Huahong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8606895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plastic debris in coastal macroalgae. Environmental Research, 2022, 205, 112464.	7.5	24
2	Effects of microplastics and food particles on organic pollutants bioaccumulation in equi-fugacity and above-fugacity scenarios. Science of the Total Environment, 2022, 812, 152548.	8.0	10
3	Microfiber fallout during dining and potential human intake. Journal of Hazardous Materials, 2022, 430, 128477.	12.4	15
4	An emerging role of microplastics in the etiology of lung ground glass nodules. Environmental Sciences Europe, 2022, 34, .	5.5	57
5	A battery of baseline toxicity bioassays directed evaluation of plastic leachates—Towards the establishment of bioanalytical monitoring tools for plastics. Science of the Total Environment, 2022, 828, 154387.	8.0	9
6	Global transportation of plastics and microplastics: A critical review of pathways and influences. Science of the Total Environment, 2022, 831, 154884.	8.0	41
7	Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Research, 2022, 219, 118582.	11.3	43
8	Crack Patterns of Environmental Plastic Fragments. Environmental Science & Technology, 2022, 56, 6399-6414.	10.0	25
9	Surface water, sediment, and biota: The first multi-compartment analysis of microplastics in the Karnafully river, Bangladesh. Marine Pollution Bulletin, 2022, 180, 113820.	5.0	36
10	Microplastics in global bivalve mollusks: A call for protocol standardization. Journal of Hazardous Materials, 2022, 438, 129490.	12.4	29
11	Adsorption mechanisms of metal ions (Pb, Cd, Cu) onto polyamide 6 microplastics: New insight into environmental risks in comparison with natural media in different water matrices. Gondwana Research, 2022, 110, 214-225.	6.0	23
12	Application of internal persistent fluorescent fibers in tracking microplastics in vivo processes in aquatic organisms. Journal of Hazardous Materials, 2021, 401, 123336.	12.4	22
13	Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. Journal of Hazardous Materials, 2021, 401, 123421.	12.4	24
14	Ingestion of nano/micro plastic particles by the mussel Mytilus coruscus is size dependent. Chemosphere, 2021, 263, 127957.	8.2	29
15	Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence?. Science of the Total Environment, 2021, 754, 142099.	8.0	108
16	Physiological effects of plastic particles on mussels are mediated by food presence. Journal of Hazardous Materials, 2021, 404, 124136.	12.4	46
17	Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. Environmental Pollution, 2021, 270, 116278.	7.5	110
18	Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes. Journal of Hazardous Materials, 2021, 407, 124836.	12.4	104

#	Article	IF	CITATIONS
19	Analysis of environmental nanoplastics: Progress and challenges. Chemical Engineering Journal, 2021, 410, 128208.	12.7	202
20	PAEs and PBDEs in plastic fragments and wetland sediments in Yangtze estuary. Journal of Hazardous Materials, 2021, 409, 124937.	12.4	41
21	Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix. Water Research, 2021, 195, 116956.	11.3	86
22	Fish Ingest Microplastics Unintentionally. Environmental Science & Technology, 2021, 55, 10471-10479.	10.0	116
23	Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. Science of the Total Environment, 2021, 781, 146700.	8.0	90
24	Microplastics in shellfish and implications for food safety. Current Opinion in Food Science, 2021, 40, 192-197.	8.0	34
25	Transport and fate of microplastics in constructed wetlands: A microcosm study. Journal of Hazardous Materials, 2021, 415, 125615.	12.4	59
26	Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation. Water Research, 2021, 203, 117509.	11.3	30
27	Plastic waste as the potential carriers of pathogens. Current Opinion in Food Science, 2021, 41, 224-230.	8.0	31
28	Research progresses of microplastic pollution in freshwater systems. Science of the Total Environment, 2021, 795, 148888.	8.0	70
29	Microplastics habituated with biofilm change decabrominated diphenyl ether degradation products and thyroid endocrine toxicity. Ecotoxicology and Environmental Safety, 2021, 228, 112991.	6.0	13
30	Distribution and translocation of micro- and nanoplastics in fish. Critical Reviews in Toxicology, 2021, 51, 740-753.	3.9	26
31	Superimposed microplastic pollution in a coastal metropolis. Water Research, 2020, 168, 115140.	11.3	124
32	Prevalence of microplastics in animal-based traditional medicinal materials: Widespread pollution in terrestrial environments. Science of the Total Environment, 2020, 709, 136214.	8.0	49
33	Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. Journal of Hazardous Materials, 2020, 388, 121814.	12.4	378
34	Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 2020, 258, 113658.	7.5	174
35	Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions. Environmental Pollution, 2020, 258, 113691.	7.5	98
36	Microplastic Fallout in Different Indoor Environments. Environmental Science & Technology, 2020, 54, 6530-6539.	10.0	216

#	Article	IF	CITATIONS
37	Microplastic quantification affected by structure and pore size of filters. Chemosphere, 2020, 257, 127198.	8.2	42
38	Microplastics aggravate the adverse effects of BDE-47 on physiological and defense performance in mussels. Journal of Hazardous Materials, 2020, 398, 122909.	12.4	64
39	Microplastics in take-out food containers. Journal of Hazardous Materials, 2020, 399, 122969.	12.4	189
40	Microplastics in Inland Small Waterbodies. Handbook of Environmental Chemistry, 2020, , 93-110.	0.4	3
41	A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 2020, 54, 3740-3751.	10.0	559
42	The genome of the marine rotifer Brachionus koreanus sheds light on the antioxidative defense system in response to 2-ethyl-phenanthrene and piperonyl butoxide. Aquatic Toxicology, 2020, 221, 105443.	4.0	21
43	Microplastics in the commercial seaweed nori. Journal of Hazardous Materials, 2020, 388, 122060.	12.4	133
44	PVC Does Not Influence Cadmium Uptake or Effects in the Mussel (Mytilus edulis). Bulletin of Environmental Contamination and Toxicology, 2020, 104, 315-320.	2.7	15
45	Microplastics in Food: Health Risks. Handbook of Environmental Chemistry, 2020, , 343-356.	0.4	5
46	Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters. Marine Pollution Bulletin, 2020, 154, 111079.	5.0	64
47	Microplastics in bloom-forming macroalgae: Distribution, characteristics and impacts. Journal of Hazardous Materials, 2020, 397, 122752.	12.4	81
48	Microplastics in fishes and their living environments surrounding a plastic production area. Science of the Total Environment, 2020, 727, 138662.	8.0	65
49	Microplastics Lead to Hyperactive Swimming Behaviour in Adult Zebrafish. Aquatic Toxicology, 2020, 224, 105521.	4.0	95
50	Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 2019, 164, 114968.	11.3	222
51	Microplastics as Both a Sink and a Source of Bisphenol A in the Marine Environment. Environmental Science & Technology, 2019, 53, 10188-10196.	10.0	211
52	A method for extracting soil microplastics through circulation of sodium bromide solutions. Science of the Total Environment, 2019, 691, 341-347.	8.0	121
53	Fusion of microplastics into the mussel byssus. Environmental Pollution, 2019, 252, 420-426.	7.5	65
54	Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of the Total Environment, 2019, 671, 1101-1107.	8.0	85

#	Article	IF	CITATIONS
55	Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution, 2019, 250, 447-455.	7.5	294

56 Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias) Tj ETQq0 0.0.rgBT /Oygrlock 10

57	A practical approach based on FT-IR spectroscopy for identification of semi-synthetic and natural celluloses in microplastic investigation. Science of the Total Environment, 2019, 669, 692-701.	8.0	77
58	Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere, 2019, 226, 726-735.	8.2	148
59	Sinking of floating plastic debris caused by biofilm development in a freshwater lake. Chemosphere, 2019, 222, 856-864.	8.2	171
60	Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): influence of color and morphological features. Heliyon, 2019, 5, e03063.	3.2	82
61	Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Science of the Total Environment, 2019, 658, 62-68.	8.0	217
62	The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere, 2019, 221, 107-114.	8.2	45
63	Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environmental Pollution, 2019, 246, 174-182.	7.5	310
64	The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 2019, 365, 716-724.	12.4	284
65	Marine microplastics bound dioxin-like chemicals: Model explanation and risk assessment. Journal of Hazardous Materials, 2019, 364, 82-90.	12.4	103
66	Using mussel as a global bioindicator of coastal microplastic pollution. Environmental Pollution, 2019, 244, 522-533.	7.5	350
67	Sources and distribution of microplastics in China's largest inland lake – Qinghai Lake. Environmental Pollution, 2018, 235, 899-906.	7.5	401
68	Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryos. Ecotoxicology and Environmental Safety, 2018, 153, 8-15.	6.0	41
69	Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere, 2018, 197, 142-151.	8.2	174
70	The role of pparÎ ³ in embryonic development of Xenopus tropicalis under triphenyltin-induced teratogenicity. Science of the Total Environment, 2018, 633, 1245-1252.	8.0	13
71	Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management. Science of the Total Environment, 2018, 630, 1641-1653.	8.0	321
72	Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea. Environmental Pollution, 2018, 233, 1138-1146.	7.5	17

#	Article	IF	CITATIONS
73	Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 2018, 610-611, 635-640.	8.0	360
74	Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution, 2018, 234, 347-355.	7.5	330
75	Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Science of the Total Environment, 2018, 621, 679-686.	8.0	325
76	Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment, 2018, 619-620, 1-8.	8.0	903
77	Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere, 2018, 213, 323-332.	8.2	212
78	A straightforward method for measuring the range of apparent density of microplastics. Science of the Total Environment, 2018, 639, 367-373.	8.0	50
79	Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 2018, 241, 35-44.	7.5	342
80	Microplastics in Small Waterbodies and Tadpoles from Yangtze River Delta, China. Environmental Science & Technology, 2018, 52, 8885-8893.	10.0	188
81	Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 2018, 242, 855-862.	7.5	806
82	Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in <i>Caenorhabditis elegans</i> . Environmental Science: Nano, 2018, 5, 2009-2020.	4.3	271
83	The unexpected teratogenicity of RXR antagonist UVI3003 via activation of PPARÎ ³ in Xenopus tropicalis. Toxicology and Applied Pharmacology, 2017, 314, 91-97.	2.8	10
84	Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution, 2017, 225, 283-290.	7.5	528
85	Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 2017, 221, 141-149.	7.5	657
86	Comparison of phenotypic and global gene expression changes in Xenopus tropicalis embryos induced by agonists of RAR and RXR. Toxicology and Applied Pharmacology, 2017, 330, 40-47.	2.8	5
87	An assay to determine the sensitive window of embryos to chemical exposure using <i>Xenopus tropicalis</i> . Journal of Applied Toxicology, 2016, 36, 685-691.	2.8	4
88	Microplastics in Taihu Lake, China. Environmental Pollution, 2016, 216, 711-719.	7.5	807
89	Semi-automatic recognition of marine debris on beaches. Scientific Reports, 2016, 6, 25759.	3.3	30
90	Microplastics in mussels along the coastal waters of China. Environmental Pollution, 2016, 214, 177-184.	7.5	600

#	Article	IF	CITATIONS
91	Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere, 2016, 164, 611-617.	8.2	112
92	Strong lethality and teratogenicity of strobilurins on Xenopus tropicalis embryos: Basing on ten agricultural fungicides. Environmental Pollution, 2016, 208, 868-874.	7.5	53
93	Variations of sediment toxicity in a tidal Estuary: A case study of the South Passage, Changjiang (Yangtze) Estuary. Chemosphere, 2015, 128, 7-13.	8.2	14
94	Quantitative toxicoproteomic analysis of zebrafish embryos exposed to a retinoid X receptor antagonist UVI3003. Journal of Applied Toxicology, 2015, 35, 1049-1057.	2.8	6
95	Microplastics in commercial bivalves from China. Environmental Pollution, 2015, 207, 190-195.	7.5	688
96	Microplastic Pollution in Table Salts from China. Environmental Science & Technology, 2015, 49, 13622-13627.	10.0	703
97	Use of the enhanced frog embryo teratogenesis assay- Xenopus (FETAX) to determine chemically-induced phenotypic effects. Science of the Total Environment, 2015, 508, 258-265.	8.0	22
98	Toxicity bioassays for water from black-odor rivers in Wenzhou, China. Environmental Science and Pollution Research, 2015, 22, 1731-1741.	5.3	38
99	Developmental toxicity of organotin compounds in animals. Frontiers in Marine Science, 2014, 1, .	2.5	13
100	Effects of tributyltin on metamorphosis and gonadal differentiation of <i>Xenopus laevis</i> at environmentally relevant concentrations. Toxicology and Industrial Health, 2014, 30, 297-303.	1.4	27
101	Unexpected phenotypes of malformations induced in Xenopus tropicalis embryos by combined exposure to triphenyltin and 9-cis-retinoic acid. Journal of Environmental Sciences, 2014, 26, 643-649.	6.1	9
102	Effects of antagonist of retinoid X receptor (UVI3003) on morphology and gene profile of Xenopus tropicalis embryos. Environmental Toxicology and Pharmacology, 2014, 38, 153-162.	4.0	6
103	The teratogenic effects of sediments from the Yangtze Estuary and adjacent bay, China, on frog embryos. Environmental Earth Sciences, 2013, 68, 2385-2391.	2.7	2
104	Effects of clotrimazole and amiodarone on early development of amphibian (<i>Xenopus) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 ⁻ 1.2	Tf 50 222 Td
105	Interaction of triphenyltin and an agonist of retinoid X receptor (LGD1069) in embryos of Xenopus tropicalis. Environmental Toxicology and Pharmacology, 2012, 34, 714-720.	4.0	4
106	Divergent teratogenicity of agonists of retinoid X receptors in embryos of zebrafish (Danio rerio). Ecotoxicology, 2012, 21, 1465-1475.	2.4	13
107	Histological observation on unique phenotypes of malformation induced in Xenopus tropicalis larvae by tributyltin. Journal of Environmental Sciences, 2012, 24, 195-202.	6.1	3

Stage-specific malformations and phenotypic changes induced in embryos of amphibian (Xenopus) Tj ETQq000 rgBT/Overlock 10 Tf 50 18 10 T

#	Article	IF	CITATIONS
109	Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis): A phenotypic comparison with the retinoid X and retinoic acid receptor ligands. Journal of Hazardous Materials, 2011, 192, 1860-1868.	12.4	36
110	Notice of Retraction: Pattern of Malformations in Xenopus tropicalis Embryos Induced by Retinoic Acids and Phenotype-Based Teratogenic Index. , 2011, , .		0
111	Teratogenic effects of tetrabromobisphenol A on Xenopus tropicalis embryos. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 62-68.	2.6	12
112	Effects of tributyltin (TBT) on Xenopus tropicalis embryos at environmentally relevant concentrations. Chemosphere, 2010, 79, 529-533.	8.2	38
113	Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere, 2006, 63, 1319-1327.	8.2	123
114	Generalized system of imposex and reproductive failure in female gastropods of coastal waters of mainland China. Marine Ecology - Progress Series, 2005, 304, 179-189.	1.9	93
115	An updated scheme of imposex for Cantharus cecillei (Gastropoda: Buccinidae) and a new mechanism leading to the sterilization of imposex-affected females. Marine Biology, 2005, 146, 717-723.	1.5	12
116	Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 140, 115-121.	2.6	87
117	Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus. Aquatic Toxicology, 2005, 74, 365-371.	4.0	68