
Paul R Rhomberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/860601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Resistance among Clinical Isolates of <i>Streptococcus pneumoniae</i> in the United States during 1999–2000, Including a Comparison of Resistance Rates since 1994–1995. Antimicrobial Agents and Chemotherapy, 2001, 45, 1721-1729.	3.2	523
2	Antimicrobial Resistance with <i>Streptococcus pneumoniae</i> in the United States, 1997–98. Emerging Infectious Diseases, 1999, 5, 757-765.	4.3	188
3	Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999–2008). Diagnostic Microbiology and Infectious Disease, 2009, 65, 414-426.	1.8	156
4	<i>In vitro</i> antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2016, 71, 670-677.	3.0	150
5	Fluoroquinolone Resistance in Streptococcus pneumoniae in United States since 1994-1995. Antimicrobial Agents and Chemotherapy, 2002, 46, 680-688.	3.2	137
6	Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States Medical Centers: Report from the MYSTIC Program (1999–2005). Diagnostic Microbiology and Infectious Disease, 2006, 56, 367-372.	1.8	124
7	Effect of the Î ² -Lactamase Inhibitor Vaborbactam Combined with Meropenem against Serine Carbapenemase-Producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2016, 60, 5454-5458.	3.2	121
8	Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagnostic Microbiology and Infectious Disease, 2016, 85, 200-204.	1.8	119
9	Antimicrobial Activity of CXA-101, a Novel Cephalosporin Tested in Combination with Tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis Strains Having Various Resistance Phenotypes. Antimicrobial Agents and Chemotherapy, 2011, 55, 2390-2394.	3.2	112
10	Group B streptococci causing neonatal bloodstream infection: Antimicrobial susceptibility and serotyping results from SENTRY centers in the Western Hemisphere. American Journal of Obstetrics and Gynecology, 2000, 183, 859-862.	1.3	103
11	Antimicrobial usage and resistance trend relationships from the MYSTIC Programme in North America (1999-2001). Journal of Antimicrobial Chemotherapy, 2004, 53, 290-296.	3.0	95
12	Nine-Hospital Study Comparing Broth Microdilution and Etest Method Results for Vancomycin and Daptomycin against Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3162-3165.	3.2	87
13	Monitoring Antifungal Resistance in a Global Collection of Invasive Yeasts and Molds: Application of CLSI Epidemiological Cutoff Values and Whole-Genome Sequencing Analysis for Detection of Azole Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	87
14	Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against <i>Candida</i> and <i>Aspergillus</i> spp., including echinocandin- and azole-resistant isolates. Journal of Antimicrobial Chemotherapy, 2016, 71, 2868-2873.	3.0	85
15	WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases. Journal of Antimicrobial Chemotherapy, 2017, 72, 1696-1703.	3.0	81
16	Rapid Emergence of <i>bla</i> _{CTX-M} Among Enterobacteriaceae in U.S. Medical Centers: Molecular Evaluation from the MYSTIC Program (2007). Microbial Drug Resistance, 2008, 14, 211-216.	2.0	79
17	<i>In Vitro</i> Activities of Isavuconazole and Comparator Antifungal Agents Tested against a Global Collection of Opportunistic Yeasts and Molds. Journal of Clinical Microbiology, 2013, 51, 2608-2616.	3.9	75
18	Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward Gram-negative isolates from the Meropenem Yearly Susceptibility Test Information Collection Program (USA). Diagnostic Microbiology and Infectious Disease, 2006, 56, 57-62.	1.8	73

#	Article	IF	CITATIONS
19	Evaluation of Vancomycin Susceptibility Testing for Methicillin-Resistant Staphylococcus aureus: Comparison of Etest and Three Automated Testing Methods. Journal of Clinical Microbiology, 2013, 51, 2077-2081.	3.9	73
20	Antimicrobial susceptibility patterns of β-hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagnostic Microbiology and Infectious Disease, 2002, 43, 157-162.	1.8	70
21	Persistence ofLegionella Pneumophilain a Hospital's Water System: A 13-Year Survey. Infection Control and Hospital Epidemiology, 1999, 20, 793-797.	1.8	66
22	Use of a surfactant (polysorbate 80) to improve MIC susceptibility testing results for polymyxin B and colistin. Diagnostic Microbiology and Infectious Disease, 2012, 74, 412-414.	1.8	65
23	Differential Activity of the Oral Glucan Synthase Inhibitor SCY-078 against Wild-Type and Echinocandin-Resistant Strains of Candida Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	65
24	Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 Systemically active antifungal agents when tested against Candida spp Diagnostic Microbiology and Infectious Disease, 2014, 79, 198-204.	1.8	64
25	Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. International Journal of Antimicrobial Agents, 2020, 55, 105799.	2.5	61
26	Evaluation of the in vitro activity of six broad-spectrum β-lactam antimicrobial agents tested against recent clinical isolates from India: a survey of ten medical center laboratories. Diagnostic Microbiology and Infectious Disease, 2002, 44, 367-377.	1.8	59
27	<i>In Vitro</i> Spectrum of Pexiganan Activity When Tested against Pathogens from Diabetic Foot Infections and with Selected Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2015, 59, 1751-1754.	3.2	59
28	Surveillance of Omadacycline Activity against Clinical Isolates from a Global Collection (North) Tj ETQq0 0 0 rg Chemotherapy, 2017, 61, .	gBT /Overloc 3.2	k 10 Tf 50 38 56
29	Comparative activity of meropenem in US medical centers (2007): initiating the 2nd decade of MYSTIC program surveillance. Diagnostic Microbiology and Infectious Disease, 2008, 61, 203-213.	1.8	55
30	CD101, a long-acting echinocandin, and comparator antifungal agents tested against a global collection of invasive fungal isolates in the SENTRY 2015 Antifungal Surveillance Program. International Journal of Antimicrobial Agents, 2017, 50, 352-358.	2.5	55
31	Antimicrobial spectrum of activity for meropenem and nine broad spectrum antimicrobials: report from the MYSTIC Program (2002) in North America. Diagnostic Microbiology and Infectious Disease, 2003, 47, 365-372.	1.8	54
32	Murepavadin activity tested against contemporary (2016–17) clinical isolates of XDR Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2018, 73, 2400-2404.	3.0	50
33	In Vitro Activity of ABT-773, a New Ketolide, against Recent Clinical Isolates of Streptococcus pneumoniae , Haemophilus influenzae , and Moraxella catarrhalis. Antimicrobial Agents and Chemotherapy, 2000, 44, 447-449.	3.2	49
34	Comparative Bactericidal Activities of Ciprofloxacin, Clinafloxacin, Grepafloxacin, Levofloxacin, Moxifloxacin, and Trovafloxacin against Streptococcus pneumoniae in a Dynamic In Vitro Model. Antimicrobial Agents and Chemotherapy, 2001, 45, 673-678.	3.2	47
35	Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005). Diagnostic Microbiology and Infectious Disease, 2007, 57, 207-215.	1.8	47
36	Bactericidal activity of BAL9141, a novel parenteral cephalosporin against contemporary Gram-positive and Gram-negative isolates. Diagnostic Microbiology and Infectious Disease, 2004, 50, 73-75.	1.8	44

#	Article	IF	CITATIONS
37	Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. Journal of Antimicrobial Chemotherapy, 2008, 61, 1092-1098.	3.0	44
38	Antimicrobial Activity of Omiganan Pentahydrochloride against Contemporary Fungal Pathogens Responsible for Catheter-Associated Infections. Antimicrobial Agents and Chemotherapy, 2008, 52, 1187-1189.	3.2	43
39	Antimicrobial characterisation of CEM-101 activity against respiratory tract pathogens, including multidrug-resistant pneumococcal serogroup 19A isolates. International Journal of Antimicrobial Agents, 2010, 35, 537-543.	2.5	43
40	<i>In Vitro</i> Activity of Isavuconazole against Opportunistic Fungal Pathogens from Two Mycology Reference Laboratories. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
41	Molecular Epidemiology of Macrolide Resistance in Neonatal Bloodstream Isolates of Group B Streptococci. Journal of Clinical Microbiology, 2003, 41, 2659-2661.	3.9	42
42	Revised Reference Broth Microdilution Method for Testing Telavancin: Effect on MIC Results and Correlation with Other Testing Methodologies. Antimicrobial Agents and Chemotherapy, 2014, 58, 5547-5551.	3.2	42
43	Isavuconazole and Nine Comparator Antifungal Susceptibility Profiles for Common and Uncommon Candida Species Collected in 2012: Application of New CLSI Clinical Breakpoints and Epidemiological Cutoff Values. Mycopathologia, 2014, 178, 1-9.	3.1	42
44	Activity of a Long-Acting Echinocandin, Rezafungin, and Comparator Antifungal Agents Tested against Contemporary Invasive Fungal Isolates (SENTRY Program, 2016 to 2018). Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	42
45	Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997–2007). Diagnostic Microbiology and Infectious Disease, 2009, 65, 331-334.	1.8	41
46	Activity of a Long-Acting Echinocandin (CD101) and Seven Comparator Antifungal Agents Tested against a Global Collection of Contemporary Invasive Fungal Isolates in the SENTRY 2014 Antifungal Surveillance Program. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	40
47	A 1997–1998 national surveillance study: Moraxella catarrhalis and Haemophilus influenzae antimicrobial resistance in 34 US institutions. International Journal of Antimicrobial Agents, 1999, 13, 99-107.	2.5	39
48	Potentiation Effects of Amikacin and Fosfomycin against Selected Amikacin-Nonsusceptible Gram-Negative Respiratory Tract Pathogens. Antimicrobial Agents and Chemotherapy, 2014, 58, 3714-3719.	3.2	39
49	Activities of Omadacycline and Comparator Agents against Staphylococcus aureus Isolates from a Surveillance Program Conducted in North America and Europe. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	37
50	Comparison of identification systems for Staphylococcus epidermidis and other coagulase-negative Staphylococcus species. Diagnostic Microbiology and Infectious Disease, 1994, 18, 151-155.	1.8	36
51	Activity of meropenem as serine carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006). Diagnostic Microbiology and Infectious Disease, 2007, 59, 425-432.	1.8	36
52	<i>In Vitro</i> Activity of Delafloxacin Tested against Isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6381-6385.	3.2	36
53	In vitro activity of 11 antimicrobial agents, including gatifloxacin and GAR936, tested against clinical isolates of Mycobacterium marinum. Diagnostic Microbiology and Infectious Disease, 2002, 42, 145-147.	1.8	35
54	Antimicrobial Activity of Murepavadin Tested against Clinical Isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	35

#	Article	IF	CITATIONS
55	Evaluation of the Bactericidal Activity of Fosfomycin in Combination with Selected Antimicrobial Comparison Agents Tested against Gram-Negative Bacterial Strains by Using Time-Kill Curves. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	35
56	Results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme: report of the 2001 data from 15 United States medical centres. International Journal of Antimicrobial Agents, 2004, 23, 52-59.	2.5	34
57	Evaluation of daptomycin, telavancin, teicoplanin, and vancomycin activity in the presence of albumin or serum. Diagnostic Microbiology and Infectious Disease, 2008, 60, 441-444.	1.8	33
58	Differences in potency and categorical agreement between colistin and polymyxin B when testing 15,377 clinical strains collected worldwide. Diagnostic Microbiology and Infectious Disease, 2015, 83, 379-381.	1.8	33
59	A comparison of the antimicrobial activity of meropenem and selected broad-spectrum antimicrobials tested against multi-drug resistant Gram-negative bacilli including bacteraemic Salmonella spp.:. International Journal of Antimicrobial Agents, 2002, 20, 426-431.	2.5	31
60	Activity of Debio1452, a Fabl Inhibitor with Potent Activity against Staphylococcus aureus and Coagulase-Negative Staphylococcus spp., Including Multidrug-Resistant Strains. Antimicrobial Agents and Chemotherapy, 2015, 59, 2583-2587.	3.2	30
61	Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagnostic Microbiology and Infectious Disease, 2010, 67, 266-269.	1.8	27
62	Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. Journal of Antimicrobial Chemotherapy, 2013, 68, 636-639.	3.0	27
63	Antimicrobial Activity Evaluation of Tebipenem (SPR859), an Orally Available Carbapenem, against a Global Set of Enterobacteriaceae Isolates, Including a Challenge Set of Organisms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	27
64	Arbekacin Activity against Contemporary Clinical Bacteria Isolated from Patients Hospitalized with Pneumonia. Antimicrobial Agents and Chemotherapy, 2015, 59, 3263-3270.	3.2	26
65	Evaluation of Synergistic Activity of Isavuconazole or Voriconazole plus Anidulafungin and the Occurrence and Genetic Characterization of Candida auris Detected in a Surveillance Program. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	26
66	Molecular Characterization of the β-Lactamases from Clinical Isolates of Moraxella (Branhamella) catarrhalis Obtained from 24 U.S. Medical Centers during 1994–1995 and 1997–1998. Antimicrobial Agents and Chemotherapy, 2000, 44, 444-446.	3.2	25
67	Antimicrobial resistance rates and clonality results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme: Report of year five (2003). Diagnostic Microbiology and Infectious Disease, 2004, 49, 273-281.	1.8	25
68	Antifungal activity of a new triazole, D0870, compared with four other antifungal agents tested against clinical isolates of Candida and Torulopsis glabrata. Diagnostic Microbiology and Infectious Disease, 1994, 19, 75-80.	1.8	24
69	Tiamulin Activity against Fastidious and Nonfastidious Veterinary and Human Bacterial Isolates: Initial Development of In Vitro Susceptibility Test Methods. Journal of Clinical Microbiology, 2002, 40, 461-465.	3.9	23
70	Application of the Etest to antimicrobial susceptibility testing of Legionella spp Diagnostic Microbiology and Infectious Disease, 1994, 19, 175-178.	1.8	22
71	Carbapenem Susceptibility Discords among Acinetobacter Isolates. Clinical Infectious Diseases, 2006, 42, 158-158.	5.8	22
72	Doripenem activity tested against a global collection of Enterobacteriaceae, including isolates resistant to other extended-spectrum agents. Diagnostic Microbiology and Infectious Disease, 2009, 63, 415-425.	1.8	22

#	Article	IF	CITATIONS
73	In vitro activity of omiganan pentahydrochloride tested against vancomycin-tolerant, -intermediate, and -resistant Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease, 2008, 60, 399-403.	1.8	21
74	Amikacin-Fosfomycin at a Five-to-Two Ratio: Characterization of Mutation Rates in Microbial Strains Causing Ventilator-Associated Pneumonia and Interactions with Commonly Used Antibiotics. Antimicrobial Agents and Chemotherapy, 2014, 58, 3708-3713.	3.2	21
75	Comparative spectrum and activity of NVP-PDF386 (VRC4887), a new peptide deformylase inhibitor. Journal of Antimicrobial Chemotherapy, 2003, 51, 157-161.	3.0	20
76	Clonal occurrences of multidrug-resistant Gram-negative bacilli: report from the Meropenem Yearly Susceptibility Test Information Collection Surveillance Program in the United States (2004). Diagnostic Microbiology and Infectious Disease, 2006, 54, 249-257.	1.8	20
77	Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagnostic Microbiology and Infectious Disease, 2010, 66, 301-307.	1.8	20
78	Activity of BMS284756 (T-3811) tested against anaerobic bacteria, Campylobacter jejuni, Helicobacter pylori and Legionella spp Diagnostic Microbiology and Infectious Disease, 2001, 40, 45-49.	1.8	18
79	Activity of fosfomycin when tested against US contemporary bacterial isolates. Diagnostic Microbiology and Infectious Disease, 2019, 93, 143-146.	1.8	16
80	Performance of BD Max StaphSR for Screening of Methicillin-Resistant Staphylococcus aureus Isolates among a Contemporary and Diverse Collection from 146 Institutions Located in Nine U.S. Census Regions: Prevalence of <i>mecA</i> Dropout Mutants. Journal of Clinical Microbiology, 2016, 54, 204-207.	3.9	15
81	Evaluations of the etest for antimicrobial susceptibility testing of Legionella pneumophila, including validation of the imipenem and sparfloxacin strips. Diagnostic Microbiology and Infectious Disease, 1994, 20, 159-162.	1.8	14
82	Results from Oritavancin Resistance Surveillance Programs (2011 to 2014): Clarification for Using Vancomycin as a Surrogate To Infer Oritavancin Susceptibility. Antimicrobial Agents and Chemotherapy, 2016, 60, 3174-3177.	3.2	14
83	Performance of Fusidic Acid (CEM-102) Susceptibility Testing Reagents: Broth Microdilution, Disk Diffusion, and Etest Methods as Applied to <i>Staphylococcus aureus</i> . Journal of Clinical Microbiology, 2010, 48, 972-976.	3.9	13
84	Impact of COVID-19 on the antifungal susceptibility profiles of isolates collected in a global surveillance program that monitors invasive fungal infections. Medical Mycology, 2022, 60, .	0.7	13
85	Enhanced activity of cefepime–tazobactam (WCK 4282) against KPC-producing Enterobacteriaceae when tested in media supplemented with human serum or sodium chloride. Diagnostic Microbiology and Infectious Disease, 2017, 89, 305-309.	1.8	12
86	Comparative evaluation of etest for susceptibility testing Neisseria meningitidis with eight antimicrobial agents An investigation using U.S. food and drug administration regulatory criteria. Diagnostic Microbiology and Infectious Disease, 1997, 27, 93-97.	1.8	11
87	Serum inhibitory and bactericidal activity of telavancin in non-infected subjects with severe renal impairment or end-stage renal disease. Diagnostic Microbiology and Infectious Disease, 2014, 80, 327-329.	1.8	11
88	In vitro spectrum of pexiganan activity; bactericidal action and resistance selection tested against pathogens with elevated MIC values to topical agents. Diagnostic Microbiology and Infectious Disease, 2016, 86, 66-69.	1.8	11
89	Assessment of 30/20-Microgram Disk Content versus MIC Results for Ceftazidime-Avibactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2018, 56, .	3.9	11
90	Evaluation of Antimicrobial Effects of a New Polymyxin Molecule (SPR741) When Tested in Combination with a Series of β-Lactam Agents Against a Challenge Set of Gram-Negative Pathogens. Microbial Drug Resistance, 2020, 26, 319-328.	2.0	11

#	Article	IF	CITATIONS
91	Antimicrobial Resistance Surveillance and New Drug Development. Open Forum Infectious Diseases, 2019, 6, S5-S13.	0.9	10
92	Educational antimicrobial susceptibility testing as a critical component of microbiology laboratory proficiency programs: American Proficiency Institute results for 2007–2011. Diagnostic Microbiology and Infectious Disease, 2013, 75, 357-360.	1.8	9
93	<i>In Vitro</i> Activity of Tedizolid in Comparison with Other Oral and Intravenous Agents Against a Collection of Community-Acquired Methicillin-Resistant <i>Staphylococcus aureus</i> (2014–2015) in the United States. Microbial Drug Resistance, 2019, 25, 938-943.	2.0	9
94	Antifungal susceptibilities of opportunistic filamentous fungal pathogens from the Asia and Western Pacific Region: data from the SENTRY Antifungal Surveillance Program (2011–2019). Journal of Antibiotics, 2021, 74, 519-527.	2.0	9
95	In vitro activity of posaconazole and comparators versus opportunistic filamentous fungal pathogens globally collected during 8 years. Diagnostic Microbiology and Infectious Disease, 2021, 101, 115473.	1.8	9
96	Evaluation of Rezafungin Provisional CLSI Clinical Breakpoints and Epidemiological Cutoff Values Tested against a Worldwide Collection of Contemporaneous Invasive Fungal Isolates (2019 to 2020). Journal of Clinical Microbiology, 2022, 60, e0244921.	3.9	9
97	Post-β-Lactamase-Inhibitor Effect of Tazobactam in Combination with Ceftolozane on Extended-Spectrum-β-Lactamase-Producing Strains. Antimicrobial Agents and Chemotherapy, 2014, 58, 2434-2437.	3.2	8
98	Validation of a Commercial Dry-Form Broth Microdilution Device (Sensititre) for Testing Tedizolid, a New Oxazolidinone. Journal of Clinical Microbiology, 2015, 53, 657-659.	3.9	8
99	<i>In Vitro</i> Activity of RX-P873 against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2015, 59, 2280-2285.	3.2	8
100	Microbiological Assessment of Polymyxin B Components Tested Alone and in Combination. Antimicrobial Agents and Chemotherapy, 2015, 59, 7823-7825.	3.2	8
101	Evaluation of the Revised Ceftaroline Disk Diffusion Breakpoints When Testing a Challenge Collection of Methicillin-Resistant Staphylococcus aureus Isolates. Journal of Clinical Microbiology, 2018, 56, .	3.9	8
102	Ceftaroline activity tested against viridans group streptococci from US hospitals. Diagnostic Microbiology and Infectious Disease, 2016, 84, 232-235.	1.8	6
103	In Vitro Activity Analysis of a New Polymyxin, SPR741, Tested in Combination with Antimicrobial Agents against a Challenge Set of Enterobacteriaceae , Including Molecularly Characterized Strains. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	5
104	Correlation between Broth Microdilution and Disk Diffusion Results when Testing Ceftazidime-Avibactam against a Challenge Collection of <i>Enterobacterales</i> Isolates: Results from a Multilaboratory Study. Journal of Clinical Microbiology, 2020, 58, .	3.9	5
105	Comparative activity of posaconazole and systemic azole agents against clinical isolates of filamentous fungi from a global surveillance programme. JAC-Antimicrobial Resistance, 2021, 3, dlab088.	2.1	5
106	Commercial Broth Microdilution Panel Validation and Reproducibility Trials for Garenoxacin (BMS-284756), a Novel Desfluoroquinolone. Journal of Clinical Microbiology, 2003, 41, 3967-3969.	3.9	4
107	Reproducibility of dalbavancin MIC test results and an updated surrogate accuracy analysis of vancomycin MIC values to infer dalbavancin susceptibility (2014). Diagnostic Microbiology and Infectious Disease, 2016, 86, 249-251.	1.8	4
108	Media for colistin susceptibility testing does not improve the detection of Klebsiella pneumoniae isolates carrying MgrB disruption and other mutation driven colistin resistance mechanisms. Diagnostic Microbiology and Infectious Disease, 2020, 98, 115077.	1.8	4

#	Article	IF	CITATIONS
109	Reproducibility of daptomycin MIC results using dry-form commercial trays with appropriate supplemental calcium content. International Journal of Antimicrobial Agents, 2005, 25, 274-275.	2.5	3
110	In Vitro Activity of Fosfomycin (ZTI-01, Fosfomycin for Injection) Against Contemporary Gram-Negative and Gram-Positive Isolates: A Comparison of Intermethod Testing. Open Forum Infectious Diseases, 2016, 3, .	0.9	3
111	MIC Quality Control Guidelines and Disk Diffusion Test Optimization for CEM-101, a Novel Fluoroketolide. Journal of Clinical Microbiology, 2010, 48, 1470-1473.	3.9	2
112	Comparison of BD Max StaphSR and BD Max MRSA <i>XT</i> for Screening of Staphylococcus aureus Clinical Isolates Collected from Hospitals in the United States. Journal of Clinical Microbiology, 2016, 54, 1668-1669.	3.9	1
113	Direct in vitro comparison of the prodrug isavuconazonium sulfate with the isavuconazole active compound against Aspergillus spp. and 2 rare moulds. Diagnostic Microbiology and Infectious Disease, 2018, 92, 43-45.	1.8	1
114	Reproducibility assessment of tigecycline MIC results by broth microdilution methods using commercially prepared dry-form panels. Diagnostic Microbiology and Infectious Disease, 2005, 52, 67-69.	1.8	0