Olivier Briand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8607318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enterohepatic, Gluco-metabolic, and Gut Microbial Characterization of Individuals With Bile Acid Malabsorption. , 2022, 1, 299-312.		5
2	Enterohepatic Takeda G-Protein Coupled Receptor 5 Agonism in Metabolic Dysfunction-Associated Fatty Liver Disease and Related Glucose Dysmetabolism. Nutrients, 2022, 14, 2707.	4.1	8
3	Characterization of one anastomosis gastric bypass and impact of biliary and common limbs on bile acid and postprandial glucose metabolism in a minipig model. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E772-E783.	3.5	8
4	PPAR control of metabolism and cardiovascular functions. Nature Reviews Cardiology, 2021, 18, 809-823.	13.7	299
5	Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2021, 123, 154844.	3.4	20
6	Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System. Frontiers in Molecular Neuroscience, 2021, 14, 808603.	2.9	9
7	Intestinal miRNAs regulated in response to dietary lipids. Scientific Reports, 2020, 10, 18921.	3.3	11
8	Intestinal Lipid Metabolism Genes Regulated by miRNAs. Frontiers in Genetics, 2020, 11, 707.	2.3	12
9	The nuclear receptor FXR inhibits Clucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	3.3	45
10	FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. Journal of Lipid Research, 2019, 60, 1547-1561.	4.2	19
11	Postprandial Circulating miRNAs in Response to a Dietary Fat Challenge. Nutrients, 2019, 11, 1326.	4.1	29
12	Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes, 2018, 67, 1310-1321.	0.6	64
13	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	12.1	150
14	Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 2018, 39, 760-802.	20.1	420
15	The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. Journal of Hepatology, 2018, 69, 1099-1109.	3.7	40
16	Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight, 2018, 3, .	5.0	4
17	Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152, 1679-1694.e3.	1.3	630
18	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARÎ ³ . Scientific Reports, 2017, 7, 14087.	3.3	33

#	Article	IF	CITATIONS
19	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	3.6	78
20	Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetologica, 2017, 54, 191-199.	2.5	10
21	Intestinal bile acid receptors are key regulators of glucose homeostasis. Proceedings of the Nutrition Society, 2017, 76, 192-202.	1.0	27
22	PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology, 2017, 13, 36-49.	9.6	509
23	Distinct but complementary contributions of PPAR isotypes to energy homeostasis. Journal of Clinical Investigation, 2017, 127, 1202-1214.	8.2	270
24	Metabolic effects of bile acid sequestration. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 138-144.	2.3	9
25	Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150, 650-658.	1.3	41
26	The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis, 2016, 249, 200-208.	0.8	107
27	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	12.8	274
28	Nuclear bile acid signaling through the farnesoid X receptor. Cellular and Molecular Life Sciences, 2015, 72, 1631-1650.	5.4	92
29	<scp>PPAR</scp> α is involved in the multitargeted effects of a pretreatment with atorvastatin in experimental stroke. Fundamental and Clinical Pharmacology, 2014, 28, 294-302.	1.9	12
30	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	7.3	55
31	A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Research, 2014, 42, 10943-10959.	14.5	71
32	Failing FXR expression in the liver links aging to hepatic steatosis. Journal of Hepatology, 2014, 60, 689-690.	3.7	15
33	Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends in Endocrinology and Metabolism, 2014, 25, 235-244.	7.1	43
34	O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230.	3.5	28
35	The Hepatic Orosomucoid/α1-Acid Glycoprotein Gene Cluster Is Regulated by the Nuclear Bile Acid Receptor FXR. Endocrinology, 2013, 154, 3690-3701.	2.8	24
36	Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology, 2013, 58, 1941-1952.	7.3	355

#	Article	IF	CITATIONS
37	Palmitate increases <i>Nur77</i> expression by modulating ZBP89 and Sp1 binding to the <i>Nur77</i> proximal promoter in pancreatic βâ€cells. FEBS Letters, 2013, 587, 3883-3890.	2.8	13
38	Activation of intestinal peroxisome proliferator-activated receptor-Â increases high-density lipoprotein production. European Heart Journal, 2013, 34, 2566-2574.	2.2	44
39	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	2.3	110
40	Soaping Up Type 2 Diabetes With Bile Acids?. Diabetes, 2013, 62, 3987-3989.	0.6	11
41	The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors. PLoS ONE, 2013, 8, e64880.	2.5	14
42	PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1063-E1069.	3.5	76
43	Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. Journal of Lipid Research, 2012, 53, 1723-1737.	4.2	241
44	The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism. Archives of Physiology and Biochemistry, 2012, 118, 102-111.	2.1	46
45	The Nuclear Orphan Receptor Nur77 Is a Lipotoxicity Sensor Regulating Glucose-Induced Insulin Secretion in Pancreatic β-Cells. Molecular Endocrinology, 2012, 26, 399-413.	3.7	38
46	PPARβ δActivation Induces Enteroendocrine L Cell GLP-1 Production. Gastroenterology, 2011, 140, 1564-1574.	1.3	55
47	Effects of the New Dual PPARα/δ Agonist GFT505 on Lipid and Glucose Homeostasis in Abdominally Obese Patients With Combined Dyslipidemia or Impaired Glucose Metabolism. Diabetes Care, 2011, 34, 2008-2014.	8.6	155
48	Control of nuclear receptor activities in metabolism by postâ€translational modifications. FEBS Letters, 2011, 585, 1640-1650.	2.8	53
49	Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2011, 11, 160-166.	4.2	201
50	Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 2011, 60, 1861-1871.	0.6	261
51	Peroxisome Proliferator–Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1573-1579.	2.4	66
52	Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 513-519.	2.4	129
53	The nuclear receptor FXR is expressed in pancreatic βâ€cells and protects human islets from lipotoxicity. FEBS Letters, 2010, 584, 2845-2851.	2.8	80
54	Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Laboratory Investigation, 2010, 90, 1457-1467.	3.7	77

#	Article	IF	CITATIONS
55	Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes, Obesity and Metabolism, 2010, 12, 384-392.	4.4	124
56	Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans. Journal of Clinical Investigation, 2010, 120, 1454-1468.	8.2	56
57	Bile Acid Sequestrants: Glucose-Lowering Mechanisms. Metabolic Syndrome and Related Disorders, 2010, 8, S-3-S-8.	1.3	23
58	The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-γ and Interfering with the Wnt/β-Catenin Pathways. Journal of Biological Chemistry, 2010, 285, 36759-36767.	3.4	79
59	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	28.8	1,309
60	LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. Journal of Clinical Investigation, 2009, 119, 3830-3838.	8.2	47
61	Cross-talk Between Statins and PPARα in Cardiovascular Diseases: Clinical Evidence and Basic Mechanisms. Trends in Cardiovascular Medicine, 2008, 18, 73-78.	4.9	51
62	Regulation of Macrophage Functions by PPAR-α, PPAR-γ, and LXRs in Mice and Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1050-1059.	2.4	262
63	The PPARα/p16 ^{INK4a} Pathway Inhibits Vascular Smooth Muscle Cell Proliferation by Repressing Cell Cycle–Dependent Telomerase Activation. Circulation Research, 2008, 103, 1155-1163.	4.5	61
64	Intestine-Specific Regulation of PPARα Gene Transcription by Liver X Receptors. Endocrinology, 2008, 149, 5128-5135.	2.8	29
65	Phosphorylation of Farnesoid X Receptor by Protein Kinase C Promotes Its Transcriptional Activity. Molecular Endocrinology, 2008, 22, 2433-2447.	3.7	66
66	Measuring biomarkers to assess the therapeutic effects of PPAR agonists?. Pharmacogenomics, 2007, 8, 1567-1580.	1.3	4
67	Peroxisome Proliferator-Activated Receptors Mediate Pleiotropic Actions of Statins. Circulation Research, 2007, 100, 1394-1395.	4.5	33
68	FXRâ€deficiency confers increased susceptibility to torpor. FEBS Letters, 2007, 581, 5191-5198.	2.8	30
69	Bile???Acid???Sequestrants???and???the???Treatment of Type??2??Diabetes??Mellitus. Drugs, 2007, 67, 1383-1392.	10.9	149
70	Derivatives of Iressa, a Specific Epidermal Growth Factor Receptor Inhibitor, are Powerful Apoptosis Inducers in PC3 Prostatic Cancer Cells. ChemMedChem, 2007, 2, 318-332.	3.2	13
71	Th-W60:3 Acute anti-inflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the PKC signalling pathway. Atherosclerosis Supplements, 2006, 7, 487.	1.2	1
72	Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochemical and Biophysical Research Communications, 2006, 340, 1259-1263.	2.1	156

#	Article	IF	CITATIONS
73	Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. Journal of Hepatology, 2006, 44, 732-741.	3.7	213
74	Sorting out the roles of PPARÂ in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 2006, 116, 571-580.	8.2	779
75	Peroxisome Proliferator-Activated Receptor Improves Pancreatic Adaptation to Insulin Resistance in Obese Mice and Reduces Lipotoxicity in Human Islets. Diabetes, 2006, 55, 1605-1613.	0.6	100
76	The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. Journal of Biological Chemistry, 2006, 281, 11039-11049.	3.4	463
77	Acute Antiinflammatory Properties of Statins Involve Peroxisome Proliferator–Activated Receptor-α via Inhibition of the Protein Kinase C Signaling Pathway. Circulation Research, 2006, 98, 361-369.	4.5	157
78	Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. Journal of Clinical Investigation, 2006, 116, 1052-1062.	8.2	447
79	The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition. Journal of Biological Chemistry, 2005, 280, 29971-29979.	3.4	186
80	PPARα, but not PPARγ, Activators Decrease Macrophage-Laden Atherosclerotic Lesions in a Nondiabetic Mouse Model of Mixed Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1897-1902.	2.4	70
81	Potential regulatory role of the farnesoid X receptor in the metabolic syndrome. Biochimie, 2005, 87, 93-98.	2.6	32
82	Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Letters, 2005, 579, 4076-4080.	2.8	72
83	Peroxisome Proliferator-Activated Receptors and Atherogenesis. Circulation Research, 2004, 94, 1168-1178.	4.5	471
84	The Protein Kinase C Signaling Pathway Regulates a Molecular Switch between Transactivation and Transrepression Activity of the Peroxisome Proliferator-Activated Receptor α. Molecular Endocrinology, 2004, 18, 1906-1918.	3.7	97
85	Statin Induction of Liver Fatty Acid-Binding Protein (L-FABP) Gene Expression Is Peroxisome Proliferator-activated Receptor-α-dependent. Journal of Biological Chemistry, 2004, 279, 45512-45518.	3.4	84
86	Glucose Regulates the Expression of the Farnesoid X Receptor in Liver. Diabetes, 2004, 53, 890-898.	0.6	226
87	Defective VLDL metabolism and severe atherosclerosis in mice expressing human apolipoprotein E isoforms but lacking the LDL receptor. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1684, 8-17.	2.4	17
88	Human free apolipoprotein A-I and artificial pre-beta-high-density lipoprotein inhibit eNOS activity and NO release. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1683, 69-77.	2.4	8
89	SR-BI does not require raft/caveola localisation for cholesteryl ester selective uptake in the human adrenal cell line NCI-H295R. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1631, 42-50.	2.4	25
90	Early-glycation of apolipoprotein E: effect on its binding to LDL receptor, scavenger receptor A and heparan sulfates. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1583, 99-107.	2.4	21

#	Article	IF	CITATIONS
91	PPAR-α and PPAR-Î ³ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Medicine, 2001, 7, 53-58.	30.7	1,075
92	Statin-induced inhibition of the Rho-signaling pathway activates $PPAR\hat{I}_{\pm}$ and induces HDL apoA-I. Journal of Clinical Investigation, 2001, 107, 1423-1432.	8.2	381
93	Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Letters, 2000, 471, 34-38.	2.8	179
94	Apolipoprotein All Enrichment of HDL Enhances Their Affinity for Class B Type I Scavenger Receptor but Inhibits Specific Cholesteryl Ester Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1074-1081.	2.4	44
95	Peroxisome Proliferator-Activated Receptor Activators Inhibit Thrombin-Induced Endothelin-1 Production in Human Vascular Endothelial Cells by Inhibiting the Activator Protein-1 Signaling Pathway. Circulation Research, 1999, 85, 394-402.	4.5	489
96	Comparison of expression and regulation of the high-density lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. FEBS Journal, 1999, 261, 481-491.	0.2	56
97	Peroxisome Proliferator-activated Receptor α Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcription Factors NF-κB and AP-1. Journal of Biological Chemistry, 1999, 274, 32048-32054.	3.4	982
98	Apolipoprotein All is a better ligand than apolipoprotein Al for the human HDL receptor SR-BI but alters specific cholesteryl ester uptake in human adrenal cell line. Atherosclerosis, 1999, 144, 81.	0.8	0
99	Localisation of SR-BI in caveolae is not required for cholesteryl esters selective uptake in NCI H295R adrenal cell line. Atherosclerosis, 1999, 144, 110-111.	0.8	0
100	Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARÎ ³ activators. Nature, 1998, 393, 790-793.	27.8	1,104
101	Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation, 1998, 98, 2088-2093.	1.6	1,540
102	High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositol-anchored proteins. Biochemical Journal, 1997, 328, 415-423.	3.7	19
103	4.P.348 Caveolae and glycosyl phosphatidylinositol-anchored proteins: A specific binding membrane domain for high density lipoproteins. Atherosclerosis, 1997, 134, 369.	0.8	1