Jorge S Reis-Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602794/publications.pdf

Version: 2024-02-01

169 papers 19,602 citations

67 h-index 134 g-index

172 all docs

172 docs citations

172 times ranked

25750 citing authors

#	Article	IF	CITATIONS
1	Triple-Negative Breast Cancer. New England Journal of Medicine, 2010, 363, 1938-1948.	13.9	3,233
2	The landscape of cancer genes and mutational processes in breast cancer. Nature, 2012, 486, 400-404.	13.7	1,535
3	The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6.	7.7	633
4	Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet, The, 2011, 378, 1812-1823.	6.3	629
5	Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype. Clinical Cancer Research, 2005, 11, 5175-5180.	3.2	577
6	Oncogenic Braf Induces Melanocyte Senescence and Melanoma in Mice. Cancer Cell, 2009, 15, 294-303.	7.7	521
7	High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nature Medicine, 2019, 25, 1928-1937.	15.2	485
8	Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nature Genetics, 2011, 43, 879-882.	9.4	460
9	Genetic Interactions in Cancer Progression and Treatment. Cell, 2011, 145, 30-38.	13.5	380
10	Histological types of breast cancer: How special are they?. Molecular Oncology, 2010, 4, 192-208.	2.1	365
11	Histological and molecular types of breast cancer: is there a unifying taxonomy?. Nature Reviews Clinical Oncology, 2009, 6, 718-730.	12.5	353
12	Phyllodes tumours of the breast: a consensus review. Histopathology, 2016, 68, 5-21.	1.6	329
13	Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncology, The, 2010, 11, 339-349.	5.1	318
14	Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell, 2018, 34, 893-905.e8.	7.7	307
15	Breast cancer precursors revisited: molecular features and progression pathways. Histopathology, 2010, 57, 171-192.	1.6	286
16	Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity. Cell Reports, 2014, 6, 514-527.	2.9	239
17	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	13.5	223
18	Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Research and Treatment, 2009, 117, 273-280.	1.1	208

#	Article	IF	Citations
19	Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 2016, 35, 547-573.	2.7	189
20	Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nature Genetics, 2014, 46, 1166-1169.	9.4	188
21	Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. Journal of Pathology, 2010, 220, 562-573.	2.1	185
22	Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature, 2021, 599, 679-683.	13.7	183
23	Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nature Communications, 2017, 8, 857.	5.8	182
24	Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Modern Pathology, 2015, 28, 505-514.	2.9	180
25	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
26	Massively Parallel Sequencing-Based Clonality Analysis of Synchronous Endometrioid Endometrial and Ovarian Carcinomas. Journal of the National Cancer Institute, 2015, 108, djv427.	3.0	164
27	Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical Cancer Research, 2016, 22, 4623-4633.	3.2	153
28	An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nature Medicine, 2017, 23, 929-937.	15.2	146
29	Adenoid cystic carcinomas constitute a genomically distinct subgroup of tripleâ€negative and basalâ€like breast cancers. Journal of Pathology, 2012, 226, 84-96.	2.1	144
30	Tackling the Diversity of Triple-Negative Breast Cancer. Clinical Cancer Research, 2013, 19, 6380-6388.	3.2	141
31	ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nature Genetics, 2020, 52, 198-207.	9.4	140
32	Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. Journal of Pathology, 2010, 222, 282-298.	2.1	139
33	Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nature Genetics, 2020, 52, 582-593.	9.4	136
34	Genomic landscape of adenoid cystic carcinoma of the breast. Journal of Pathology, 2015, 237, 179-189.	2.1	133
35	Pathogenesis of Triple-Negative Breast Cancer. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 181-204.	9.6	132
36	The Landscape of Somatic Genetic Alterations in Metaplastic Breast Carcinomas. Clinical Cancer Research, 2017, 23, 3859-3870.	3.2	129

#	Article	IF	Citations
37	Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. Npj Breast Cancer, 2016, 2, 16036.	2.3	127
38	Delivering precision oncology to patients with cancer. Nature Medicine, 2022, 28, 658-665.	15.2	125
39	The Genomic Landscape of Male Breast Cancers. Clinical Cancer Research, 2016, 22, 4045-4056.	3.2	119
40	The Spectrum of Triple-Negative Breast Disease. American Journal of Pathology, 2017, 187, 2139-2151.	1.9	118
41	Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations. Genome Biology, 2014, 15, 484.	3.8	117
42	Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nature Cancer, 2020, 1, 1188-1203.	5.7	114
43	Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nature Medicine, 2017, 23, 376-385.	15.2	111
44	Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Modern Pathology, 2009, 22, 1401-1414.	2.9	110
45	Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biology, 2015, 16, 107.	3.8	109
46	Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. Npj Breast Cancer, 2020, 6, 17.	2.3	106
47	Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nature Communications, 2018, 9, 1816.	5.8	105
48	Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and <i><scp>TERT</scp></i> promoter hotspot mutations and <i>TERT</i> gene amplification as likely drivers of progression. Journal of Pathology, 2016, 238, 508-518.	2.1	102
49	A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Modern Pathology, 2015, 28, 1603-1612.	2.9	100
50	<i>IDH2</i> Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity. Cancer Research, 2016, 76, 7118-7129.	0.4	99
51	Are triple-negative tumours and basal-like breast cancer synonymous?. Breast Cancer Research, 2007, 9, 404; author reply 405.	2.2	98
52	Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nature Cancer, 2020, 1, 382-393.	5.7	96
53	Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Modern Pathology, 2016, 29, 476-488.	2.9	95
54	Uterine adenosarcomas are mesenchymal neoplasms. Journal of Pathology, 2016, 238, 381-388.	2.1	94

#	Article	IF	CITATIONS
55	Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Nature Communications, 2018, 9, 3533.	5.8	92
56	Genetic Heterogeneity in Therapy-Na \tilde{A} -ve Synchronous Primary Breast Cancers and Their Metastases. Clinical Cancer Research, 2017, 23, 4402-4415.	3.2	91
57	The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers. Journal of the National Cancer Institute, 2018, 110, 1030-1034.	3.0	90
58	Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. Journal of Pathology, 2014, 232, 553-565.	2.1	88
59	Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nature Cancer, 2022, 3, 723-733.	5.7	82
60	Loss of 16q in high grade breast cancer is associated with estrogen receptor status: Evidence for progression in tumors with a luminal phenotype?. Genes Chromosomes and Cancer, 2009, 48, 351-365.	1.5	80
61	Breast Cancer Genomics From Microarrays to Massively Parallel Sequencing: Paradigms and New Insights. Journal of the National Cancer Institute, 2015, 107, .	3.0	80
62	Metastatic breast carcinomas display genomic and transcriptomic heterogeneity. Modern Pathology, 2015, 28, 340-351.	2.9	80
63	Small cell carcinoma of the gynecologic tract: A multifaceted spectrum of lesions. Gynecologic Oncology, 2014, 134, 410-418.	0.6	79
64	<i>MED12</i> somatic mutations in fibroadenomas and phyllodes tumours of the breast. Histopathology, 2015, 67, 719-729.	1.6	78
65	Mesothelin Expression in Triple Negative Breast Carcinomas Correlates Significantly with Basal-Like Phenotype, Distant Metastases and Decreased Survival. PLoS ONE, 2014, 9, e114900.	1.1	77
66	Reliability of Whole-Exome Sequencing for Assessing Intratumor Genetic Heterogeneity. Cell Reports, 2018, 25, 1446-1457.	2.9	76
67	<i>MYBL1</i> rearrangements and <i>MYB</i> amplification in breast adenoid cystic carcinomas lacking the <i>MYB</i> – <i>NFIB</i> fusion gene. Journal of Pathology, 2018, 244, 143-150.	2.1	74
68	Metaplastic breast carcinoma: more than a special type. Nature Reviews Cancer, 2014, 14, 147-148.	12.8	69
69	Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Modern Pathology, 2016, 29, 1292-1305.	2.9	68
70	The Genomic Landscape of Mucinous Breast Cancer. Journal of the National Cancer Institute, 2019, 111, 737-741.	3.0	68
71	FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell, 2020, 38, 534-550.e9.	7.7	67
72	Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression. Gynecologic Oncology, 2019, 152, 11-19.	0.6	66

#	Article	IF	CITATIONS
73	Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast. Npj Breast Cancer, 2017, 3, 48.	2.3	63
74	Mutation Profiling of Key Cancer Genes in Primary Breast Cancers and Their Distant Metastases. Cancer Research, 2018, 78, 3112-3121.	0.4	57
75	Mesonephric and mesonephric-like carcinomas of the female genital tract: molecular characterization including cases with mixed histology and matched metastases. Modern Pathology, 2021, 34, 1570-1587.	2.9	57
76	Independent realâ€world application of a clinicalâ€grade automated prostate cancer detection system. Journal of Pathology, 2021, 254, 147-158.	2.1	57
77	Genomic and immunohistochemical analysis of adenosquamous carcinoma of the breast. Modern Pathology, 2010, 23, 951-960.	2.9	56
78	Genomic profile of advanced breast cancer in circulating tumour DNA. Nature Communications, 2021, 12, 2423.	5.8	54
79	The repertoire of somatic genetic alterations of acinic cell carcinomas of the breast: an exploratory, hypothesisâ€generating study. Journal of Pathology, 2015, 237, 166-178.	2.1	53
80	Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology, 2012, 60, E115-30.	1.6	52
81	Microglandular adenosis associated with tripleâ€negative breast cancer is a neoplastic lesion of tripleâ€negative phenotype harbouring <i><scp>TP53</scp></i> somatic mutations. Journal of Pathology, 2016, 238, 677-688.	2.1	52
82	Phyllodes tumors with and without fibroadenoma-like areas display distinct genomic features and may evolve through distinct pathways. Npj Breast Cancer, 2017, 3, 40.	2.3	52
83	Microglandular adenosis or microglandular adenoma? A molecular genetic analysis of a case associated with atypia and invasive carcinoma. Histopathology, 2009, 55, 732-743.	1.6	48
84	Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family. Modern Pathology, 2017, 30, 69-84.	2.9	48
85	HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nature Communications, 2021, 12, 6667.	5.8	47
86	Secretory carcinoma of the breast: clinicopathologic profile of 14 cases emphasising distant metastatic potential. Histopathology, 2019, 75, 213-224.	1.6	46
87	Solid papillary breast carcinomas resembling the tall cell variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting <i><scp>IDH</scp>2</i> and <i><scp>PIK</scp>3<scp>CA</scp></i> : a validation cohort. Histopathology, 2018, 73, 339-344.	1.6	44
88	Lobular Carcinomas <i>In Situ</i> Display Intralesion Genetic Heterogeneity and Clonal Evolution in the Progression to Invasive Lobular Carcinoma. Clinical Cancer Research, 2019, 25, 674-686.	3.2	44
89	Biâ€allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer. Journal of Pathology, 2017, 242, 165-177.	2.1	43
90	Whole-Exome Sequencing Analysis of the Progression from Non–Low-Grade Ductal Carcinoma <i>In Situ</i> i>to Invasive Ductal Carcinoma. Clinical Cancer Research, 2020, 26, 3682-3693.	3.2	42

#	Article	IF	Citations
91	PI3K Pathway Activation in High-Grade Ductal Carcinoma <i>In Situ</i> i>â€"Implications for Progression to Invasive Breast Carcinoma. Clinical Cancer Research, 2014, 20, 2326-2337.	3.2	41
92	Homologous recombination DNA repair defects in PALB2-associated breast cancers. Npj Breast Cancer, 2019, 5, 23.	2.3	39
93	Histologic Classification and Molecular Signature of Polymorphous Adenocarcinoma (PAC) and Cribriform Adenocarcinoma of Salivary Gland (CASG). American Journal of Surgical Pathology, 2020, 44, 545-552.	2.1	39
94	PAX8–GLIS3 gene fusion is a pathognomonic genetic alteration of hyalinizing trabecular tumors of the thyroid. Modern Pathology, 2019, 32, 1734-1743.	2.9	38
95	Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. Modern Pathology, 2020, 33, 1606-1617.	2.9	38
96	Pathogenic <i>ATM</i> Mutations in Cancer and a Genetic Basis for Radiotherapeutic Efficacy. Journal of the National Cancer Institute, 2021, 113, 266-273.	3.0	38
97	Poor response to neoadjuvant chemotherapy in metaplastic breast carcinoma. Npj Breast Cancer, 2021, 7, 96.	2.3	38
98	Are acinic cell carcinomas of the breast and salivary glands distinct diseases?. Histopathology, 2015, 67, 529-537.	1.6	37
99	Immunohistochemical analysis of IDH2 R172 hotspot mutations in breast papillary neoplasms: applications in the diagnosis of tall cell carcinoma with reverse polarity. Modern Pathology, 2020, 33, 1056-1064.	2.9	35
100	Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nature Communications, 2020, 11 , 44.	5.8	34
101	Genomic landscape of endometrial carcinomas of no specific molecular profile. Modern Pathology, 2022, 35, 1269-1278.	2.9	33
102	Infiltrating epitheliosis of the breast: characterization of histological features, immunophenotype and genomic profile. Histopathology, 2016, 68, 1030-1039.	1.6	31
103	Determining PD-L1 Status in Patients With Triple-Negative Breast Cancer: Lessons Learned From IMpassion130. Journal of the National Cancer Institute, 2022, 114, 664-675.	3.0	31
104	Functional and topographic effects on DNA methylation in IDH1/2 mutant cancers. Scientific Reports, 2019, 9, 16830.	1.6	29
105	Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD genes. Modern Pathology, 2020, 33, 65-73.	2.9	29
106	Massively parallel sequencing analysis of synchronous fibroepithelial lesions supports the concept of progression from fibroadenoma to phyllodes tumor. Npj Breast Cancer, 2016, 2, 16035.	2.3	28
107	Massively parallel sequencing analysis of 68 gastric-type cervical adenocarcinomas reveals mutations in cell cycle-related genes and potentially targetable mutations. Modern Pathology, 2021, 34, 1213-1225.	2.9	28
108	V211D Mutation in MEK1 Causes Resistance to MEK Inhibitors in Colon Cancer. Cancer Discovery, 2019, 9, 1182-1191.	7.7	27

#	Article	IF	CITATIONS
109	The genomic landscape of metastatic histologic special types of invasive breast cancer. Npj Breast Cancer, 2020, 6, 53.	2.3	27
110	Ultraviolet radiation drives mutations in a subset of mucosal melanomas. Nature Communications, 2021, 12, 259.	5.8	27
111	Myxoid fibroadenomas differ from conventional fibroadenomas: a hypothesisâ€generating study. Histopathology, 2017, 71, 626-634.	1.6	26
112	Mixed Mesonephric Adenocarcinoma and High-grade Neuroendocrine Carcinoma of the Uterine Cervix: Case Description of a Previously Unreported Entity With Insights Into Its Molecular Pathogenesis. International Journal of Gynecological Pathology, 2017, 36, 76-89.	0.9	26
113	Invasion in breast lesions: the role of the epithelial–stroma barrier. Histopathology, 2018, 72, 1075-1083.	1.6	25
114	Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes. Npj Breast Cancer, 2020, 6, 20.	2.3	25
115	Problematic breast tumors reassessed in light of novel molecular data. Modern Pathology, 2021, 34, 38-47.	2.9	25
116	The clinical behavior and genomic features of the so-called adenoid cystic carcinomas of the solid variant with basaloid features. Modern Pathology, 2022, 35, 193-201.	2.9	25
117	Lack of <i><scp>PRKD</scp>2</i> and <i><scp>PRKD</scp>3</i> kinase domain somatic mutations in <i><scp>PRKD</scp>1</i> wildâ€type classic polymorphous lowâ€grade adenocarcinomas of the salivary gland. Histopathology, 2016, 68, 1055-1062.	1.6	23
118	Clinical and pathologic features associated with PD-L1 (SP142) expression in stromal tumor-infiltrating immune cells of triple-negative breast carcinoma. Modern Pathology, 2020, 33, 2221-2232.	2.9	23
119	Resolving quandaries: basaloid adenoid cystic carcinoma or breast cylindroma? The role of massively parallel sequencing. Histopathology, 2016, 68, 262-271.	1.6	22
120	Micropapillary variant of mucinous carcinoma of the breast shows genetic alterations intermediate between those of mucinous carcinoma and micropapillary carcinoma. Histopathology, 2019, 75, 139-145.	1.6	22
121	The role of a monoclonal antibody 11C8B1 as a diagnostic marker of IDH2-mutated sinonasal undifferentiated carcinoma. Modern Pathology, 2019, 32, 205-215.	2.9	22
122	Recurrent <i>MED12</i> exon 2 mutations in benign breast fibroepithelial lesions in adolescents and young adults. Journal of Clinical Pathology, 2019, 72, 258-262.	1.0	22
123	Assessment of HMGA2 and PLAG1 rearrangements in breast adenomyoepitheliomas. Npj Breast Cancer, 2019, 5, 6.	2.3	21
124	Solid pseudopapillary neoplasms of the pancreas are dependent on the Wnt pathway. Molecular Oncology, 2019, 13, 1684-1692.	2.1	21
125	The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Molecular Oncology, 2021, 15, 1024-1039.	2.1	21
126	Genomic Alterations in <i>PIK3CA</i> Mutated Breast Cancer Result in mTORC1 Activation and Limit the Sensitivity to PI3Kα Inhibitors. Cancer Research, 2021, 81, 2470-2480.	0.4	20

#	Article	IF	Citations
127	Endometrial Cancers in <i>BRCA1</i> or <i>BRCA2</i> Germline Mutation Carriers: Assessment of Homologous Recombination DNA Repair Defects. JCO Precision Oncology, 2019, 3, 1-11.	1.5	19
128	Immunohistochemical assessment of HRASQ61R mutations in breast adenomyoepitheliomas. Histopathology, 2020, 76, 865-874.	1.6	19
129	Clonal relationship and directionality of progression of synchronous endometrial and ovarian carcinomas in patients with DNA mismatch repair-deficiency associated syndromes. Modern Pathology, 2021, 34, 994-1007.	2.9	19
130	A Distinctive Adnexal (Usually Paratubal) Neoplasm Often Associated With Peutz-Jeghers Syndrome and Characterized by STK11 Alterations (STK11 Adnexal Tumor). American Journal of Surgical Pathology, 2021, 45, 1061-1074.	2.1	19
131	Wholeâ€exome sequencing and RNA sequencing analyses of acinic cell carcinomas of the breast. Histopathology, 2019, 75, 931-937.	1.6	16
132	TERT promoter hotspot mutations and gene amplification in metaplastic breast cancer. Npj Breast Cancer, 2021, 7, 43.	2.3	16
133	Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecologic Oncology, 2021, 161, 535-544.	0.6	16
134	Genomic characterization of small cell carcinomas of the uterine cervix. Molecular Oncology, 2022, 16, 833-845.	2.1	14
135	Metaplastic carcinomas of the breast without evidence of epithelial differentiation: a diagnostic approach for management. Histopathology, 2021, 78, 759-771.	1.6	13
136	Homologous recombination deficiency: how genomic signatures are generated. Current Opinion in Genetics and Development, 2021, 66, 93-100.	1.5	13
137	Morphologic and Genomic Characteristics of Breast Cancers Occurring in Individuals with Lynch Syndrome. Clinical Cancer Research, 2022, 28, 404-413.	3.2	13
138	Massively parallel sequencing analysis of benign melanocytic naevi. Histopathology, 2019, 75, 29-38.	1.6	12
139	Breast Cancer Heterogeneity: Roles in Tumorigenesis and Therapeutic Implications. Current Breast Cancer Reports, 2017, 9, 34-44.	0.5	11
140	Somatic genetic alterations in synchronous and metachronous lowâ€grade serous tumours and highâ€grade carcinomas of the adnexa. Histopathology, 2019, 74, 638-650.	1.6	11
141	Genomic analysis of recurrences and highâ€grade forms of polymorphous adenocarcinoma. Histopathology, 2019, 75, 193-201.	1.6	10
142	Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precision Oncology, 2019, 3, 1-9.	1.5	10
143	Sclerosing epithelioid mesenchymal neoplasm of the pancreas–Âa proposed new entity. Modern Pathology, 2020, 33, 456-467.	2.9	10
144	Oncogenic properties and signaling basis of the PAX8â€GLIS3 fusion gene. International Journal of Cancer, 2020, 147, 2253-2264.	2.3	10

#	Article	IF	Citations
145	Germline RAD51B variants confer susceptibility to breast and ovarian cancers deficient in homologous recombination. Npj Breast Cancer, 2021, 7, 135.	2.3	9
146	Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. Oncogene, 2022, 41, 1835-1850.	2.6	9
147	Hyperthermic intraperitoneal chemotherapy (HIPEC) with carboplatin induces distinct transcriptomic changes in ovarian tumor and normal tissues. Gynecologic Oncology, 2022, 165, 239-247.	0.6	9
148	Clinical-pathologic characteristics and response to neoadjuvant chemotherapy in triple-negative low Ki-67 proliferation (TNLP) breast cancers. Npj Breast Cancer, 2022, 8, 51.	2.3	9
149	Spectrum of <i>BRAF</i> Mutations and Gene Rearrangements in Ovarian Serous Carcinoma. JCO Precision Oncology, 2021, 5, 1480-1492.	1.5	8
150	Wholeâ€exome analysis of metaplastic breast carcinomas with extensive osseous differentiation. Histopathology, 2020, 77, 321-326.	1.6	7
151	Genetic interactions among Brca1, Brca2, Palb2, and Trp53 in mammary tumor development. Npj Breast Cancer, 2021, 7, 45.	2.3	7
152	Recurrence biomarkers of triple negative breast cancer treated with neoadjuvant chemotherapy and anti-EGFR antibodies. Npj Breast Cancer, 2021, 7, 124.	2.3	7
153	Ki67 Assessment in Breast Cancer: Are We There Yet?. Journal of the National Cancer Institute, 2021, 113, 797-798.	3.0	7
154	PD-L1 Expression in Metaplastic Breast Carcinoma Using the PD-L1 SP142 Assay and Concordance Among PD-L1 Immunohistochemical Assays. American Journal of Surgical Pathology, 2021, 45, 1274-1281.	2.1	6
155	Paired Tumor-Normal Sequencing Provides Insights into TP53-Related Cancer Spectrum in Li-Fraumeni Patients. Journal of the National Cancer Institute, 2021, , .	3.0	6
156	Diagnosis and management of an endometrial cancer patient with Cowden syndrome. Gynecologic Oncology, 2021, 163, 14-21.	0.6	6
157	ESR1 hotspot mutations in endometrial stromal sarcoma with high-grade transformation and endocrine treatment. Modern Pathology, 2021, , .	2.9	5
158	<scp>Wholeâ€exome</scp> sequencing analysis of juvenile papillomatosis and coexisting breast carcinoma. Journal of Pathology: Clinical Research, 2021, 7, 113-120.	1.3	4
159	Genetic characterisation of adult primary pleomorphic uterine rhabdomyosarcoma and comparison with uterine carcinosarcoma. Histopathology, 2021, 79, 176-186.	1.6	4
160	LINCO0355 regulates p27KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. Npj Breast Cancer, 2022, 8, 49.	2.3	4
161	Histologic and genomic features of breast cancers with alterations affecting the SWI/SNF (SMARC) genes. Modern Pathology, 2021, 34, 1850-1859.	2.9	3
162	<i>ATM</i> Germline-Mutated Gastroesophageal Junction Adenocarcinomas: Clinical Descriptors, Molecular Characteristics, and Potential Therapeutic Implications. Journal of the National Cancer Institute, 2022, 114, 761-770.	3.0	3

#	Article	IF	CITATIONS
163	Pancreatoblastomas and mixed and pure acinar cell carcinomas share epigenetic signatures distinct from other neoplasms of the pancreas. Modern Pathology, 2021, , .	2.9	3
164	Genetic analysis of a morphologically heterogeneous ovarian endometrioid carcinoma. Histopathology, 2017, 71, 480-487.	1.6	2
165	Stromal <i>MED12</i> exon 2 mutations in complex fibroadenomas of the breast. Journal of Clinical Pathology, 2022, 75, 133-136.	1.0	2
166	Recurrent <i>WWTR1</i> <scp>S89W</scp> mutations and Hippo pathway deregulation in clear cell carcinomas of the cervix. Journal of Pathology, 2022, 257, 635-649.	2.1	2
167	Acquisition of APOBEC Mutagenesis and Microsatellite Instability Signatures in the Development of Brain Metastases in Low-Grade, Early-Stage Endometrioid Endometrial Carcinoma. JCO Precision Oncology, 2020, 4, 1217-1223.	1.5	1
168	Same-Cell Co-Occurrence of RAS Hotspot and BRAF V600E Mutations in Treatment-Naive Colorectal Cancer. JCO Precision Oncology, 2022, 6, e2100365.	1.5	1
169	How Did We Get There? The Progression from Ductal Carcinoma In Situ to Invasive Ductal Carcinoma. Current Breast Cancer Reports, 2019, 11, 175-184.	0.5	0