David H Waldeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8608771/publications.pdf

Version: 2024-02-01

231 papers

13,691 citations

18436 62 h-index 26548 107 g-index

247 all docs

247 docs citations

times ranked

247

10852 citing authors

#	Article	IF	CITATIONS
1	Manipulating cobalt oxide on N-doped aligned electrospun carbon nanofibers towards instant electrochemical detection of dopamine secreted by living cells. Applied Surface Science, 2022, 577, 151912.	3.1	12
2	Theory of Chirality Induced Spin Selectivity: Progress and Challenges. Advanced Materials, 2022, 34, e2106629.	11.1	119
3	Room temperature doping of Ln ³⁺ in perovskite nanoparticles: a halide exchange mediated cation exchange approach. Nanoscale, 2022, 14, 6037-6051.	2.8	9
4	A Chirality-Based Quantum Leap. ACS Nano, 2022, 16, 4989-5035.	7.3	74
5	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3615-3625.	2.5	6
6	Electron transfer and spin–orbit coupling: Can nuclear motion lead to spin selective rates?. Journal of Chemical Physics, 2022, 156, 174113.	1.2	15
7	Chiral Induced Spin Selectivity and Its Implications for Biological Functions. Annual Review of Biophysics, 2022, 51, 99-114.	4.5	36
8	Evaluating Inter-Lanthanide Interactions in Co-Doped Zinc Sulfide Nanoparticles for Multiplex Assays. Journal of Physical Chemistry C, 2022, 126, 11723-11734.	1.5	5
9	Chirality enhances oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	20
10	Using C-Doping to Identify Photocatalytic Properties of Graphitic Carbon Nitride That Govern Antibacterial Efficacy. ACS ES&T Water, 2021, 1, 269-280.	2.3	23
11	Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr ₃) perovskite nanoparticles. Nanoscale, 2021, 13, 15248-15256.	2.8	20
12	The spin selectivity effect in chiral materials. APL Materials, 2021, 9, 040902.	2.2	88
13	Delocalization-Assisted Transport through Nucleic Acids in Molecular Junctions. Biochemistry, 2021, 60, 1368-1378.	1.2	4
14	Temperature Dependence of Charge and Spin Transfer in Azurin. Journal of Physical Chemistry C, 2021, 125, 9875-9883.	1.5	26
15	Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport. Nano Letters, 2021, 21, 6496-6503.	4.5	10
16	Enantiospecificity of Cysteine Adsorption on a Ferromagnetic Surface: Is It Kinetically or Thermodynamically Controlled?. Journal of Physical Chemistry Letters, 2021, 12, 7854-7858.	2.1	16
17	The Electron Spin as a Chiral Reagent. Angewandte Chemie - International Edition, 2020, 59, 1653-1658.	7.2	65
18	The Electron Spin as a Chiral Reagent. Angewandte Chemie, 2020, 132, 1670-1675.	1.6	8

#	Article	IF	CITATIONS
19	Increasing the Efficiency of Water Splitting through Spin Polarization Using Cobalt Oxide Thin Film Catalysts. Journal of Physical Chemistry C, 2020, 124, 22610-22618.	1.5	67
20	Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry. Accounts of Chemical Research, 2020, 53, 2659-2667.	7.6	102
21	Asymmetric reactions induced by electron spin polarization. Physical Chemistry Chemical Physics, 2020, 22, 21570-21582.	1.3	40
22	Magneto-Optical Detection of Photoinduced Magnetism <i>via</i> Chirality-Induced Spin Selectivity in 2D Chiral Hybrid Organic–Inorganic Perovskites. ACS Nano, 2020, 14, 10370-10375.	7.3	61
23	Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Letters, 2020, 20, 8675-8681.	4.5	30
24	Optimizing the Key Variables to Generate Host Sensitized Lanthanide Doped Semiconductor Nanoparticle Luminophores. Journal of Physical Chemistry C, 2020, 124, 26495-26517.	1.5	24
25	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. ACS Macro Letters, 2020, 9, 1403-1408.	2.3	8
26	Spin-Dependent Enantioselective Electropolymerization. Journal of Physical Chemistry C, 2020, 124, 20974-20980.	1.5	16
27	Elemental Core Level Shift in High Entropy Alloy Nanoparticles <i>via</i> X-ray Photoelectron Spectroscopy Analysis and First-Principles Calculation. ACS Nano, 2020, 14, 17704-17712.	7.3	48
28	Effect of Chiral Molecules on the Electron's Spin Wavefunction at Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 1550-1557.	2.1	65
29	Comment on "Spin-dependent electron transmission model for chiral molecules in mesoscopic devices― Physical Review B, 2020, 101, .	1.1	18
30	Chiral Molecules and the Spin Selectivity Effect. Journal of Physical Chemistry Letters, 2020, 11, 3660-3666.	2.1	126
31	Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. Applied Physics Letters, 2019, 115, .	1.5	25
32	Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS Nano, 2019, 13, 4928-4946.	7.3	82
33	Voltage-induced long-range coherent electron transfer through organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5931-5936.	3.3	39
34	Chiral molecules and the electron spin. Nature Reviews Chemistry, 2019, 3, 250-260.	13.8	462
35	Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557.	5.2	33
36	Nano Ferromagnetism: Single Domain $10\mathrm{nm}$ Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules (Small $1/2019$). Small, $2019, 15, 1970004$.	5.2	4

#	Article	IF	CITATIONS
37	Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of Physical Chemistry C, 2019, 123, 3024-3031.	1.5	92
38	Improving Solar Cell Performance Using Quantum Dot Triad Charge-Separation Engines. Journal of Physical Chemistry C, 2018, 122, 5924-5934.	1.5	10
39	Molecular Conductance of Nicked Nucleic Acid Duplexes. Journal of Physical Chemistry C, 2018, 122, 7533-7540.	1.5	4
40	Stable Lowâ€Current Electrodeposition of αâ€MnO ₂ on Superaligned Electrospun Carbon Nanofibers for Highâ€Performance Energy Storage. Small, 2018, 14, 1703237.	5.2	30
41	The Chiral Induced Spin Selectivity (CISS) Effect. Materials and Energy, 2018, , 235-270.	2.5	2
42	Imprinting Chirality onto the Electronic States of Colloidal Perovskite Nanoplatelets. Advanced Materials, 2018, 30, e1800097.	11.1	84
43	Directing Charge Transfer in Quantum Dot Assemblies. Accounts of Chemical Research, 2018, 51, 2565-2573.	7.6	24
44	What Is Beyond Charge Trapping in Semiconductor Nanoparticle Sensitized Dopant Photoluminescence?. Journal of Physical Chemistry Letters, 2018, 9, 6191-6197.	2.1	17
45	Antioxidant Capacity of Nitrogen and Sulfur Codoped Carbon Nanodots. ACS Applied Nano Materials, 2018, 1, 2699-2708.	2.4	46
46	Chirality and Spin: A Different Perspective on Enantioselective Interactions. Chimia, 2018, 72, 394.	0.3	18
47	Spinâ€Dependent Processes Measured without a Permanent Magnet. Advanced Materials, 2018, 30, e1707390.	11.1	27
48	Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Physical Chemistry Chemical Physics, 2018, 20, 1091-1097.	1.3	37
49	Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2474-2478.	3.3	155
50	A new approach towards spintronics–spintronics with no magnets. Journal of Physics Condensed Matter, 2017, 29, 103002.	0.7	76
51	Effects of the Backbone and Chemical Linker on the Molecular Conductance of Nucleic Acid Duplexes. Journal of the American Chemical Society, 2017, 139, 6726-6735.	6.6	32
52	Chirality Control of Electron Transfer in Quantum Dot Assemblies. Journal of the American Chemical Society, 2017, 139, 9038-9043.	6.6	91
53	Charge and spin transport through nucleic acids. Current Opinion in Electrochemistry, 2017, 4, 175-181.	2.5	18
54	A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Physical Chemistry Chemical Physics, 2017, 19, 20101-20109.	1.3	53

#	Article	IF	Citations
55	Controlling the Electron-Transfer Kinetics of Quantum-Dot Assemblies. Journal of Physical Chemistry C, 2017, 121, 14401-14412.	1.5	8
56	Spin in Quantum Biology. Inference, 2017, 3, .	0.0	0
57	The electron's spin and molecular chirality – how are they related and how do they affect life processes?. Chemical Society Reviews, 2016, 45, 6478-6487.	18.7	194
58	Identifying the Correct Host–Guest Combination To Sensitize Trivalent Lanthanide (Guest) Luminescence: Titanium Dioxide Nanoparticles as a Model Host System. Journal of Physical Chemistry C, 2016, 120, 23870-23882.	1.5	54
59	Electron Transfer in Nanoparticle Dyads Assembled on a Colloidal Template. Journal of the American Chemical Society, 2016, 138, 13260-13270.	6.6	28
60	Through-Solvent Tunneling in Donor–Bridge–Acceptor Molecules Containing a Molecular Cleft. Journal of Physical Chemistry A, 2016, 120, 6004-6013.	1.1	10
61	Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry. Accounts of Chemical Research, 2016, 49, 2560-2568.	7.6	129
62	Hot holes break the speed limit. Nature Chemistry, 2016, 8, 992-993.	6.6	9
63	Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots. Nano Letters, 2016, 16, 4583-4589.	4.5	99
64	Eliminating Fermi-level pinning in PbS quantum dots using an alumina interfacial layer. Journal of Materials Chemistry C, 2016, 4, 704-712.	2.7	21
65	A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device. RSC Advances, 2016, 6, 17196-17203.	1.7	11
66	Spin Filtering in Electron Transport Through Chiral Oligopeptides. Journal of Physical Chemistry C, 2015, 119, 14542-14547.	1.5	171
67	Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annual Review of Physical Chemistry, 2015, 66, 263-281.	4.8	374
68	Evidence for Enhanced Electron Transfer by Multiple Contacts between Self-Assembled Organic Monolayers and Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 15839-15845.	1.5	7
69	Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry. ACS Nano, 2015, 9, 3377-3384.	7.3	85
70	A scanning tunneling microscope break junction method with continuous bias modulation. Nanoscale, 2015, 7, 14965-14973.	2.8	6
71	Electron Transfer: Basic Theory, Experiments and Computational Methods. Advanced Science, Engineering and Medicine, 2015, 7, 1093-1111.	0.3	1
72	Breaking the simple proportionality between molecular conductances and charge transfer rates. Faraday Discussions, 2014, 174, 57-78.	1.6	44

#	Article	IF	CITATIONS
73	A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime. Journal of Physical Chemistry A, 2014, 118, 7579-7589.	1.1	6
74	Luminescence Quenching by Photoinduced Charge Transfer between Metal Complexes in Peptide Nucleic Acids. Journal of Physical Chemistry B, 2014, 118, 9037-9045.	1.2	5
75	Synergistic effect of surface plasmonic particles in PbS/TiO2 heterojunction solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 386-393.	3.0	10
76	Driving charge separation for hybrid solar cells: photo-induced hole transfer in conjugated copolymer and semiconductor nanoparticle assemblies. Physical Chemistry Chemical Physics, 2014, 16, 5066.	1.3	13
77	Depleted Bulk Heterojunctions in Thermally Annealed PbS Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14749-14758.	1.5	19
78	Electron transfer with azurin at Au–SAM junctions in contact with a protic ionic melt: impact of glassy dynamics. Physical Chemistry Chemical Physics, 2013, 15, 16515.	1.3	11
79	Ligand-Induced Changes in the Characteristic Size-Dependent Electronic Energies of CdSe Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 22401-22411.	1.5	53
80	Seedless CTAB mediated growth of anisotropic nanoparticles and nanoparticle clusters on nanostructured plasmonic templates. Journal of Materials Chemistry C, 2013, 1, 6774.	2.7	4
81	Voltammetry Can Reveal Differences between the Potential Energy Curve ($\langle i \rangle pec \langle i \rangle$) and Density of States ($\langle i \rangle dos \langle i \rangle$) Models for Heterogeneous Electron Transfer. Journal of Physical Chemistry C, 2013, 117, 20746-20761.	1.5	6
82	The Effect of Oxygen Heteroatoms on the Single Molecule Conductance of Saturated Chains. Journal of Physical Chemistry B, 2013, 117, 4431-4441.	1.2	28
83	The Single-Molecule Conductance and Electrochemical Electron-Transfer Rate Are Related by a Power Law. ACS Nano, 2013, 7, 5391-5401.	7.3	65
84	A Postsynthetic Modification of II–VI Semiconductor Nanoparticles to Create Tb ³⁺ and Eu ³⁺ Luminophores. Journal of Physical Chemistry C, 2013, 117, 14451-14460.	1.5	52
85	Enhanced Sensitivity of Delocalized Plasmonic Nanostructures. Journal of Physical Chemistry C, 2013, 117, 25693-25703.	1.5	6
86	Chemical and Electrochemical Manipulation of Mechanical Properties in Stimuli-Responsive Copper-Cross-Linked Hydrogels. ACS Macro Letters, 2013, 2, 1095-1099.	2.3	81
87	Introduction of Ron Naaman. Journal of Physical Chemistry C, 2013, 117, 22171-22171.	1.5	0
88	Biography of Ron Naaman. Journal of Physical Chemistry C, 2013, 117, 22172-22172.	1.5	0
89	Effect of Backbone Flexibility on Charge Transfer Rates in Peptide Nucleic Acid Duplexes. Journal of the American Chemical Society, 2012, 134, 9335-9342.	6.6	38
90	Perfluorinated Aromatic Spacers for Sensitizing Europium(III) Centers in Dinuclear Oligomers: Better than the Best by Chemical Design?. Angewandte Chemie - International Edition, 2012, 51, 11302-11305.	7.2	29

#	Article	IF	Citations
91	Determination of the Electronic Energetics of CdTe Nanoparticle Assemblies on Au Electrodes by Photoemission, Electrochemical, and Photocurrent Studies. Journal of Physical Chemistry C, 2012, 116, 17464-17472.	1.5	27
92	Charge Transfer through Modified Peptide Nucleic Acids. Langmuir, 2012, 28, 1971-1981.	1.6	15
93	Manipulating Mechanical Properties with Electricity: Electroplastic Elastomer Hydrogels. ACS Macro Letters, 2012, 1, 204-208.	2.3	59
94	Chiral-Induced Spin Selectivity Effect. Journal of Physical Chemistry Letters, 2012, 3, 2178-2187.	2.1	427
95	Electronic Structure of Self-Assembled Peptide Nucleic Acid Thin Films. Journal of Physical Chemistry C, 2011, 115, 17123-17135.	1.5	17
96	Electrochemically Guided Photovoltaic Devices: A Photocurrent Study of the Charge Transfer Directionality between CdTe and CdSe Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 18136-18141.	1.5	15
97	Evidence for a Near-Resonant Charge Transfer Mechanism for Double-Stranded Peptide Nucleic Acid. Journal of the American Chemical Society, 2011, 133, 62-72.	6.6	45
98	Lanthanide Sensitization in Ilâ^'VI Semiconductor Materials: A Case Study with Terbium(III) and Europium(III) in Zinc Sulfide Nanoparticles. Journal of Physical Chemistry A, 2011, 115, 4031-4041.	1.1	93
99	Optimizing Sensitization Processes in Dinuclear Luminescent Lanthanide Oligomers: Selection of Rigid Aromatic Spacers. Journal of the American Chemical Society, 2011, 133, 16219-16234.	6.6	80
100	Detection of coronary atherosclerotic plaques with superficial proteoglycans and foam cells using real-time intrinsic fluorescence spectroscopy. Atherosclerosis, 2011, 215, 96-102.	0.4	15
101	Coherence in electron transfer pathways. Procedia Chemistry, 2011, 3, 99-104.	0.7	10
102	Comparison of the Density of States (dos) and Potential Energy Curve (pec) Models for the Electrochemical Rate Constant. Journal of Physical Chemistry C, 2011, 115, 20662-20673.	1.5	14
103	Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. Modern Aspects of Electrochemistry, 2011, , 105-238.	0.2	14
104	Transmission SPR of Gold Nanoslit Array and Ultrasensitive Detection of a Retinol Binding Protein. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
105	Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2757-2762.	3.3	76
106	Fluctuations in Biological and Bioinspired Electron-Transfer Reactions. Annual Review of Physical Chemistry, 2010, 61, 461-485.	4.8	182
107	Electron Transfer and Fluorescence Quenching of Nanoparticle Assemblies. Journal of Physical Chemistry C, 2010, 114, 5751-5759.	1.5	69
108	Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission. Optics Express, 2010, 18, 7705.	1.7	44

#	Article	IF	CITATIONS
109	Distance Dependence of the Charge Transfer Rate for Peptide Nucleic Acid Monolayers. Journal of Physical Chemistry B, 2010, 114, 14140-14148.	1.2	45
110	The effect of periodicity on the extraordinary optical transmission of annular aperture arrays. Applied Physics Letters, 2009, 94, .	1.5	38
111	Experimental Evidence for Water Mediated Electron Transfer Through Bis-Amino Acid Donorâ^Bridgeâ^Acceptor Oligomers. Journal of the American Chemical Society, 2009, 131, 2044-2045.	6.6	20
112	Self-Assembly of Nanoparticle Arrays on Semiconductor Substrate for Charge Transfer Cascade. Journal of Physical Chemistry A, 2009, 113, 7213-7217.	1.1	12
113	Electronic Structure of CdSe Nanoparticles Adsorbed on Au Electrodes by an Organic Linker: Fermi Level Pinning of the HOMO. Journal of Physical Chemistry C, 2009, 113, 14200-14206.	1.5	42
114	Solvent Dynamical Effects on Electron Transfer in U-Shaped Donor-Bridge-Acceptor Molecules. Journal of Physical Chemistry A, 2009, 113, 1040-1048.	1.1	12
115	A Unified Model for the Electrochemical Rate Constant That Incorporates Solvent Dynamics. Journal of Physical Chemistry C, 2009, 113, 17904-17914.	1.5	30
116	Role of Nucleobase Energetics and Nucleobase Interactions in Single-Stranded Peptide Nucleic Acid Charge Transfer. Journal of the American Chemical Society, 2009, 131, 6498-6507.	6.6	55
117	Blue-shift of surface plasmon resonance in a metal nanoslit array structure. Optics Express, 2009, 17, 16081.	1.7	37
118	Chiral Control of Electron Transmission through Molecules. Physical Review Letters, 2008, 101, 238103.	2.9	49
119	Charge Transfer through Single-Stranded Peptide Nucleic Acid Composed of Thymine Nucleotides. Journal of Physical Chemistry C, 2008, 112, 7233-7240.	1.5	50
120	Evolution in the Supramolecular Complexes between Poly(phenylene ethynylene)-Based Polyelectrolytes and Octadecyltrimethylammonium Bromide as Revealed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 8218-8226.	1.2	17
121	Multiple Sites for Electron Tunneling between Cytochrome <i>c</i> and Mixed Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 2514-2521.	1.5	34
122	Electron-Transfer Kinetics of Covalently Attached Cytochrome c/SAM/Au Electrode Assemblies. Journal of Physical Chemistry C, 2008, 112, 6571-6576.	1.5	57
123	Charge Density Effects on the Aggregation Properties of Poly($\langle i \rangle p \langle i \rangle$ -phenylene-ethynylene)-Based Anionic Polyelectrolytes. Journal of Physical Chemistry B, 2008, 112, 3300-3310.	1.2	22
124	Effect of Deuterium Substitution on Electron Transfer at Cytochrome <i>c</i> /SAM Interfaces. Journal of Physical Chemistry B, 2008, 112, 12498-12507.	1.2	13
125	Denaturation of Cytochrome <i>c</i> and Its Peroxidase Activity When Immobilized on SAM Films. Journal of Physical Chemistry C, 2008, 112, 1351-1356.	1.5	42
126	Carbon Nanotubeâ^'Polymer Nanocomposite Infrared Sensor. Nano Letters, 2008, 8, 1142-1146.	4.5	193

#	Article	IF	Citations
127	Cardiolipin Switch in Mitochondria: Shutting off the Reduction of Cytochromecand Turning on the Peroxidase Activityâ€. Biochemistry, 2007, 46, 3423-3434.	1.2	189
128	Competing Electron-Transfer Pathways in Hydrocarbon Frameworks:Â Short-Circuiting Through-Bond Coupling by Nonbonded Contacts in Rigid U-Shaped Norbornylogous Systems Containing a Cavity-Bound Aromatic Pendant Group. Journal of the American Chemical Society, 2007, 129, 3247-3256.	6.6	17
129	Dependence of Fluorescence Quenching of a Poly(p-phenyleneethynylene) Polyelectrolyte on the Electrostatic and Hydrophobic Properties of the Quencher. Langmuir, 2007, 23, 13203-13208.	1.6	15
130	Solvation and Aggregation of Polyphenylethynylene Based Anionic Polyelectrolytes in Dilute Solutionsâ€. Journal of Physical Chemistry B, 2007, 111, 8589-8596.	1,2	46
131	Impact of self-assembly composition on the alternate interfacial electron transfer for electrostatically immobilized cytochromec. Biopolymers, 2007, 87, 68-73.	1.2	30
132	Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. Journal of Physical Chemistry B, 2006, 110, 1301-1308.	1.2	58
133	The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Physical Chemistry Chemical Physics, 2006, 8, 63-67.	1.3	134
134	The Effect of Ionic Strength on the Electron-Transfer Rate of Surface Immobilized Cytochromec. Journal of Physical Chemistry B, 2006, 110, 5062-5072.	1.2	45
135	On the Electron Transfer Mechanism Between Cytochromecand Metal Electrodes. Evidence for Dynamic Control at Short Distancesâ€. Journal of Physical Chemistry B, 2006, 110, 19906-19913.	1.2	102
136	Plasmonic phenomena in metal nanoapertures and chip-scale instrumentation for biochemical sensing. , 2006, , .		0
137	Pendant unit effect on electron tunneling in U-shaped molecules. Chemical Physics, 2006, 324, 72-84.	0.9	6
138	High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array. Applied Physics Letters, 2006, 88, 243105.	1.5	28
139	Protagonists in chemistry. Inorganica Chimica Acta, 2005, 358, 2841-2843.	1.2	0
140	Solvent Friction Effect on Intramolecular Electron Transfer. Journal of the American Chemical Society, 2005, 127, 17867-17876.	6.6	21
141	Organization-Induced Charge Redistribution in Self-Assembled Organic Monolayers on Gold. Journal of Physical Chemistry B, 2005, 109, 14064-14073.	1.2	55
142	Conjugated Thiol Linker for Enhanced Electrical Conduction of Goldâ^Molecule Contacts. Journal of Physical Chemistry B, 2005, 109, 5398-5402.	1,2	77
143	Understanding interfacial electron transfer to monolayer protein assemblies. Current Opinion in Solid State and Materials Science, 2005, 9, 28-36.	5.6	32
144	Impact of Surface Immobilization and Solution Ionic Strength on the Formal Potential of Immobilized Cytochrome c. Langmuir, 2005, 21, 6308-6316.	1.6	91

#	Article	IF	Citations
145	Fluorescence Quenching Mechanism of a Polyphenylene Polyelectrolyte with Other Macromolecules:  Cytochrome c and Dendrimers. Langmuir, 2005, 21, 1687-1690.	1.6	38
146	Inelastic Electron Tunneling Erases Coupling-Pathway Interferences. Journal of Physical Chemistry B, 2004, 108, 15511-15518.	1.2	63
147	Observation of Dynamic Solvent Effect for Electron Tunneling in U-Shaped Molecules. Journal of the American Chemical Society, 2004, 126, 10778-10786.	6.6	23
148	Probing Electron Tunneling Pathways:Â Electrochemical Study of Rat Heart Cytochromecand Its Mutant on Pyridine-Terminated SAMs. Journal of Physical Chemistry B, 2004, 108, 16912-16917.	1.2	68
149	Surface-Enhanced Resonance Raman Spectroscopic and Electrochemical Study of Cytochrome c Bound on Electrodes through Coordination with Pyridinyl-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 2261-2269.	1.2	62
150	Charge-Transfer Mechanism for CytochromecAdsorbed on Nanometer Thick Films. Distinguishing Frictional Control from Conformational Gating. Journal of the American Chemical Society, 2003, 125, 7704-7714.	6.6	124
151	Control of the Electron Transfer Rate between Cytochromecand Gold Electrodes by the Manipulation of the Electrode's Hydrogen Bonding Character. Langmuir, 2003, 19, 2378-2387.	1.6	27
152	Positive Activation Volume for a CytochromeCElectrode Process: Evidence for a "Protein Friction― Mechanism from High-Pressure Studies. Journal of Physical Chemistry B, 2003, 107, 7172-7179.	1.2	26
153	Exposing Solvent's Roles in Electron Transfer Reactions:  Tunneling Pathway and Solvation. Journal of Physical Chemistry A, 2003, 107, 3580-3597.	1.1	89
154	Effect of Molecular Properties on Electron Transmission through Organic Monolayer Films. ACS Symposium Series, 2003, , 62-75.	0.5	0
155	Hole Transfer in a C-Shaped Molecule:Â Conformational Freedom versus Solvent-Mediated Coupling. Journal of the American Chemical Society, 2003, 125, 15964-15973.	6.6	20
156	Electron Transfer Reactions of C-shaped Molecules in Alkylated Aromatic Solvents:Â Evidence that the Effective Electronic Coupling Magnitude Is Temperature-Dependent. Journal of Physical Chemistry A, 2002, 106, 4784-4793.	1.1	15
157	The Role Played by Orbital Energetics in Solvent Mediated Electronic Couplingâ€. Journal of Physical Chemistry A, 2002, 106, 1917-1925.	1.1	15
158	Effect of Tilt-Angle on Electron Tunneling through Organic Monolayer Films. Journal of Physical Chemistry B, 2002, 106, 7469-7473.	1,2	64
159	Use of U-shaped Donor-Bridge-Acceptor Molecules To Study Electron Tunneling through Nonbonded Contacts. Journal of the American Chemical Society, 2002, 124, 10171-10181.	6.6	45
160	Direct Wiring of Cytochromec's Heme Unit to an Electrode:Â Electrochemical Studies. Journal of the American Chemical Society, 2002, 124, 9591-9599.	6.6	144
161	Solvent Mediated Superexchange in a C-Clamp Shaped Donor-Bridge-Acceptor Molecule:Â The Correlation between Solvent Electron Affinity and Electronic Coupling. Journal of Physical Chemistry A, 2002, 106, 5288-5296.	1.1	22
162	Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers. Journal of the American Chemical Society, 2002, 124, 9034-9035.	6.6	765

#	Article	IF	Citations
163	Electron-Transfer Dynamics of Cytochrome C: A Change in the Reaction Mechanism with Distance. Angewandte Chemie - International Edition, 2002, 41, 4700-4703.	7.2	80
164	The Nature of Electronic Coupling between Ferrocene and Gold through Alkanethiolate Monolayers on Electrodes:Â The Importance of Chain Composition, Interchain Coupling, and Quantum Interference. Journal of Physical Chemistry B, 2001, 105, 7699-7707.	1.2	121
165	Immobilization of cytochrome c at Au electrodes by association of a pyridine terminated SAM and the heme of cytochrome. Chemical Communications, 2001, , 1032-1033.	2.2	31
166	Observation of the Turnover between the Solvent Friction (Overdamped) and Tunneling (Nonadiabatic) Charge-Transfer Mechanisms for a Au/Fe(CN)63-/4- Electrode Process and Evidence for a Freezing Out of the Marcus Barrier. Journal of Physical Chemistry A, 2001, 105, 1818-1829.	1.1	79
167	Electron Transfer in Aromatic Solvents:  The Importance of Quadrupolar Interactions. Journal of Physical Chemistry A, 2000, 104, 9385-9394.	1.1	29
168	An EPR Experiment for the Undergraduate Physical Chemistry Laboratory. Journal of Chemical Education, 2000, 77, 1489.	1.1	9
169	Effects of Anions on the NMR Relaxation of Pyridinium and Di-tert-Butylpyridinium lons in Acid Solution. Implications for Chemisorption on Solid Acids. Journal of Physical Chemistry A, 2000, 104, 5190-5196.	1.1	10
170	Solvent Mediated Coupling Across 1 nm:  Not a π Bond in Sight. Journal of the American Chemical Society, 2000, 122, 12039-12040.	6.6	21
171	Resonances in low-energy electron transmission through organized organic films:â€∫Evidence for molecular quantum wells. Physical Review B, 1999, 60, 13347-13350.	1.1	14
172	Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science, 1999, 283, 814-816.	6.0	311
173	Structural Characterization and Electron Tunneling atn-Si/SiO2/SAM/Liquid Interface. Journal of Physical Chemistry B, 1999, 103, 5220-5226.	1.2	16
174	Solvent-Mediated Electronic Coupling:  The Role of Solvent Placement. Journal of the American Chemical Society, 1999, 121, 10976-10986.	6.6	54
175	Characterization of the Surface to Thiol Bonding in Self-Assembled Monolayer Films of C12H25SH on InP(100) by Angle-Resolved X-ray Photoelectron Spectroscopy. Langmuir, 1999, 15, 8640-8644.	1.6	35
176	Electron Tunneling at the Semiconductorâ 'Insulatorâ 'Electrolyte Interface. Photocurrent Studies of then-InPâ 'Alkanethiolâ 'Ferrocyanide System. Journal of Physical Chemistry B, 1998, 102, 9015-9028.	1.2	42
177	Use of Modern Electron Transfer Theories To Determine Electronic Coupling Matrix Elements in Intramolecular Systems. Journal of Physical Chemistry A, 1998, 102, 5529-5541.	1.1	106
178	Rotational Relaxation of Ionic Molecules in Electrolyte Solutions. Anisotropy Relaxation and Molecular Dynamics Study. Journal of the American Chemical Society, 1998, 120, 7944-7951.	6.6	14
179	Rotational Relaxation in Polar Solvents. Molecular Dynamics Study of Soluteâ^'Solvent Interaction. Journal of the American Chemical Society, 1998, 120, 6121-6130.	6.6	69
180	Experimental Measurements of Low-Frequency Intermolecular Hostâ^'Guest Dynamics. Journal of Physical Chemistry B, 1998, 102, 5394-5403.	1.2	9

#	Article	IF	CITATIONS
181	Orientational Dynamics of \hat{I}^2 -Cyclodextrin Inclusion Complexes. Journal of Physical Chemistry B, 1998, 102, 9617-9624.	1.2	77
182	Soluteâ°'Solvent Frictional Coupling in Electrolyte Solutions. Role of Ion Pairs. Journal of Physical Chemistry B, 1997, 101, 2339-2347.	1.2	31
183	Probing solute–solvent electrostatic interactions: Rotational diffusion studies of 9,10-disubstituted anthracenes. Journal of Chemical Physics, 1997, 106, 7920-7930.	1.2	53
184	The Dependence of Resistance on Temperature for Metals, Semiconductors, and Superconductors. Journal of Chemical Education, 1997, 74, 1090.	1.1	18
185	X-ray Diffraction Investigation of Alloys. Journal of Chemical Education, 1997, 74, 115.	1.1	17
186	Electronic Coupling in C-Clamp-Shaped Molecules:Â Solvent-Mediated Superexchange Pathways. Journal of the American Chemical Society, 1996, 118, 243-244.	6.6	106
187	Studies of Electron Tunneling at Semiconductor Electrodes. The Journal of Physical Chemistry, 1996, 100, 9573-9576.	2.9	29
188	A molecular dynamics study of dielectric friction. Journal of Chemical Physics, 1996, 105, 628-638.	1.2	50
189	Photocapacitance Study of Chemically Sensitized TiO2 Electrodes. The Journal of Physical Chemistry, 1995, 99, 4569-4576.	2.9	3
190	Preparation of Self-Assembled Monolayers on InP. Langmuir, 1995, 11, 1849-1851.	1.6	79
191	Fluorescence Quantum Yields and Lifetimes of Substituted Stilbenes in n-Alkanes. A Reexamination of the Relationship between Solute Size and Medium Effect on Torsional Relaxation. The Journal of Physical Chemistry, 1994, 98, 10689-10698.	2.9	40
192	A Test of Dielectric Friction Models. Rotational Diffusion of Fluorenes in Dimethyl sulfoxide. The Journal of Physical Chemistry, 1994, 98, 1386-1393.	2.9	45
193	The Dependence of Electron Transfer Efficiency on the Conformational Order in Organic Monolayers. Science, 1994, 263, 948-950.	6.0	100
194	The Excited State Potential Energy Surface for the Photoisomerization of Tetraphenylethylene: A Fluorescence and Picosecond Optical Calorimetry Investigation. Journal of the American Chemical Society, 1994, 116, 10619-10629.	6.6	55
195	Dielectric Continuum Models of Solute/Solvent Interactions. , 1994, , 249-265.		4
196	Molecular Electronics: Observation of Molecular Rectification. Science, 1993, 261, 576-577.	6.0	56
197	Rotational diffusion in electrolyte solutions. Journal of the American Chemical Society, 1993, 115, 9692-9700.	6.6	37
198	The WSe ₂ /Tungstenâ€Oxide Interface: Structure and Photoluminescence. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 702-708.	0.9	12

#	Article	IF	Citations
199	Time-resolved studies of charge carrier relaxation in chemically modified semiconductor electrodes: n-cadmium selenide/silane interfaces. The Journal of Physical Chemistry, 1993, 97, 4141-4148.	2.9	5
200	Carrier relaxation at semiconductor interfaces and essential features of a quantitative model. The Journal of Physical Chemistry, 1992, 96, 10371-10379.	2.9	10
201	Time resolution limits for twoâ€color pump/probe spectroscopy. Review of Scientific Instruments, 1992, 63, 2913-2921.	0.6	1
202	Photophysics of polycycloalkane xanthenylidene compounds. Chemical Physics Letters, 1992, 191, 411-418.	1.2	1
203	Inclusion complexation by bis(cyclodextrins) in the presence of phospholipid vesicles. Journal of the American Chemical Society, 1991, 113, 2325-2327.	6.6	39
204	Photoisomerization dynamics of stilbenes. Chemical Reviews, 1991, 91, 415-436.	23.0	1,220
205	A test of hydrodynamics in binary solvent systems: rotational diffusion studies of oxazine 118. The Journal of Physical Chemistry, 1991, 95, 4848-4852.	2.9	44
206	An experimental test of dielectric friction models using the rotational diffusion of aminoanthraquinones. The Journal of Physical Chemistry, 1991, 95, 7872-7880.	2.9	73
207	The influence of wave vector dependent dielectric properties on rotational friction. Rotational diffusion of phenoxazine dyes. Journal of Chemical Physics, 1991, 95, 6770-6783.	1.2	68
208	Rotational dielectric friction on a generalized charge distribution. Journal of Chemical Physics, 1991, 94, 6196-6202.	1.2	74
209	A test of continuum models for dielectric friction. Rotational diffusion of phenoxazine dyes in dimethylsulfoxide. Journal of Chemical Physics, 1991, 94, 4509-4520.	1.2	83
210	Application of the medium-enhanced barrier model to the photoisomerization dynamics of substituted stilbenes in n-alkane solvents. The Journal of Physical Chemistry, 1991, 95, 10336-10344.	2.9	41
211	Optically heterodyned polarization spectroscopy. Measurement of the orientational correlation function. Journal of Chemical Physics, 1990, 92, 4055-4066.	1.2	61
212	Influence of polar solvents on reaction dynamics: photoisomerization studies of dihydroxystilbene. The Journal of Physical Chemistry, 1990, 94, 662-669.	2.9	35
213	Hydrogen-bonding self-assembly of multichromophore structures. Journal of the American Chemical Society, 1990, 112, 9408-9410.	6.6	160
214	Rotational Diffusion of Phenoxazine Dyes: Characterization of Molecular Friction. Springer Series in Chemical Physics, 1990, , 450-452.	0.2	0
215	Solvent dielectric effects on isomerization dynamics: Investigation of the photoisomerization of 4,4'â€dimethoxystilbene and tâ€stilbene in nâ€alkyl nitriles. Journal of Chemical Physics, 1989, 90, 2305-2316	5.1.2	62
216	Implications for multidimensional effects on isomerization dynamics: Photoisomerization study of 4,4'â€dimethylstilbene in nâ€alkane solvents. Journal of Chemical Physics, 1989, 91, 943-952.	1.2	43

#	Article	IF	CITATIONS
217	Intramolecular excimer formation by phthaloyl, isophthaloyl and terephthaloyl groups in polyesters with different numbers of methylene and oxyethylene spacers. Polymer, 1989, 30, 1680-1684.	1.8	14
218	Evidence for dynamic solvent effects on the photoisomerization of 4,4'-dimethoxystilbene. The Journal of Physical Chemistry, 1988, 92, 692-701.	2.9	65
219	Evidence for dynamical solvent dielectric effects: Photoisomerization of stilbenes. AIP Conference Proceedings, 1988, , .	0.3	0
220	Influence of Functional Groups and Solvent on the Photoisomerization of Stilbenes. Springer Series in Chemical Physics, 1988, , 551-554.	0.2	0
221	Electronic energy transfer at semiconductor interfaces. I. Energy transfer from twoâ€dimensional molecular films to Si(111). Journal of Chemical Physics, 1987, 86, 6540-6549.	1.2	71
222	Photoisomerization Studies of Substituted Stilbenes: 4,4′-Dihydroxystilbene and 4,4′-Dimethoxystilbene. Springer Series in Chemical Physics, 1986, , 347-349.	0.2	1
223	Nonclassical behavior of energy transfer from molecules to metal surfaces: Biacetyl(3nπ*)/Ag(111). Journal of Chemical Physics, 1985, 82, 541-547.	1.2	87
224	Photochemical Isomerization Viewed as a Model for Activated Barrier Crossing in Solution. , 1984, , 67-77.		1
225	Time resolved polarization spectroscopy: Level kinetics and rotational diffusion. Journal of Chemical Physics, 1983, 78, 6455-6467.	1.2	116
226	Breakdown of Kramers theory description of photochemical isomerization and the possible involvement of frequency dependent friction. Journal of Chemical Physics, 1983, 78, 249-258.	1.2	288
227	Ultraviolet picosecond pump-probe spectroscopy with a synchronously pumped dye laser. Rotational diffusion of diphenyl butadiene. Chemical Physics Letters, 1982, 88, 297-300.	1.2	51
228	Dynamics of Photoisomerization. Springer Series in Chemical Physics, 1982, , 238-241.	0.2	0
229	Picosecond pulse induced transient molecular birefringence and dichroism. Journal of Chemical Physics, 1981, 74, 3381-3387.	1.2	113
230	Influence of viscosity and temperature on rotational reorientation. Anisotropic absorption studies of 3,3'-diethyloxadicarbocyanine iodide. The Journal of Physical Chemistry, 1981, 85, 2614-2617.	2.9	92
231	Pulse structure studies and absolute cavity length determination for a synchronously pumped picosecond dye laser. Optics Communications, 1980, 34, 127-132.	1.0	34