine Derivatives. ACS Combinatorial Science, 2007, 9, 275-284.	3.3	102
322	5-Aroyl-3,4-dihydropyrimidin-2-one Library Generation via Automated Sequential and Parallel Microwave-assisted Synthesis Techniques. ACS Combinatorial Science, 2007, 9, 415-421.	3.3	70
323	Multicomponent Cyclocondensations of b-Ketosulfones with Aldehydes and Aminoazole Building Blocks. Heterocycles, 2007, 73, 469.	0.7	20
324	High-Throughput Microwave-Assisted Organic Synthesis:  Moving from Automated Sequential to Parallel Library-Generation Formats in Silicon Carbide Microtiter Plates. ACS Combinatorial Science, 2007, 9, 285-291.	3.3	53

#	Article	IF	CITATIONS
325	An Algorithm for the Deconvolution of Mass Spectrosopic Patterns in Isotope Labeling Studies. Evaluation for the Hydrogenâ°'Deuterium Exchange Reaction in Ketones. Journal of Organic Chemistry, 2007, 72, 5778-5783.	3.2	40
326	Parallel Synthesis of an Amide Library Based on the 6,8-Dioxa-3-azabicyclo[3.2.1]octane Scaffold by Direct Aminolysis of Methyl Esters. ACS Combinatorial Science, 2007, 9, 454-461.	3.3	20
327	Synthesis of Symmetrical Bisquinolones <i>via</i> Nickel(0)â€Catalyzed Homocoupling of 4â€Chloroquinolones. Advanced Synthesis and Catalysis, 2007, 349, 2353-2360.	4.3	18
328	Selectivity of PEOâ€ <i>block</i> â€PPO Diblock Copolymers in the Microwaveâ€Accelerated, Anionic Ringâ€Opening Polymerization of Propylene Oxide with PEG as Initiator. Macromolecular Chemistry and Physics, 2007, 208, 2510-2524.	2.2	39
329	Microwave-Assisted Synthesis under Continuous-Flow Conditions. Macromolecular Rapid Communications, 2007, 28, 395-410.	3.9	225
330	Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron, 2007, 63, 1229-1242.	1.9	72
331	Microwave-assisted arylation of rac-(E)-3-acetoxy-1,3-diphenylprop-1-ene with arylboronic acids. Tetrahedron, 2007, 63, 8742-8745.	1.9	15
332	Rapid preparation of pyranoquinolines using microwave dielectric heating in combination with fractional product distillation. Tetrahedron Letters, 2007, 48, 2513-2517.	1.4	33
333	Microwave accelerated aza-Claisen rearrangements. Tetrahedron Letters, 2007, 48, 6912-6915.	1.4	32
334	Microwaveâ€Assisted Click Chemistry for the Preparation of 3―and 4â€Triazolylâ€2(1 <i>H</i>)â€quinolones as Potential Fluorescent Probes. QSAR and Combinatorial Science, 2007, 26, 1261-1265.	1.4	16
335	From 1982 to 2003 to 2007 – Milestones in a Journal's History. QSAR and Combinatorial Science, 2007, 26, 5-9.	1.4	1
336	Rapid preparation of the mitotic kinesin Eg5 inhibitor monastrol using controlled microwave-assisted synthesis. Nature Protocols, 2007, 2, 317-321.	12.0	35
337	Automated generation of a dihydropyrimidine compound library using microwave-assisted processing. Nature Protocols, 2007, 2, 1713-1721.	12.0	29
338	Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation. Nature Protocols, 2007, 2, 2222-2227.	12.0	48
339	Silicon Carbide Passive Heating Elements in Microwave-Assisted Organic Synthesis. Journal of Organic Chemistry, 2006, 71, 4651-4658.	3.2	168
340	Microwave-Assisted Three-Component Synthesis of 7-Aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-pyrimidine-6-carboxamides and Their Selective Reduction. ACS Combinatorial Science, 2006, 8, 427-434.	3.3	114
341	The Scale-Up of Microwave-Assisted Organic Synthesis. , 2006, , 233-278.		74
342	The Use of Microwave Irradiation in Organic Synthesis. From Laboratory Curiosity to Standard Practice in Twenty Years. Chimia, 2006, 60, 308-312.	0.6	42

#	Article	IF	CITATIONS
343	Microwave-Assisted Dimroth Rearrangement of Thiazines to Dihydropyrimidinethiones: Synthetic and Mechanistic Aspects. QSAR and Combinatorial Science, 2006, 25, 509-518.	1.4	64
344	QSAR & Combinatorial Science Going Monthly in 2006. QSAR and Combinatorial Science, 2006, 25, 5-6.	1.4	1
345	QSAR/QSPR Modelling – Finding Rules in Noisy Data?. QSAR and Combinatorial Science, 2006, 25, 811-812.	1.4	1
346	Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. Journal of Peptide Science, 2006, 12, 633-638.	1.4	70
347	The impact of microwave synthesis on drug discovery. Nature Reviews Drug Discovery, 2006, 5, 51-63.	46.4	525
348	Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron, 2006, 62, 4651-4664.	1.9	72
349	Symmetrical Bisquinolones via Metal-Catalyzed Cross-Coupling and Homocoupling Reactions. Journal of Organic Chemistry, 2006, 71, 1707-1710.	3.2	45
350	The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a mild and efficient cyclocondensation/dehydration reagent. Arkivoc, 2005, 2001, 122-134.	0.5	44
351	Porphyrins in Diels–Alder reactions. Improvements on the synthesis of barrelene-fused chlorins using microwave irradiation. Tetrahedron Letters, 2005, 46, 4723-4726.	1.4	40
352	Monolithic polymer/carrier materials: Versatile composites for fine chemical synthesis. Catalysis Today, 2005, 105, 318-324.	4.4	88
353	Microwave-Assisted Organic Synthesis in Near-Critical Water at 300 °C -A Proof-of-Concept Study. European Journal of Organic Chemistry, 2005, 2005, 3672-3679.	2.4	86
354	All the Rave in Microwaves. Angewandte Chemie - International Edition, 2005, 44, 7666-7669.	13.8	7
355	Controlled Microwave Heating in Modern Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
356	Combining Biginelli Multicomponent and Click Chemistry: Generation of 6-(1,2,3-Triazol-1-yl)-dihydropyrimidone Libraries ChemInform, 2005, 36, no.	0.0	0
357	Stereoconservative Negishi Arylation and Alkynylation as an Efficient Approach to Enantiopure 2,2?-Diarylated 1,1?-Binaphthyls ChemInform, 2005, 36, no.	0.0	0
358	Creating Chemical Diversity Space by Scaffold Decoration of Dihydropyrimidines. ChemInform, 2005, 36, no.	0.0	0
359	Microwave-Assisted Multistep Synthesis of Functionalized 4-Arylquinolin-2(1H)-ones Using Palladium-Catalyzed Cross-Coupling Chemistry ChemInform, 2005, 36, no.	0.0	0
360	Microwave-Assisted Solid-Phase Synthesis. ChemInform, 2005, 36, no.	0.0	1

#	Article	IF	CITATIONS
361	Microwave-Enhanced and Metal-Catalyzed Functionalizations of the 4-Aryl-dihydropyrimidone Template ChemInform, 2005, 36, no.	0.0	Ο
362	Microwave-Enhanced and Metal-Catalyzed Functionalizations of the 4-Aryl-dihydropyrimidone Template ChemInform, 2005, 36, no.	0.0	0
363	Selective Polymer-Assisted Product Sequestration for the Generation of Combinatorial Libraries of 1,3-Thiazines. QSAR and Combinatorial Science, 2005, 24, 364-377.	1.4	6
364	Eurocombi-3 The Third European Symposium on Combinatorial Sciences. QSAR and Combinatorial Science, 2005, 24, 868-869.	1.4	0
365	QSAR & Combinatorial Science. QSAR and Combinatorial Science, 2005, 24, 201-202.	1.4	0
366	Creating chemical diversity space by scaffold decoration of dihydropyrimidines. Pure and Applied Chemistry, 2005, 77, 155-161.	1.9	36
367	Microwave-Enhanced and Metal-Catalyzed Functionalizations of the 4-Aryl-Dihydropyrimidone Template. ACS Combinatorial Science, 2005, 7, 574-583.	3.3	83
368	The Biginelli Reaction. , 2005, , 95-120.		52
369	The Application of "Click Chemistry―for the Decoration of 2(1H)-Pyrazinone Scaffold: Generation of Templates. ACS Combinatorial Science, 2005, 7, 490-502.	3.3	54
370	Microwave-Assisted Multistep Synthesis of Functionalized 4-Arylquinolin-2(1H)-ones Using Palladium-Catalyzed Cross-Coupling Chemistry. Journal of Organic Chemistry, 2005, 70, 3864-3870.	3.2	110
371	Heterogeneous Hydrogenation Reactions Using a Continuous Flow High Pressure Device. ACS Combinatorial Science, 2005, 7, 641-643.	3.3	68
372	Editorial:QSAR & Combinatorial Science– Facing the Challenges. QSAR and Combinatorial Science, 2004, 23, 3-4.	1.4	0
373	A Diversity-Oriented, Microwave-Assisted Synthesis of 4-oxo and 4-chloropyrido[2,3-d]pyrimidin-7(8H)-ones. QSAR and Combinatorial Science, 2004, 23, 836-849.	1.4	15
374	Combinatorial Synthesis of Functionalized 1,3-Thiazine Libraries Using a Combined Polymer-Supported Reagent/Catch-and-Release Strategy. Angewandte Chemie - International Edition, 2004, 43, 621-624.	13.8	34
375	Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie - International Edition, 2004, 43, 6250-6284.	13.8	3,145
376	Microwave-Assisted Negishi and Kumada Cross-Coupling Reactions of Aryl Chlorides ChemInform, 2004, 35, no.	0.0	1
377	Tunable Carbon—Carbon and Carbon—Sulfur Cross-Coupling of Boronic Acids with 3,4-Dihydropyrimidine-2-thiones ChemInform, 2004, 35, no.	0.0	0
378	Solid- and Solution-Phase Synthesis of Bioactive Dihydropyrimidines. ChemInform, 2004, 35, no.	0.0	2

#	Article	IF	CITATIONS
379	Synthesis of Functionalized 1,3-Thiazine Libraries Combining Solid-Phase Synthesis and Post-Cleavage Modification Methods. Chemistry - A European Journal, 2004, 10, 2919-2926.	3.3	17
380	2,6,9-Trioxabicyclo[3.3.1]nona-3,7-dien-4-oyl and tetraoxaadamantan-9-oyl functionalized aromatic di- and triamines: synthesis, stereochemistry and complexation. Tetrahedron, 2004, 60, 2857-2867.	1.9	12
381	Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. Tetrahedron, 2004, 60, 8633-8644.	1.9	173
382	Solid- and solution-phase synthesis of bioactive dihydropyrimidines. Pure and Applied Chemistry, 2004, 76, 1017-1024.	1.9	93
383	The effect of pressure on microwave-enhanced Diels–Alder reactions. A case study. Organic and Biomolecular Chemistry, 2004, 2, 154-156.	2.8	37
384	Microwave-Assisted Synthesis Involving Immobilized Catalysts. Topics in Current Chemistry, 2004, 242, 177-208.	4.0	45
385	Macrocyclic Systems Containing 2,6,9-Trioxabicyclo[3.3.1]-nona-3,7-dienes as Chiral Spacer Groups: Synthesis, Stereochemical Features and Preliminary Complexation Properties. Supramolecular Chemistry, 2004, 16, 121-127.	1.2	18
386	Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantiopure 2,2′-diarylated 1,1′-binaphthyls. Chemical Communications, 2004, , 2606-2607.	4.1	42
387	Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chloridesElectronic supplementary information (ESI) available: Experimental procedures and spectral data. See http://www.rsc.org/suppdata/cc/b3/b313887a/. Chemical Communications, 2004, , 564.	4.1	87
388	Tunable Carbonâ^'Carbon and Carbonâ^'Sulfur Cross-Coupling of Boronic Acids with 3,4-Dihydropyrimidine-2-thiones. Organic Letters, 2004, 6, 771-774.	4.6	154
389	Combining Biginelli Multicomponent and Click Chemistry:Â Generation of 6-(1,2,3-Triazol-1-yl)-Dihydropyrimidone Libraries. ACS Combinatorial Science, 2004, 6, 884-892.	3.3	132
390	Microwave-enhanced transition metal-catalyzed decoration of 2(1H)-pyrazinone scaffolds. Molecular Diversity, 2003, 7, 125-134.	3.9	51
391	A one-pot microwave-assisted synthesis of pyrido[2,3-d]pyrimidines. Molecular Diversity, 2003, 7, 153-159.	3.9	23
392	Microwave-assisted scavenging of electrophiles utilizing polymer-supported sequestration reagents. Application to the synthesis of N3-acylated dihydropyrimidine libraries. Molecular Diversity, 2003, 7, 229-245.	3.9	24
393	Editorial. Molecular Diversity, 2003, 7, 95.	3.9	4
394	Synthesis and Complexation Properties of Some Novel Lariat-Crown Ethers. Monatshefte Für Chemie, 2003, 134, 509-518.	1.8	14
395	Traceless Solid-Phase Synthesis of Bicyclic Dihydropyrimidones Using Multidirectional Cyclization Cleavage ChemInform, 2003, 34, no.	0.0	0
396	Rapid Formation of Triarylphosphines by Microwave-Assisted Transition Metal Catalyzed C—P Cross-Coupling Reactions ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
397	Synthesis and Complexation Properties of Some Novel Lariat-Crown Ethers ChemInform, 2003, 34, no.	0.0	0
398	Preparation of Thioamide Building Blocks via Microwave-Promoted Three-Component Kindler Reactions ChemInform, 2003, 34, no.	0.0	0
399	Enantioseparation of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidones on chiral stationary phases based on 3,5-dimethylanilides ofN-(4-alkylamino-3,5-dinitro)benzoyl L-?-amino acids. Chirality, 2003, 15, 550-557.	2.6	15
400	A three-component synthesis of pyrido[2,3-d]pyrimidines. Tetrahedron Letters, 2003, 44, 5385-5387.	1.4	81
401	The Generation of Dihydropyrimidine Libraries Utilizing Biginelli Multicomponent Chemistry. QSAR and Combinatorial Science, 2003, 22, 630-645.	1.4	146
402	Scalability of Microwave-Assisted Organic Synthesis. From Single-Mode to Multimode Parallel Batch Reactors. Organic Process Research and Development, 2003, 7, 707-716.	2.7	158
403	An Exploratory Study on Microwave-Assisted Solid-Phase Dielsâ^'Alder Reactions of 2(1H)-Pyrazinones: the Elaboration of a New Tailor-Made Acid-Labile Linker. ACS Combinatorial Science, 2003, 5, 560-568.	3.3	40
404	Microwave-Assisted Ring-Closing Metathesis Revisited. On the Question of the Nonthermal Microwave Effect. Journal of Organic Chemistry, 2003, 68, 9136-9139.	3.2	131
405	High-Throughput Synthesis ofN3-Acylated Dihydropyrimidines Combining Microwave-Assisted Synthesis and Scavenging Techniques. Organic Letters, 2003, 5, 1205-1208.	4.6	120
406	Preparation of Thioamide Building Blocks via Microwave-Promoted Three-Component Kindler Reactions. ACS Combinatorial Science, 2003, 5, 145-148.	3.3	88
407	Building Dihydropyrimidine Libraries via Microwave-Assisted Biginelli Multicomponent Reactions. Methods in Enzymology, 2003, 369, 197-223.	1.0	26
408	Synthesis and Host-abilities of some New Corands Bearing Uncommon Chiral Spacer Units. Supramolecular Chemistry, 2003, 15, 375-383.	1.2	6
409	Rapid Microwave-Assisted Protocols for the Generation and Decoration of Privileged Heterocyclic Scaffolds. , 2003, , 52.		0
410	Solution and Solid-Phase Generation of Multifunctionalized 2-Amino-6-H-1,3-Thiazine Libraries. , 2003, , 197.		0
411	Selective N1-Alkylation of 3,4-Dihydropyrimidin-2(1H)-ones Using Mitsunobu-Type Conditions. Synlett, 2002, 2002, 1901-1903.	1.8	2
412	High-Speed Microwave-Promoted Hetero-Dielsâ^'Alder Reactions of 2(1H)-Pyrazinones in Ionic Liquid Doped Solvents. Journal of Organic Chemistry, 2002, 67, 7904-7907.	3.2	95
413	Rapid Formation of Triarylphosphines by Microwave-Assisted Transition Metal-Catalyzed Câ^'P Cross-Coupling Reactions. Organic Letters, 2002, 4, 3541-3543.	4.6	77
414	Rapid Parallel Synthesis of Polymer-Bound Enones Utilizing Microwave-Assisted Solid-Phase Chemistry. ACS Combinatorial Science, 2002, 4, 154-161.	3.3	89

#	Article	IF	CITATIONS
415	Traceless Solid-Phase Synthesis of Bicyclic Dihydropyrimidones Using Multidirectional Cyclization Cleavage. ACS Combinatorial Science, 2002, 4, 501-510.	3.3	87
416	Synthesis and chemical reactivity of methoxycarbonyl-1,3-dioxinyl(pivaloyl)ketene—a persistent α-oxoketene. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 599-605.	1.3	16
417	2,6,9-Trioxabicyclo[3.3.1]nona-3,7-dienes and 2,4,6,8-Tetraoxaadamantanes: Novel Chiral Spacer Units in Macrocyclic Polyethers. Supramolecular Chemistry, 2002, 14, 383-397.	1.2	16
418	High-speed combinatorial synthesis utilizing microwave irradiation. Current Opinion in Chemical Biology, 2002, 6, 314-320.	6.1	265
419	Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron, 2002, 58, 3177-3183.	1.9	86
420	A tandem intramolecular Michael-addition/elimination sequence in dihydropyrimidone to quinoline rearrangements. Arkivoc, 2002, 2002, 71-79.	0.5	18
421	A Tribute to Prof. Albert Padwa. Arkivoc, 2002, 2002, 1-4.	0.5	0
422	Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation. ACS Combinatorial Science, 2001, 3, 624-630.	3.3	233
423	Iminopropadienethiones, Arâ^'NCCCS. Journal of Organic Chemistry, 2001, 66, 1827-1831.	3.2	15
424	Absolute Configuration in 4-Alkyl- and 4-Aryl-3,4-dihydro-2(1H)-pyrimidones:  A Combined Theoretical and Experimental Investigation. Journal of Organic Chemistry, 2001, 66, 6685-6694.	3.2	39
425	Microwave-mediated regioselective synthesis of novel pyrimido[1,2- a]pyrimidines under solvent-free conditions. Tetrahedron, 2001, 57, 1785-1791.	1.9	58
426	The effect of microwave irradiation on carbodiimide-mediated esterifications on solid support. Tetrahedron, 2001, 57, 3915-3920.	1.9	64
427	High-speed microwave-promoted Mitsunobu inversions. Application toward the deracemization of sulcatol. Tetrahedron Letters, 2001, 42, 6283-6286.	1.4	57
428	On the reaction of 3,4â€dihydropyrimidones with nitric acid. Preparation and xâ€ray structure analysis of a stable nitrolic acid. Journal of Heterocyclic Chemistry, 2001, 38, 1345-1352.	2.6	57
429	High-Speed Couplings and Cleavages in Microwave-Heated, Solid-Phase Reactions at High Temperatures. European Journal of Organic Chemistry, 2001, 2001, 919-925.	2.4	91
430	Preparation and Chemistry of an Unexpectedly Stable α-Oxoketeneâ^'Pyridine Zwitterion, 2,2-Bis(tert-butylcarbonyl)-1-[4-(dimethylamino)pyridinio]ethen-1-olate. European Journal of Organic Chemistry, 2001, 2001, 1315-1322.	2.4	20
431	Chiral separation of pharmacologically active dihydropyrimidinones with carboxymethyl- β-cyclodextrin. Electrophoresis, 2001, 22, 3198-3202.	2.4	11
432	Fluorocontaining 1,3-Dicarbonyl Compounds in the Synthesis of Pyrimidine Derivatives. Russian Journal of Organic Chemistry, 2001, 37, 869-880.	0.8	27

#	Article	IF	CITATIONS
433	Solid-Phase Synthesis of Dihydropyrimidones via N-Acyliminium Ion-Based α-Ureidoalkylations. Synlett, 2001, 2001, 0741-0744.	1.8	34
434	Biginelli condensations of fluorinated 3-oxo esters and 1,3-diketones. Journal of Fluorine Chemistry, 2000, 103, 17-23.	1.7	75
435	X-Ray Structure, Conformational Analysis, Enantioseparation, and Determination of Absolute Configuration of the Mitotic Kinesin Eg5 Inhibitor Monastrol. Tetrahedron, 2000, 56, 1859-1862.	1.9	161
436	Synthesis of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1 H)-ones via enzymatic resolution: preparation of the antihypertensive agent (R)-SQ 32926 â€Synthesis and reactions of Biginelli compounds, part 20; for part 19, see: Kappe, C. O.; Shishkin, O. V.; Uray, G.; Verdino, P. Tetrahedron 2000, 56, 1859–1862. â€. Tetrahedron: Asymmetry, 2000, 11, 1449-1453.	1.8	59
437	Highly versatile solid phase synthesis of biofunctional 4-aryl-3,4-dihydropyrimidines using resin-bound isothiourea building blocks and multidirectional resin cleavage. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 49-51.	2.2	93
438	Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 2000, 35, 1043-1052.	5.5	1,249
439	Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Accounts of Chemical Research, 2000, 33, 879-888.	15.6	1,026
440	Synthesis and reactions of Biginelli-compounds. Part 23. Chemoenzymatic syntheses of enanttiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 4382-4389.	1.3	51
441	Design and Synthesis of a Conformationally Rigid Mimic of the Dihydropyrimidine Calcium Channel Modulator SQ 32,926. Molecules, 2000, 5, 227-239.	3.8	94
442	Ab Initio and Density Functional Calculations on the Pericyclic vs Pseudopericyclic Mode of Conjugated Nitrile Ylide 1,5-Electrocyclizations. Journal of Organic Chemistry, 2000, 65, 47-53.	3.2	54
443	Rhodium(II)-Catalyzed Equilibration of Push-Pull Carbonyl and Ammonium Ylides. A Computationally Based Understanding of the Reaction Pathway. Journal of the American Chemical Society, 2000, 122, 8155-8167.	13.7	93
444	Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements. Perkin Transactions II RSC, 2000, , 1363-1368.	1.1	84
445	Perfluorinated Acyl(aroyl)pyruvates as Building Blocks for the Synthesis of Heterocycles. Heterocycles, 2000, 52, 1411.	0.7	19
446	Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol. Synthesis, 1999, 1999, 1799-1803.	2.3	227
447	Determination of absolute configuration in 4-aryl-3,4-dihydro-2(1H)-pyrimidones by high performance liquid chromatography and CD spectroscopy. , 1999, 11, 659-662.		32
448	Synthesis and reactions of Biginelli-compounds. Part 14.1 A rhodium-induced cyclization–cycloaddition sequence for the construction of conformationally rigid calcium channel modulators of the dihydropyrimidine type. Journal of the Chemical Society Perkin Transactions 1, 1999, 307-314.	0.9	29
449	Isolation, Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl-stabilized Hexahydropyrimidine — An Intermediate in the Biginelli Reaction. Heterocycles, 1999, 51, 77.	0.7	43
450	On the Reaction of Dipivaloylketene Dimer with Oximes and Hydrazines – Synthesis of Tetraoxaadamantanes. Heterocycles, 1998, 48, 1841.	0.7	7

#	Article	IF	CITATIONS
451	Ring conformation and ester orientation in dihydropyrimidinecarboxylates: a combined theoretical (ab initio, density functional) and X-ray crystallographic study. Computational and Theoretical Chemistry, 1998, 432, 219-228.	1.5	28
452	A Triple Cascade Sequence as a Strategy for the Construction of the Erythrinane Skeleton. Journal of Organic Chemistry, 1998, 63, 1144-1155.	3.2	77
453	Pericyclic versus Pseudopericyclic 1,5-Electrocyclization of Iminodiazomethanes. An ab Initio and Density Functional Theory Study. Journal of Organic Chemistry, 1998, 63, 5801-5805.	3.2	83
454	Carboxy(vinyl)ketene intermediates in the thermolysis of methylthio- and methoxy-substituted Meldrum's acid derivatives. Journal of the Chemical Society Perkin Transactions II, 1998, , 493-498.	0.9	9
455	4-Aryldihydropyrimidines via the Biginelli Condensation: Aza-Analogs of Nifedipine-Type Calcium Channel Modulators. Molecules, 1998, 3, 1-9.	3.8	141
456	Polyphosphate Ester-Mediated Synthesis of Dihydropyrimidines. Improved Conditions for the Biginelli Reaction. Synlett, 1998, 1998, 718-720.	1.8	181
457	Synthesis and Aromatization of Dihydropyrimidines Structurally Related to Calcium Channel Modulators of the Nifedipine-Type. Heterocycles, 1997, 45, 1967.	0.7	84
458	Studies Dealing with the Cycloaddition/Ring Opening/Elimination Sequence of 2-Amino-Substituted Isobenzofuransâ€. Journal of Organic Chemistry, 1997, 62, 2786-2797.	3.2	30
459	A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for anN-Acyliminium Ion Intermediate1. Journal of Organic Chemistry, 1997, 62, 7201-7204.	3.2	414
460	Dipolar Cycloaddition Reactions of Dihydropyrimidine-Fused Mesomeric Betaines. An Approach toward Conformationally Restricted Dihydropyrimidine Derivatives1. Journal of Organic Chemistry, 1997, 62, 3109-3118.	3.2	49
461	Separation of enantiomers of 4-aryldihydropyrimidines by direct enantioselective HPLC. A critical comparison of chiral stationary phases. Tetrahedron: Asymmetry, 1997, 8, 2057-2067.	1.8	62
462	Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53, 2803-2816.	1.9	387
463	Synthetic applications of furan Diels-Alder chemistry. Tetrahedron, 1997, 53, 14179-14233.	1.9	425
464	Ammonium ylide versus carbonyl ylide formation in the rhodium(II)-catalyzed decomposition of diazoacetylureas. Generation and X-ray structure of a stable five-membered N-acyl ammonium ylide. Tetrahedron Letters, 1997, 38, 3323-3326.	1.4	20
465	A Facile and Efficient Synthesis of Thieno[2,3-c]furans and Furo[3,4-b]indoles via a Pummerer-Induced Cyclization Reaction. Journal of Organic Chemistry, 1996, 61, 6166-6174.	3.2	42
466	Tandem Dielsâ^'AlderN-Acyliminium Ion Cyclization Reactions. A New Entry into the Erythrinane Skeleton. Journal of Organic Chemistry, 1996, 61, 4888-4889.	3.2	41
467	Chapter 1 Geminal diazides of heterocycles. Progress in Heterocyclic Chemistry, 1996, 8, 1-13.	0.5	5
468	Tandem Pummererâ^'Dielsâ^'Alder Reaction Sequence. A Novel Cascade Process for the Preparation of 1-AryInaphthalene Lignansâ€. Journal of Organic Chemistry, 1996, 61, 3706-3714.	3.2	56

#	Article	IF	CITATIONS
469	Reactions of cyclic oxalyl compounds, 37. Substituent effects on the site of nucleophilic attack at 1H-pyrrole-2,3-diones. Liebigs Annalen, 1995, 1995, 537-543.	0.8	15
470	Generation and Subsequent Cycloaddition Chemistry of α-Amino Isobenzofurans Formed by Cationic Cyclization. Tetrahedron Letters, 1995, 36, 9285-9288.	1.4	21
471	The use of 1,2-shifts in carbenes and nitrenes in the generation of novel heterocumulenes. Pure and Applied Chemistry, 1995, 67, 749-754.	1.9	8
472	Acetylketene: Conformational Isomerism and Photochemistry. Matrix Isolation Infrared and Ab Initio Studies. Journal of Organic Chemistry, 1995, 60, 1686-1695.	3.2	63
473	A convenient de novo synthesis of functionalised 2,4,6,8-tetraoxaadamantanes. Journal of the Chemical Society Chemical Communications, 1995, , 797.	2.0	13
474	An Improved Synthesis of 5-Alkyl-2,3-dihydrofuran-2,3-diones. Heterocycles, 1994, 38, 779.	0.7	10
475	Synthesis and Flash Vacuum Pyrolysis of Isoxazolo- and Isothiazolo[5,4-d]pyrimidines. Heterocycles, 1994, 37, 1615.	0.7	9
476	The Formation of Thioacylthioketenes by Flash Vacuum Pyrolysis of 1,2-Dithiole Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 485-486.	1.6	0
477	Conformation and reactivity of ?-oxo-ketenes:Ab initio and semiempirical (AM1, PM3) calculations. Journal of Computational Chemistry, 1994, 15, 132-143.	3.3	15
478	Thioacylthioketenes by pyrolysis of 1,3-dithiethanes and 1,2-dithiole derivatives. Journal of the Chemical Society Perkin Transactions II, 1994, , 351.	0.9	10
479	Iminoethenethiones, RN:C:C:S: Characterization by Neutralization-Reionization Mass Spectrometry and G2(MP2) Theory. Journal of the American Chemical Society, 1994, 116, 2005-2013.	13.7	45
480	Reaktionen cyclischer Oxalylverbindungen, 35. Untersuchung von Reaktionsmechanismen durch Isotopenmarkierung, 11. Zur Umsetzung von 4â€Benzoylâ€5â€phenylfuranâ€2,3â€dion mit Sâ€Heterocumulene PrÃ p arative und mechanistische Aspekte. Chemische Berichte, 1993, 126, 2061-2067.	en â £"	15
481	Direct Observation and Trapping of a Heterocyclic αâ€Oxo Ketene: 3â€Carbonylâ€1,3â€dihydroâ€1â€methylâ€2 <i>H</i> â€indolâ€2â€one. Chemische Berichte, 1993, 126, 2357-2	360. ²	13
482	Matrix isolation and infrared spectrum of thioformyl cyanide. Tetrahedron Letters, 1993, 34, 6623-6626.	1.4	13
483	[2+4] Cycloaddition reactions of neat dipivaloylketene. Monatshefte Für Chemie, 1993, 124, 1133-1141.	1.8	13
484	100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49, 6937-6963.	1.9	1,158
485	Reactions of dipivaloylketene dimer with nucleophiles: new access to the 2,6,9-trioxabicyclo[3.3.1]nona-3,7-diene ring system (bridged bis-dioxines). Journal of Organic Chemistry, 1993, 58, 3361-3367.	3.2	27
486	On the Thermal Fragmentation of 3-Methyl-1-phenylpyrazole-4,5-dione Acta Chemica Scandinavica, 1993, 47, 940-942.	0.7	8

#	Article	IF	CITATIONS
487	Dipivaloylketene and its dimers. [2+4] Versus [2+2] cycloaddition reactions of .alphaoxo ketenes. Journal of Organic Chemistry, 1992, 57, 7078-7083.	3.2	64
488	A nitroketene to nitrile oxide transformation. Journal of the Chemical Society Chemical Communications, 1992, , 485.	2.0	16
489	Methyleneketene–imidoylketene–oxoketenimine rearrangements. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	39
490	Iminopropadienones, RNî€Cî€Cî€Cî€O: syntheses and reactions. Journal of the Chemical Society Chemical Communications, 1992, , 1571-1573.	2.0	30
491	Imidoylketene–azetin-2-one–oxoketenimine rearrangement. Journal of the Chemical Society Chemical Communications, 1992, , 488-490.	2.0	26
492	A novel and convenient approach to functionalized 2,6,9-trioxabicyclo[3.3.1]nona-3,7-dienes (bridged) Tj ETQq0 () 0 rgBT /(1.4	Overlock 10
493	Synthesis and reactions of biginelli compounds â^'5. Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid Tetrahedron, 1992, 48, 5473-5480.	1.9	64
494	Direct Observation of Benzoylketenes Acta Chemica Scandinavica, 1992, 46, 683-685.	0.7	16
495	Thermolysis and photolysis of 6-diazidomethyl-1,2,3,4-tetrahydro-2-oxopyrimidine-5-carboxylates. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1342-1344.	0.9	19
496	Dipivaloylketene and its unusual dimerization to a permanently stable .alphaoxoketene. Journal of the American Chemical Society, 1991, 113, 4234-4237.	13.7	45
497	Crossâ€conjugated and pseudoâ€crossâ€conjugated mesomeric betaines, XVIII: Bicyclic mesoionic pyrimidines with cardiovascular activity. Archiv Der Pharmazie, 1991, 324, 863-866.	4.1	22
498	On the Reaction of 2,2,6,6-Tetramethyl-3,5-heptanedione ("Dipivaloylmethane") with Oxalyl Chloride. Heterocycles, 1991, 32, 669.	0.7	25
499	Synthesis and reactions of biginelli compounds, 3. Unexpected formation of nitriles from reactions of 6â€(dibromomethyl)â€1,2,3,4â€ŧetrahydroâ€2â€oxoâ€5â€pyrimidinecarboxylates with sodium azide. Liebigs Anr Der Chemie, 1990, 1990, 505-507.	nadea	23
500	Synthesis and Reactions of Biginelli-Compounds, Part II. Nitration of 6-Methyl-2-oxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylates. Heterocycles, 1989, 29, 761.	0.7	17
501	Synthesis and reactions of "biginelliâ€compounds― Part I. Journal of Heterocyclic Chemistry, 1989, 26, 55-64.	2.6	117
502	Synthesis of substituted 3-pyridinecarbonitriles with potential biological activity. Monatshefte Für Chemie, 1989, 120, 1095-1100.	1.8	16
503	Quinolizines and indolizines. Part 16 . Synthesis of pyrrolo[3,2,1â€ <i>ij</i>]quinolinâ€4â€ones with potential fungicidal activity. Journal of Heterocyclic Chemistry, 1989, 26, 1555-1560.	2.6	19
504	A convenient synthesis of functionalized 1 <i>H</i> â€pyrimidineâ€2â€thiones. Journal of Heterocyclic Chemistry, 1988, 25, 1419-1422.	2.6	50

0

#	Article	IF	CITATIONS
505	Microwave-Assisted Solid-Phase Synthesis. , 0, , 177-221.		8

506 Experimental Protocols. , 0, , 203-290.