Derrick L J Clive

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609302/publications.pdf

Version: 2024-02-01

DEDDICK LICUVE

#	Article	IF	CITATIONS
1	A Tin Hydride Designed To Facilitate Removal of Tin Species from Products of Stannane-Mediated Radical Reactions. Journal of Organic Chemistry, 2002, 67, 1192-1198.	3.2	75
2	Intramolecular Conjugate Displacement:Â A General Route to Hexahydroquinolizines, Hexahydroindolizines, and Related [m,n,0]-Bicyclic Structures with Nitrogen at a Bridgehead. Journal of Organic Chemistry, 2007, 72, 5608-5617.	3.2	60
3	Synthetic Chemistry of Halichlorine and the Pinnaic Acids. Chemical Reviews, 2005, 105, 4483-4514.	47.7	59
4	Synthesis of (±)-Hamigeran B, (â^')-Hamigeran B, and (±)-1-epi-Hamigeran B: Use of Bulky Silyl Groups to Protect a Benzylic Carbonâ^'Oxygen Bond from Hydrogenolysis. Journal of Organic Chemistry, 2004, 69, 2773-2784.	3.2	47
5	Formal Radical Cyclization onto Benzene Rings:Â A General Method and Its Use in the Synthesis ofent-Nocardione A. Journal of Organic Chemistry, 2004, 69, 3282-3293.	3.2	46
6	Synthesis of a 6-azaspiro[4.5]decane related to halichlorine and the pinnaic acids. Tetrahedron Letters, 1999, 40, 8503-8507.	1.4	45
7	Synthesis of biaryls by intramolecular radical transfer: use of phosphinates. Tetrahedron Letters, 2000, 41, 1315-1319.	1.4	45
8	Synthesis of Biaryls by Intramolecular Radical Transfer in Phosphinates. Journal of Organic Chemistry, 2001, 66, 6083-6091.	3.2	45
9	Stereospecific Total Synthesis of the Antiviral Agent Hamigeran B—Use of Large Silyl Groups to Enforce Facial Selectivity and to Suppress Hydrogenolysis. Angewandte Chemie - International Edition, 2003, 42, 3406-3409.	13.8	45
10	Total Synthesis of the Marine Alkaloid Halichlorine: Development and Use of a General Route to Chiral Piperidines. Journal of Organic Chemistry, 2009, 74, 7417-7428.	3.2	44
11	Radical Allylations with Trimethyl[2- [(tributylstannyl)methyl]-2-propenyl]silane or Trimethyl[2-[(triphenylstannyl)- methyl]-2-propenyl]silane. Journal of Organic Chemistry, 1997, 62, 7028-7032.	3.2	41
12	Synthesis of the Angiotensin-Converting Enzyme Inhibitors (â^')-A58365A and (â^')-A58365B from a Common Intermediate. Journal of Organic Chemistry, 1999, 64, 1447-1454.	3.2	39
13	Preparation of Polycyclic Systems by Sequential 5-Exo-DigonalRadical Cyclization, 1,5-Hydrogen Transfer from Silicon, and 5-Endo-TrigonalCyclization. Journal of Organic Chemistry, 2001, 66, 1966-1983.	3.2	39
14	Formation of Benzo-Fused Carbocycles by Formal Radical Cyclization onto an Aromatic Ring. Organic Letters, 2007, 9, 2677-2680.	4.6	39
15	A route to linear, bridged, or spiro polycyclic compounds: sequential use of the intermolecular Diels-Alder reaction and radical cyclization. Journal of Organic Chemistry, 1990, 55, 1786-1792.	3.2	37
16	Conversion of some substituted phenols to the corresponding masked thiophenols, synthesis of a dinickel(II) dithiolate macrocyclic complex and isolation of some metal- and ligand-based oxidation products. Dalton Transactions RSC, 2000, , 3113-3121.	2.3	37
17	Applications of 5-Endo-trigonal Cyclization:  Construction of Compounds Relevant to the Synthesis of Prostaglandins and Methyl epi-Jasmonate. Journal of Organic Chemistry, 1999, 64, 2776-2788.	3.2	35
18	Asymmetric Synthesis of the ABC-Ring System of the Antitumor Antibiotic MPC1001. Journal of Organic Chemistry, 2009, 74, 513-519.	3.2	35

#	Article	IF	CITATIONS
19	Synthesis of 2â€~,3â€~-Didehydro-2â€~,3â€~-dideoxynucleosides by Reaction of 5â€~-Protected Nucleoside 2â€~,3â€~-Dimesylates with Telluride Dianion: A General Route fromCisVicinal Diols to Olefins. Journal of Organic Chemistry, 1996, 61, 7426-7437.	3.2	34
20	Synthesis of (±)-Puraquinonic Acid: An Inducer of Cell Differentiation. Journal of Organic Chemistry, 2001, 66, 954-961.	3.2	33
21	Carbocyclization by Radical Closure ontoO-Trityl Oximes:Â Dramatic Effect of Diphenyl Diselenide. Journal of the American Chemical Society, 2007, 129, 2713-2717.	13.7	33
22	Reaction of olefins with benzeneselenenyl bromide and silver trifluoroacetate: a new method for access to the selenoxide fragmentation reaction. Journal of the Chemical Society Chemical Communications, 1974, , 100.	2.0	32
23	Synthetic studies on calicheamicin γ1l—synthesis of(â^)-calicheamicinone and models representing the four sugars and the aromatic system. Chemical Communications, 2000, , 1341-1350.	4.1	32
24	Conversion of Furans into γ-Hydroxybutenolides: Use of Sodium Chlorite. Journal of Organic Chemistry, 2005, 70, 3318-3320.	3.2	32
25	Derivatized Amino Acids Relevant to Native Peptide Synthesis by Chemical Ligation and Acyl Transfer. Journal of Organic Chemistry, 2003, 68, 9247-9254.	3.2	31
26	Synthesis of Optically Pure (+)-Puraquinonic Acid and Assignment of Absolute Configuration to Natural (â^')-Puraquinonic Acid. Use of Radical Cyclization for Asymmetric Generation of a Quaternary Center. Journal of Organic Chemistry, 2004, 69, 4116-4125.	3.2	31
27	Formal Synthesis ofd-myo-Inositol 1,4,5-Tris(dihydrogen phosphate):Â Cyclization by an Unusual Ene Reaction and Use of the Bu2SnCl2/Bu2SnH2Reagent for Generating an Equatorial Alcohol. Journal of Organic Chemistry, 1999, 64, 4397-4410.	3.2	30
28	Synthesis of the Potent Anticancer Agents Ottelione A and Ottelione B in Both Racemic and Natural Optically Pure Forms. Journal of Organic Chemistry, 2008, 73, 3078-3087.	3.2	29
29	Model Studies and First Synthesis of the Antifungal and Antibacterial Agent Cladobotryal. Journal of Organic Chemistry, 2004, 69, 1872-1879.	3.2	28
30	Synthesis of (+)-puraquinonic acid. Chemical Communications, 2002, , 2380-2381.	4.1	27
31	Allâ€Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles. Angewandte Chemie - International Edition, 2007, 46, 9295-9297.	13.8	27
32	Synthesis of Dihydrooxepin Models Related to the Antitumor Antibiotic MPC1001. Organic Letters, 2007, 9, 2939-2941.	4.6	27
33	Synthesis of (â^')-conocarpan by two routes based on radical cyclization and establishment of its absolute configuration. Organic and Biomolecular Chemistry, 2008, 6, 1831.	2.8	27
34	Formation of Carbocycles by Intramolecular Conjugate Displacement: Scope and Mechanistic Insights. Journal of the American Chemical Society, 2009, 131, 6003-6012.	13.7	25
35	Synthesis of heterocyclic compounds related to fredericamycin A – the cyclopent[<i>g</i>]isoquinoline system. Journal of Heterocyclic Chemistry, 1987, 24, 509-511.	2.6	24
36	Synthesis of (+)-Juruenolide C:  Use of Sequential 5-Exo-Digonal Radical Cyclization, 1,5-Intramolecular Hydrogen Transfer, and 5-Endo-Trigonal Cyclization. Journal of Organic Chemistry, 2001, 66, 4841-4844.	3.2	23

#	Article	IF	CITATIONS
37	A general method for making bicyclic compounds with nitrogen at a bridgehead—application to the halichlorine spiro subunit. Chemical Communications, 2005, , 906-908.	4.1	23
38	Formation of Optically Pure Cyclic Amines by Intramolecular Conjugate Displacement. Journal of Organic Chemistry, 2012, 77, 3348-3364.	3.2	23
39	Synthetic Studies on CP-225,917 and CP-263,114: Access to Advanced Tetracyclic Systems by Intramolecular Conjugate Displacement and [2,3]-Wittig Rearrangement. Journal of Organic Chemistry, 2013, 78, 996-1013.	3.2	23
40	An approach to the anhydride unit of CP-225,917 and CP-263,114. Tetrahedron Letters, 2000, 41, 6259-6263.	1.4	21
41	Studies related to furopyridinone antibiotics. Synthesis of 2-epi-CJ-16,170. Tetrahedron, 2002, 58, 10243-10250.	1.9	21
42	Synthesis of the substituted spiro segment of halichlorine––use of radical cyclization and stereospecific cuprate addition to an l±,l²-unsaturated lactam. Tetrahedron Letters, 2004, 45, 2879-2881.	1.4	21
43	Synthesis of the Ottelionesâ€A and B: Use of a Cyclopropyl Group as Both a Steric Shield and a Vinyl Equivalent. Angewandte Chemie - International Edition, 2007, 46, 3738-3740.	13.8	21
44	Conversion of Weinreb Amides into Benzene Rings Incorporating the Amide Carbonyl Carbon. Journal of Organic Chemistry, 2009, 74, 1685-1690.	3.2	21
45	Conversion of 1,4-Diketones intopara-Disubstituted Benzenes. Journal of Organic Chemistry, 2010, 75, 8024-8038.	3.2	21
46	Preparation of α-(2,2-Diphenylhydrazino)lactones and Related Compounds by Radical Cyclization: Use of Glyoxylic Acid Hydrazone Derivatives. Journal of Organic Chemistry, 2001, 66, 1233-1241.	3.2	20
47	Synthesis of a spirocyclic amine related to the marine natural products halichlorine and pinnaic acid. Tetrahedron Letters, 2005, 46, 2853-2855.	1.4	20
48	SYNTHESIS OF THE HAMIGERANS. A REVIEW. Organic Preparations and Procedures International, 2005, 37, 1-35.	1.3	20
49	Rules for ring-fusion geometry and the preparation of trans- or cis-fused bicyclic compounds by radical closure. Journal of the Chemical Society Chemical Communications, 1987, , 353.	2.0	19
50	Synthesis of Diverse 2,3-Dihydroindoles, 1,2,3,4-Tetrahydroquinolines, and Benzo-Fused Azepines by Formal Radical Cyclization onto Aromatic Rings. Journal of Organic Chemistry, 2008, 73, 2330-2344.	3.2	19
51	Oxidation ofp-Aminophenols and Formal Radical Cyclization onto Benzene Rings:  Formation of Benzo-Fused Nitrogen Heterocyclesâ€. Organic Letters, 2005, 7, 23-26.	4.6	17
52	A new method for synthesis of five-membered carbocycles: use of the ester enolate rearrangement in conjunction with radical cyclization. Journal of the Chemical Society Chemical Communications, 1986, , 588.	2.0	16
53	Tandem ring-closing metathesis–radical cyclization based on 4-(phenylseleno)butanal and methyl 3-(phenylseleno)propanoate — a route to bicyclic compounds. Chemical Communications, 2001, , 605-606.	4.1	16
54	Formal radical closure onto aromatic rings—a general route to carbocycles. Organic and Biomolecular Chemistry, 2008, 6, 2434.	2.8	16

#	Article	IF	CITATIONS
55	Formal radical cyclization onto benzene rings—a general method proceeding via cross-conjugated dienones. Chemical Communications, 2003, , 526-527.	4.1	15
56	Synthesis of Racemic Brevioxime and Related Model Compounds. Journal of Organic Chemistry, 2000, 65, 4923-4929.	3.2	14
57	Total synthesis of (â^')-conocarpan and assignment of the absolute configuration by chemical methods. Chemical Communications, 2007, , 2151-2153.	4.1	14
58	Asymmetric synthesis of carbocycles: use of intramolecular conjugate displacement. Organic and Biomolecular Chemistry, 2013, 11, 3128.	2.8	13
59	First synthesis of the antifungal and antibacterial agent cladobotryal. Chemical Communications, 2003, , 2062.	4.1	12
60	Synthesis of (+)-nocardione A ? use of formal radical cyclization onto a benzene ring. Chemical Communications, 2003, , 2464.	4.1	12
61	Synthesis of 2â€~,3â€~-Didehydro-2â€~,3â€~-dideoxynucleosides by Reaction of 5â€~-O-Protected Nucleoside 2â€~,3â€~-Dimesylates with Lithium Areneselenolates. Journal of Organic Chemistry, 1997, 62, 3751-3753.	3.2	11
62	Synthesis of the bicyclic dienone core of the antitumor agent ottelione B. Chemical Communications, 2002, , 1940-1941.	4.1	11
63	A Route to 1,4-Disubstituted Aromatics and Its Application to the Synthesis of the Antibiotic Culpin. Journal of Organic Chemistry, 2008, 73, 8016-8020.	3.2	11
64	Formation of Unusual Seven-Membered Heterocycles Incorporating Nitrogen and Sulfur by Intramolecular Conjugate Displacement. Journal of Organic Chemistry, 2010, 75, 7014-7017.	3.2	11
65	Synthesis of Substituted Resorcinol Monomethyl Ethers from 2-Bromo-3-methoxycyclohex-2-en-1-ones. Journal of Organic Chemistry, 2015, 80, 3211-3216.	3.2	10
66	Regioselective Oxidation of Polyalkoxy Naphthalenes: Formation of Naphthoquinones by Ammonium Cerium(IV) Nitrate Oxidation of Methoxymethyl Ethers. Israel Journal of Chemistry, 1991, 31, 211-213.	2.3	8
67	Oxidative Decarboxylation as a Route to Ketene Acetals:  Assignment of Relative and Absolute Stereochemistry to the Fungal Metabolite Benesudon by Total Synthesis. Organic Letters, 2007, 9, 5315-5317.	4.6	8
68	Formation of <i>meta</i> -Substituted Phenols by Transition Metal-Free Aromatization: Use of 2-Bromocyclohex-2-en-1-ones. Journal of Organic Chemistry, 2016, 81, 8470-8484.	3.2	8
69	Effect of aryl Substituents on Rate of Desulfonylation of Aryl Alkyl Sulfones: Superiority ofp-Fluorophenyl- and 2-Naphthyl Sulfones. Synthetic Communications, 2000, 30, 3267-3274.	2.1	7
70	Title is missing!. Angewandte Chemie, 2003, 115, 3528-3531.	2.0	7
71	Synthesis of the Core Structure of the Fungal Metabolite Benesudon:  Use of Oxidative Decarboxylation. Organic Letters, 2005, 7, 5581-5583.	4.6	7
72	Studies on the preparation of 3,4â€disubstituted 2â€methoxypyridines. Journal of Heterocyclic Chemistry, 1999, 36, 653-658.	2.6	6

#	Article	IF	CITATIONS
73	A Free Radical Method for Reduction of Cyclohexanones—Preferential Formation of Equatorial Alcohols. Synthetic Communications, 2003, 33, 1951-1961.	2.1	6
74	The Naturally Occurring Ketene Acetal Benesudon: Total Synthesis and Assignment of Relative and Absolute Stereochemistry. Journal of Organic Chemistry, 2008, 73, 6743-6752.	3.2	6
75	A Family of Routes to Substituted Phenols, Including Meta-Substituted Phenols. Journal of Organic Chemistry, 2015, 80, 12280-12287.	3.2	6
76	Formation of Enol Ethers by Radical Decarboxylation of α-Alkoxy β-Phenylthio Acids. Journal of Organic Chemistry, 2019, 84, 12542-12552.	3.2	6
77	Conversion of cycloalk-2-enones into 2-methylcycloalkane-1,3-diones—assessment of various Tamao-Fleming procedures and mechanistic insight into the use of the Me ₃ SiMe ₂ Si unit. Organic and Biomolecular Chemistry, 2016, 14, 1653-1664.	2.8	5
78	Formation of 3-Aminophenols from Cyclohexane-1,3-diones. Journal of Organic Chemistry, 2021, 86, 619-631.	3.2	5
79	Synthesis of (+)-Ipalbidine Based on 6-exo-trig Radical Cyclization of a β-Amino Radical. Journal of Organic Chemistry, 2015, 80, 10294-10298.	3.2	4
80	Formal Radical Cyclization onto Benzene Rings — A General Method Proceeding via Cross-Conjugated Dienones ChemInform, 2003, 34, no.	0.0	0
81	A Free Radical Method for Reduction of Cyclohexanones — Preferential Formation of Equatorial Alcohols ChemInform, 2003, 34, no.	0.0	0
82	Formal Radical Cyclization onto Benzene Rings: A General Method and Its Use in the Synthesis of ent-Nocardione A ChemInform, 2004, 35, no.	0.0	0
83	Conversion of Furans into γ-Hydroxybutenolides: Use of Sodium Chlorite ChemInform, 2005, 36, no.	0.0	0
84	Preparation of Polycyclic Systems by Sequential 5â€exoâ€Digonal Radical Cyclization, 1,5â€Hydrogen Transfer from Silicon, and 5â€endoâ€Trigonal Cyclization ChemInform, 2001, 32, 165-165.	0.0	0