List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8605848/publications.pdf

Version: 2024-02-01

		26630	20961
213	14,926	56	115
papers	citations	h-index	g-index
222	222	222	10400
222	222	222	18423
all docs	docs citations	times ranked	citing authors

IOHN FI PASKO

#	Article	IF	CITATIONS
1	Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature Medicine, 2006, 12, 342-347.	30.7	1,865
2	CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Medicine, 2007, 13, 419-422.	30.7	629
3	Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. New England Journal of Medicine, 2017, 377, 2215-2227.	27.0	549
4	Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. New England Journal of Medicine, 2018, 378, 1479-1493.	27.0	525
5	ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 2016, 35, 3201-3208.	5.9	430
6	Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation. Cell, 2013, 154, 583-595.	28.9	408
7	BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6806-6811.	7.1	319
8	Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.	4.5	275
9	Improved Gene Transfer Into Baboon Marrow Repopulating Cells Using Recombinant Human Fibronectin Fragment CH-296 in Combination With Interleukin-6, Stem Cell Factor, FLT-3 Ligand, and Megakaryocyte Growth and Development Factor. Blood, 1998, 92, 1878-1886.	1.4	254
10	Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22231-22236.	7.1	249
11	Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 2010, 28, 1123-1128.	17.5	244
12	Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nature Genetics, 2004, 36, 1003-1007.	21.4	241
13	Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials, 2004, 25, 4921-4927.	11.4	227
14	Molecular Cloning of Mouse Amino Acid Transport System B0, a Neutral Amino Acid Transporter Related to Hartnup Disorder. Journal of Biological Chemistry, 2004, 279, 24467-24476.	3.4	222
15	Thrombopoietic effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in patients with advanced cancer. Lancet, The, 1996, 348, 1279-1281.	13.7	216
16	Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 39.	17.0	215
17	The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2129-2134.	7.1	212
18	A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: Possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1385-1390.	7.1	210

#	Article	IF	CITATIONS
19	IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biology, 2017, 18, 51.	8.8	203
20	A protein complex in the brushâ€border membrane explains a Hartnup disorder allele. FASEB Journal, 2008, 22, 2880-2887.	0.5	193
21	Genome-wide characterization of the routes to pluripotency. Nature, 2014, 516, 198-206.	27.8	187
22	Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nature Medicine, 2020, 26, 1720-1725.	30.7	187
23	Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 2014, 135, 1060-1071.	5.1	179
24	Predicting microRNA targets and functions: traps for the unwary. Nature Methods, 2009, 6, 397-398.	19.0	168
25	Intron retention in mRNA: No longer nonsense. BioEssays, 2016, 38, 41-49.	2.5	163
26	Targeting Amino Acid Transport in Metastatic Castration-Resistant Prostate Cancer: Effects on Cell Cycle, Cell Growth, and Tumor Development. Journal of the National Cancer Institute, 2013, 105, 1463-1473.	6.3	147
27	Marketing of unproven stem cell–based interventions: A call to action. Science Translational Medicine, 2017, 9, .	12.4	147
28	Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Structural and Molecular Biology, 2010, 17, 1030-1034.	8.2	146
29	Androgen Receptor and Nutrient Signaling Pathways Coordinate the Demand for Increased Amino Acid Transport during Prostate Cancer Progression. Cancer Research, 2011, 71, 7525-7536.	0.9	145
30	Characterization of mouse amino acid transporter BOAT1 (slc6a19). Biochemical Journal, 2005, 389, 745-751.	3.7	137
31	Multiyear Factor VIII Expression after AAV Gene Transfer for Hemophilia A. New England Journal of Medicine, 2021, 385, 1961-1973.	27.0	127
32	Global Distribution of Businesses Marketing Stem Cell-Based Interventions. Cell Stem Cell, 2016, 19, 158-162.	11.1	126
33	Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Molecular Therapy, 2020, 28, 2073-2082.	8.2	123
34	Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. Journal of Clinical Investigation, 2011, 121, 446-453.	8.2	117
35	Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica, 2010, 95, 1325-1333.	3.5	113
36	Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. Journal of Clinical Investigation, 2008, 118, 3881-3892.	8.2	101

#	Article	IF	CITATIONS
37	Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nature Communications, 2020, 11, 2042.	12.8	99
38	A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood, 2016, 127, e24-e34.	1.4	94
39	Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nature Communications, 2017, 8, 15134.	12.8	92
40	The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Research, 2019, 47, 11497-11513.	14.5	90
41	Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 2018, 20, 1401-1413.	0.7	87
42	A prospective randomized, controlled trial of intravenous versus oral iron for moderate iron deficiency anaemia of pregnancy. Journal of Internal Medicine, 2010, 268, 286-295.	6.0	86
43	The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduction and Targeted Therapy, 2020, 5, 134.	17.1	84
44	Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector biopsies. National Science Review, 2020, 7, 1306-1318.	9.5	84
45	Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biology, 2015, 16, 161.	8.8	83
46	Intron retention enhances gene regulatory complexity in vertebrates. Genome Biology, 2017, 18, 216.	8.8	79
47	Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Molecular Cancer, 2010, 9, 299.	19.2	77
48	Impaired Nutrient Signaling and Body Weight Control in a Na+ Neutral Amino Acid Cotransporter (Slc6a19)-deficient Mouse. Journal of Biological Chemistry, 2011, 286, 26638-26651.	3.4	76
49	Sustained multilineage gene persistence and expression in dogs transplanted with CD34+ marrow cells transduced by RD114-pseudotype oncoretrovirus vectors. Blood, 2001, 98, 2065-2070.	1.4	75
50	mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics, 2010, 26, 223-227.	4.1	75
51	Activation of the Mitogen-Activated Protein Kinase Pathway Induces Transcription of the <i>PAC-1</i> Phosphatase Gene. Molecular and Cellular Biology, 1996, 16, 2913-2921.	2.3	74
52	Advances in targeted therapy for malignant lymphoma. Signal Transduction and Targeted Therapy, 2020, 5, 15.	17.1	66
53	Potential Use of Gene Transfer in Athletic Performance Enhancement. Molecular Therapy, 2007, 15, 1751-1766.	8.2	65
54	ZNF265—a novel spliceosomal protein able to induce alternative splicing. Journal of Cell Biology, 2001, 154, 25-32.	5.2	64

#	Article	IF	CITATIONS
55	Multilineage mobilization of peripheral blood progenitor cells in humans following administration of PEGâ€rHuMGDF. British Journal of Haematology, 1997, 97, 871-880.	2.5	63
56	Induced dystrophin exon skipping in human muscle explants. Neuromuscular Disorders, 2006, 16, 583-590.	0.6	63
57	ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis, 2017, 6, e367-e367.	4.9	57
58	Phosphatidylinositol 3-Phosphate [PtdIns(3)P] Is Generated at thePlasma Membrane by an Inositol Polyphosphate 5-Phosphatase: Endogenous PtdIns(3)P Can Promote GLUT4 Translocation to the Plasma Membrane. Molecular and Cellular Biology, 2006, 26, 6065-6081.	2.3	56
59	Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria. Biochemical Journal, 2010, 428, 397-407.	3.7	56
60	Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?. Stem Cells, 2010, 28, 1686-1702.	3.2	56
61	The Biology of CD45 and its Use as a Therapeutic Target. Leukemia and Lymphoma, 2004, 45, 229-236.	1.3	55
62	The molecular basis of neutral aminoacidurias. Pflugers Archiv European Journal of Physiology, 2006, 451, 511-517.	2.8	54
63	MicroRNA Target Prediction and Validation. Advances in Experimental Medicine and Biology, 2013, 774, 39-53.	1.6	54
64	Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 2014, 5, 5522.	12.8	54
65	Circulating tumour cells and circulating free nucleic acid as prognostic and predictive biomarkers in colorectal cancer. Cancer Letters, 2014, 346, 24-33.	7.2	54
66	Improved Gene Transfer Into Baboon Marrow Repopulating Cells Using Recombinant Human Fibronectin Fragment CH-296 in Combination With Interleukin-6, Stem Cell Factor, FLT-3 Ligand, and Megakaryocyte Growth and Development Factor. Blood, 1998, 92, 1878-1886.	1.4	54
67	Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Experimental Eye Research, 2006, 83, 667-678.	2.6	53
68	Developing strategies for detection of gene doping. Journal of Gene Medicine, 2008, 10, 3-20.	2.8	53
69	Identification of P-Rex1 as a Novel Rac1-Guanine Nucleotide Exchange Factor (GEF) That Promotes Actin Remodeling and GLUT4 Protein Trafficking in Adipocytes. Journal of Biological Chemistry, 2011, 286, 43229-43240.	3.4	53
70	Regulation of FcγR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3–mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood, 2007, 110, 4480-4491.	1.4	52
71	Challenges in defining the role of intron retention in normal biology and disease. Seminars in Cell and Developmental Biology, 2018, 75, 40-49.	5.0	51
72	Exosomal IncRNAs and cancer: connecting the missing links. Bioinformatics, 2019, 35, 352-360.	4.1	51

#	Article	IF	CITATIONS
73	miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics, 2013, 29, 3225-3226.	4.1	50
74	RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever. Nucleic Acids Research, 2016, 44, 2888-2897.	14.5	50
75	CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic. Oncogene, 2017, 36, 4100-4110.	5.9	50
76	The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy. Frontiers in Oncology, 2019, 9, 1366.	2.8	50
77	Duration of ERK1/2 phosphorylation induced by FGF or ocular media determines lens cell fate. Differentiation, 2007, 75, 662-668.	1.9	49
78	Conserved Expression Patterns Predict microRNA Targets. PLoS Computational Biology, 2009, 5, e1000513.	3.2	49
79	The cancerâ€ŧestis antigen BORIS phenocopies the tumor suppressor CTCF in normal and neoplastic cells. International Journal of Cancer, 2013, 133, 1603-1613.	5.1	48
80	Stem cell therapy of the liver? Fusion or fiction?. Liver Transplantation, 2004, 10, 471-479.	2.4	47
81	Global citizen deliberation on genome editing. Science, 2020, 369, 1435-1437.	12.6	47
82	Thymoma and agranulocytosis: two case reports and literature review. British Journal of Haematology, 1996, 95, 52-56.	2.5	46
83	Implicit hype? Representations of platelet rich plasma in the news media. PLoS ONE, 2017, 12, e0182496.	2.5	46
84	Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomarker Research, 2021, 9, 11.	6.8	46
85	Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Research, 2020, 48, 6513-6529.	14.5	45
86	CTCF and BORIS in genome regulation and cancer. Current Opinion in Genetics and Development, 2014, 24, 8-15.	3.3	44
87	Positioning a Scientific Community on Unproven Cellular Therapies: The 2015 International Society for Cellular Therapy Perspective. Cytotherapy, 2015, 17, 1663-1666.	0.7	44
88	Cell therapy medical tourism: Time for action. Cytotherapy, 2010, 12, 965-968.	0.7	42
89	Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends in Molecular Medicine, 2021, 27, 172-184.	6.7	42
90	Neutral amino acid transport in epithelial cells and its malfunction in Hartnup disorder. Biochemical Society Transactions, 2005, 33, 233-236.	3.4	41

#	Article	IF	CITATIONS
91	Mpl Ligand (MGDF) Alone and in Combination with Stem Cell Factor (SCF) Promotes Proliferation and Survival of Human Megakaryocyte, Erythroid and Granulocyte/Macrophage Progenitors. Stem Cells, 1997, 15, 33-42.	3.2	39
92	Micro <scp>RNA</scp> s in myeloid malignancies. British Journal of Haematology, 2013, 162, 162-176.	2.5	39
93	Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine, 2005, 29, 176-185.	3.2	38
94	Gene Therapy for Hemophilia: Clinical Trials and Technical Tribulations. Seminars in Thrombosis and Hemostasis, 2009, 35, 081-092.	2.7	38
95	Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten. Epigenetics and Chromatin, 2018, 11, 24.	3.9	38
96	Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR. Journal of Gene Medicine, 2004, 6, 249-259.	2.8	37
97	Mesenchymal Stromal Cells for the Treatment of Graft Versus Host Disease. Frontiers in Immunology, 2021, 12, 761616.	4.8	37
98	Sensitive Flow Cytometric Analysis Reveals a Novel Type of Parent-of-Origin Effect in the Mouse Genome. Current Biology, 2003, 13, 955-959.	3.9	36
99	Dynamic association of the mammalian insulator protein CTCF with centrosomes and the midbody. Experimental Cell Research, 2004, 294, 86-93.	2.6	36
100	LAT1 is a putative therapeutic target in endometrioid endometrial carcinoma. International Journal of Cancer, 2016, 139, 2529-2539.	5.1	36
101	Monoterpene Glycoside ESK246 from <i>Pittosporum</i> Targets LAT3 Amino Acid Transport and Prostate Cancer Cell Growth. ACS Chemical Biology, 2014, 9, 1369-1376.	3.4	35
102	The next wave of cellular immunotherapies in pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 24, 561-576.	4.4	34
103	Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2006, 41, 623-632.	1.9	33
104	Autologous Transplantation of Endothelial Progenitor Cells Genetically Modified by Adeno-Associated Viral Vector Delivering Insulin-Like Growth Factor-1 Gene After Myocardial Infarction. Human Gene Therapy, 2010, 21, 1327-1334.	2.7	33
105	Nuclear microRNAs in normal hemopoiesis and cancer. Journal of Hematology and Oncology, 2017, 10, 8.	17.0	33
106	We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia, 2018, 32, 1081-1093.	7.2	33
107	Loss of Solute Carriers in T Cellâ€Mediated Rejection in Mouse and Human Kidneys: An Active Epithelial Injury–Repair Response. American Journal of Transplantation, 2010, 10, 2241-2251.	4.7	32
108	Defining and providing robust controls for microRNA prediction. Bioinformatics, 2012, 28, 1058-1061.	4.1	31

#	Article	IF	CITATIONS
109	Refining microRNA target predictions: Sorting the wheat from the chaff. Biochemical and Biophysical Research Communications, 2014, 445, 780-784.	2.1	31
110	CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Research, 2021, 49, 7825-7838.	14.5	31
111	Further evidence for allelic heterogeneity in Hartnup disorder. Human Mutation, 2008, 29, 1217-1221.	2.5	30
112	Identification of nuclear-enriched miRNAs during mouse granulopoiesis. Journal of Hematology and Oncology, 2014, 7, 42.	17.0	29
113	Distribution of human endogenous retrovirus type W receptor in normal human villous placenta. Pathology, 2007, 39, 406-412.	0.6	28
114	Whither Prometheus' Liver? Greek Myth and the Science of Regeneration. Annals of Internal Medicine, 2008, 149, 421.	3.9	28
115	Acute adrenal insufficiency secondary to heparin–induced thrombocytopenia–thrombosis syndrome. Medical Journal of Australia, 1992, 157, 192-193.	1.7	24
116	Profound thrombocytopenia related to G-CSF. American Journal of Hematology, 2007, 82, 229-230.	4.1	21
117	Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Cancer Science, 2014, 105, 1457-1463.	3.9	21
118	Attenuated platelet sensitivity to collagen in patients with neurofibromatosis type 1. British Journal of Haematology, 1995, 89, 582-588.	2.5	20
119	No Vacillation on HPV Vaccination. Cell, 2018, 172, 1163-1167.	28.9	20
120	EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer. Cell Communication and Signaling, 2019, 17, 83.	6.5	20
121	Holding on to Junk Bonds: Intron Retention in Cancer and Therapy. Cancer Research, 2021, 81, 779-789.	0.9	19
122	Efficacy and Safety in 15 Hemophilia B Patients Treated with the AAV Gene Therapy Vector Fidanacogene Elaparvovec and Followed for at Least 1 Year. Blood, 2019, 134, 3347-3347.	1.4	19
123	Will Cell Reprogramming Resolve the Embryonic Stem Cell Controversy? A Narrative Review. Annals of Internal Medicine, 2011, 155, 114.	3.9	18
124	Promises and Challenges of Stem Cell Research for Regenerative Medicine. Annals of Internal Medicine, 2011, 155, 706.	3.9	18
125	DNA methylation/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics, 2019, 11, 95-109.	2.1	18
126	PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling. Journal of Biological Chemistry, 2016, 291, 17258-17270.	3.4	18

#	Article	IF	CITATIONS
127	Exploring the Clinical Utility of Pancreatic Cancer Circulating Tumor Cells. International Journal of Molecular Sciences, 2022, 23, 1671.	4.1	18
128	CTCF Expression is Essential for Somatic Cell Viability and Protection Against Cancer. International Journal of Molecular Sciences, 2018, 19, 3832.	4.1	17
129	Lentiglobin Gene Therapy for Transfusion-Dependent β-Thalassemia: Update from the Northstar Hgb-204 Phase 1/2 Clinical Study. Blood, 2016, 128, 1175-1175.	1.4	17
130	PCR-based expression analysis and identification of microRNAs. Journal of Rnai and Gene Silencing, 2005, 1, 44-9.	1.2	17
131	The antiproliferative ELF2 isoform, ELF2B, induces apoptosis in vitro and perturbs early lymphocytic development in vivo. Journal of Hematology and Oncology, 2017, 10, 75.	17.0	16
132	Hitting the Bull's-Eye: Mesothelin's Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers, 2021, 13, 3932.	3.7	16
133	Hartnup disorder: Polymorphisms identified in the neutral amino acid transporter SLC1A5. Journal of Inherited Metabolic Disease, 2002, 25, 437-448.	3.6	15
134	Camrelizumab Plus Gemcitabine, Vinorelbine, and Pegylated Liposomal Doxorubicin in Relapsed/Refractory Primary Mediastinal B-Cell Lymphoma: A Single-Arm, Open-Label, Phase II Trial. Clinical Cancer Research, 2020, 26, 4521-4530.	7.0	15
135	Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells. Journal of Gene Medicine, 2007, 9, 22-32.	2.8	14
136	Persistence of the Common Hartnup Disease D173N Allele in Populations of European Origin. Annals of Human Genetics, 2007, 71, 755-761.	0.8	14
137	Gene therapy: therapeutic applications and relevance to pathology. Pathology, 2011, 43, 642-656.	0.6	14
138	Nichotherapy for stem cells: There goes the neighborhood. BioEssays, 2013, 35, 183-190.	2.5	14
139	Identifying microRNA determinants of human myelopoiesis. Scientific Reports, 2018, 8, 7264.	3.3	14
140	Cytokine Receptor Expression on Hematopoietic Stem and Progenitor Cells. Blood, 1997, 89, 65-71.	1.4	14
141	Ex VivoSelection for Oncoretrovirally Transduced Green Fluorescent Protein-Expressing CD34-Enriched Cells Increases Short-Term Engraftment of Transduced Cells in Baboons. Human Gene Therapy, 2002, 13, 891-899.	2.7	13
142	OCT-1 function varies with cell lineage but is not influenced by BCR-ABL. Haematologica, 2011, 96, 213-220.	3.5	13
143	Unique protein interaction networks define the chromatin remodelling module of the NuRD complex. FEBS Journal, 2022, 289, 199-214.	4.7	13
144	Follow-up of More Than 5 Years in a Cohort of Patients with Hemophilia B Treated with Fidanacogene Flanaryovec Adeno-Associated Virus Gene Therapy, Blood, 2021, 138, 3975-3975	1.4	13

9

#	Article	IF	CITATIONS
145	<i>Ctcf</i> haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biology, 2021, 18, 93-103.	3.1	12
146	Structure–function relationships explain CTCF zinc finger mutation phenotypes in cancer. Cellular and Molecular Life Sciences, 2021, 78, 7519-7536.	5.4	12
147	Retrovirus Packaging Cells Expressing the <i>Mus dunni</i> Endogenous Virus Envelope Facilitate Transduction of CHO and Primary Hematopoietic Cells. Journal of Virology, 1998, 72, 10242-10245.	3.4	11
148	Clinical potential of gene therapy: towards meeting the demand. Internal Medicine Journal, 2014, 44, 224-233.	0.8	10
149	First Approved Kinase Inhibitor for AML. Cell, 2017, 171, 981.	28.9	10
150	Show drugs work before selling them. Nature, 2017, 543, 174-175.	27.8	10
151	Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Experimental Eye Research, 2018, 170, 148-159.	2.6	10
152	Spred negatively regulates lens growth by modulating epithelial cell proliferation and fiber differentiation. Experimental Eye Research, 2019, 178, 160-175.	2.6	10
153	Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients. Cancers, 2020, 12, 3738.	3.7	10
154	Establishment of multipotential and antigen presenting cell lines derived from myeloid leukemias in GM-CSF transgenic mice. Leukemia, 1997, 11, 732-742.	7.2	9
155	Precise gene localization by phenotypic assay of radiation hybrid cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7388-7392.	7.1	9
156	Cell and gene therapy manufacturing capabilities in Australia and New Zealand. Cytotherapy, 2019, 21, 1258-1273.	0.7	9
157	Intron Retention Coupled with Nonsense-Mediated Decay Determines Protein Expression and Nuclear Morphology in Granulopoiesis. Blood, 2012, 120, 112-112.	1.4	9
158	Locoregional delivery of CAR-T cells in the clinic. Pharmacological Research, 2022, 182, 106329.	7.1	9
159	Rapid Screening for High-Titer Retroviral Packaging Cell Lines Using an <i>In Situ</i> Fluorescence Assay. Human Gene Therapy, 2002, 13, 1005-1013.	2.7	8
160	A sensitive dual-fluorescence reporter system enables positive selection of ras suppressors by suppression of ras-induced apoptosis. Cancer Gene Therapy, 2003, 10, 745-754.	4.6	8
161	Mobilisation strategies for normal and malignant cells. Pathology, 2011, 43, 547-565.	0.6	8
162	How we mobilize haemopoietic stem cells. Internal Medicine Journal, 2011, 41, 588-594.	0.8	8

#	Article	IF	CITATIONS
163	Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines, 2021, 9, 1268.	3.2	8
164	Damage to incisors after nonmyeloablative total body irradiation may complicate NOD/SCID models of hemopoietic stem cell transplantation. Comparative Medicine, 2006, 56, 209-14.	1.0	8
165	Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscular Disorders, 2016, 26, 462-471.	0.6	7
166	Science, ethics and communication remain essential for the success of cell-based therapies. Brain Circulation, 2016, 2, 146.	1.8	7
167	Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology, 2022, 165, 274-286.	4.4	7
168	Improved Granulocyte Colony-Stimulating Factor Mobilization of Hemopoietic Progenitors Using Cytokine Combinations in Primates. Stem Cells, 2008, 26, 2974-2980.	3.2	6
169	NMR q-space analysis of canonical shapes of human erythrocytes: stomatocytes, discocytes, spherocytes and echinocytes. European Biophysics Journal, 2013, 42, 3-16.	2.2	6
170	Part 2: Making the "unproven―"proven― Cytotherapy, 2016, 18, 120-123.	0.7	6
171	Computational and Experimental Identification of Tissue-Specific MicroRNA Targets. Methods in Molecular Biology, 2017, 1580, 127-147.	0.9	6
172	Direct and rapid identification of T315I-Mutated BCR-ABL expressing leukemic cells using infrared microspectroscopy. Biochemical and Biophysical Research Communications, 2018, 503, 1861-1867.	2.1	6
173	A Phase I Trial of iPSC-Derived MSCs (CYP-001) in Steroid-Resistant Acute GvHD. Blood, 2018, 132, 4562-4562.	1.4	6
174	Mapping oncogenic protein interactions for precision medicine. International Journal of Cancer, 2022,	5.1	6
175	Raising the standard: changes to the Australian Code of Good Manufacturing Practice (cGMP) for Human Blood and Blood Components, Human Tissues and Human Cellular Therapy Products. Pathology, 2014, 46, 177-183.	0.6	5
176	Stem Cell Businesses and Right to Try Laws. Cell Stem Cell, 2019, 25, 304-305.	11.1	5
177	Lymphoproliferative disorders: prospects for gene therapy. Pathology, 2005, 37, 523-533.	0.6	4
178	The Fusion of CLEC12A and MIR223HG Arises from a trans-Splicing Event in Normal and Transformed Human Cells. International Journal of Molecular Sciences, 2021, 22, 12178.	4.1	4
179	Transdifferentiation: an attractive concept in search of evidence. Pathology, 2003, 35, 5.	0.6	4
180	Cell and gene therapy in Australia. Cytotherapy, 2007, 9, 209-221.	0.7	3

#	Article	IF	CITATIONS
181	Cellular therapy in the Asia-Pacific region. A guide for the future pathologist. Pathology, 2011, 43, 616-626.	0.6	3
182	Integrated miRNA Expression Analysis and Target Prediction. Methods in Molecular Biology, 2012, 822, 289-293.	0.9	3
183	Sprouty and Spred temporally regulate ERK1/2-signaling to suppress TGFβ-induced lens EMT. Experimental Eye Research, 2022, 219, 109070.	2.6	3
184	Reporters of Gene Expression: Autofluorescent Proteins. Current Protocols in Cytometry, 1999, 7, Unit 9.12.	3.7	2
185	MicroRNA in Acute Myeloid Leukemia. New England Journal of Medicine, 2008, 359, 653-654.	27.0	2
186	A gene therapy renaissance?. Journal of Gastroenterology and Hepatology (Australia), 2010, 25, 848-850.	2.8	2
187	Future Path: frontiers of molecular and cellular pathology. Pathology, 2011, 43, 523-524.	0.6	2
188	Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods in Cell Biology, 2016, 135, 259-288.	1.1	2
189	The COVID-19 outbreak: a snapshot from down under. Expert Review of Anticancer Therapy, 2020, 20, 433-436.	2.4	2
190	Establishing a robust chimeric antigen receptor T-cell therapy program in Australia: the Royal Prince Alfred Hospital experience. Cytotherapy, 2022, 24, 45-48.	0.7	2
191	AAV-2 Capsid-Specific CD8+ T Cells Limit the Duration of Gene Therapy in Humans and Cross-React with AAV-8 Capsid Blood, 2006, 108, 455-455.	1.4	2
192	20 Years of Legislation - How Australia Has Responded to the Challenge of Regulating Genetically Modified Organisms in the Clinic. Frontiers in Medicine, 2022, 9, .	2.6	2
193	Clinical gene technology in Australia: building on solid foundations. Medical Journal of Australia, 2022, 217, 65-70.	1.7	2
194	Molecules in focus The thrombopoietic factor, Mpl-ligand. International Journal of Biochemistry and Cell Biology, 1998, 30, 657-660.	2.8	1
195	Is inheritable genetic modification the new dividing line?. , 2001, , 1-16.		1
196	The science of inheritable genetic modification. , 2001, , 17-34.		1
197	Transdifferentiation: an attractive concept in search of evidence. Pathology, 2003, 35, 5.	0.6	1
198	Bill to ban reproduction of inmates with cancer proposed in New South Wales. Medical Journal of Australia, 2006, 185, 575-576.	1.7	1

#	Article	IF	CITATIONS
199	The Use of Retroviral Vectors for Gene Transfer into Hematopoietic Stem Cells. Methods in Enzymology, 2006, 420, 82-100.	1.0	1
200	Autofluorescent Proteins for Flow Cytometry. , 2007, 411, 99-110.		1
201	Throwing the baby out with the bathwater: microRNAs have critical roles in health and disease. Pathology, 2009, 41, 203.	0.6	1
202	A changing time: the International Society for Cellular Therapy embraces its industry members. Cytotherapy, 2010, 12, 853-856.	0.7	1
203	Androgen receptor and nutrient signaling pathways coordinate increased amino acid transport in prostate cancer progression. BMC Proceedings, 2012, 6, .	1.6	1
204	A Dynamic Intron Retention Program in the Mammalian Megakaryocyte and Erythrocyte Lineages. Blood, 2015, 126, 2380-2380.	1.4	1
205	Tell haematologists there's been no progress in CML and… see 'em yell!. Pathology, 2008, 40, 229-230.	0.6	0
206	Disambiguating epigenetics. Pathology, 2011, 43, S35-S36.	0.6	0
207	New developments in cell and gene therapy. Pathology, 2012, 44, S33-S34.	0.6	0
208	Inhibition of glutamine uptake regulates mTORC1, glutamine metabolism and cell growth in prostate cancer. Cancer & Metabolism, 2014, 2, P27.	5.0	0
209	Innovations: advances in cellular therapies relating to haematological conditions. Pathology, 2014, 46, S31.	0.6	0
210	An intriguing, new planarian species from Tasmania, with a discussion on protandry in triclad flatworms (Platyhelminthes, Tricladida). Acta Zoologica, 2018, 99, 404-414.	0.8	0
211	Diversity of transcripts emanating from protein-coding genes. Seminars in Cell and Developmental Biology, 2018, 75, 1-2.	5.0	0
212	A warm welcome to Paris – Virtual!. Cytotherapy, 2020, 22, S1-S2.	0.7	0
213	Computational Methods for Intron Retention Identification and Quantification. , 2021, , 63-74.		Ο