John E Pool

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of larger size in high-altitude <i>Drosophila melanogaster</i> has a variable genetic architecture. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
2	Gene Regulatory Evolution in Cold-Adapted Fly Populations Neutralizes Plasticity and May Undermine Genetic Canalization. Genome Biology and Evolution, 2022, 14, .	2.5	5
3	A Population Genomic Assessment of Three Decades of Evolution in a Natural <i>Drosophila</i> Population. Molecular Biology and Evolution, 2022, 39, .	8.9	26
4	Parallel and population-specific gene regulatory evolution in cold-adapted fly populations. Genetics, 2021, 218, .	2.9	14
5	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, 2021, 10, .	6.0	66
6	Ethanol resistance in Drosophila melanogaster has increased in parallel coldâ€adapted populations and shows a variable genetic architecture within and between populations. Ecology and Evolution, 2021, 11, 15364-15376.	1.9	4
7	Recurrent Collection of Drosophila melanogaster from Wild African Environments and Genomic Insights into Species History. Molecular Biology and Evolution, 2020, 37, 627-638.	8.9	56
8	Wild African Drosophila melanogaster Are Seasonal Specialists on Marula Fruit. Current Biology, 2018, 28, 3960-3968.e3.	3.9	89
9	Directional selection reduces developmental canalization against genetic and environmental perturbations in Drosophila wings. Evolution; International Journal of Organic Evolution, 2018, 72, 1708-1715.	2.3	11
10	Impacts of Recurrent Hitchhiking on Divergence and Demographic Inference in Drosophila. Genome Biology and Evolution, 2018, 10, 1882-1891.	2.5	20
11	Parallel Evolution of Cold Tolerance Within <i>Drosophila melanogaster</i> . Molecular Biology and Evolution, 2017, 34, msw232.	8.9	47
12	PopFly: the <i>Drosophila</i> population genomics browser. Bioinformatics, 2017, 33, 2779-2780.	4.1	39
13	A haplotype method detects diverse scenarios of local adaptation from genomic sequence variation. Molecular Ecology, 2016, 25, 3081-3100.	3.9	19
14	Recurrent specialization on a toxic fruit in an island <i>Drosophila</i> population. Proceedings of the United States of America, 2016, 113, 4771-4776.	7.1	88
15	Life history evolution and cellular mechanisms associated with increased size in highâ€altitude <i>Drosophila</i> . Ecology and Evolution, 2016, 6, 5893-5906.	1.9	25
16	The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila. Current Biology, 2016, 26, 2412-2422.	3.9	57
17	A Variable Genetic Architecture of Melanic Evolution in <i>Drosophila melanogaster</i> . Genetics, 2016, 204, 1307-1319.	2.9	44
18	A Thousand Fly Genomes: An Expanded <i>Drosophila</i> Genome Nexus. Molecular Biology and Evolution, 2016, 33, 3308-3313.	8.9	160

John E Pool

#	Article	IF	CITATIONS
19	Genetic Mapping by Bulk Segregant Analysis in <i>Drosophila</i> : Experimental Design and Simulation-Based Inference. Genetics, 2016, 204, 1295-1306.	2.9	22
20	The Power of Natural Variation for Model Organism Biology. Trends in Genetics, 2016, 32, 147-154.	6.7	70
21	Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nature Communications, 2016, 7, 10400.	12.8	37
22	Decanalization of wing development accompanied the evolution of large wings in high-altitude <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1014-1019.	7.1	39
23	The Mosaic Ancestry of the <i>Drosophila</i> Genetic Reference Panel and the <i>D. melanogaster</i> Reference Genome Reveals a Network of Epistatic Fitness Interactions. Molecular Biology and Evolution, 2015, 32, msv194.	8.9	103
24	The <i>Drosophila</i> Genome Nexus: A Population Genomic Resource of 623 <i>Drosophila melanogaster</i> Genomes, Including 197 from a Single Ancestral Range Population. Genetics, 2015, 199, 1229-1241.	2.9	273
25	Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evolutionary Biology, 2014, 14, 179.	3.2	90
26	ALTITUDINAL CLINAL VARIATION IN WING SIZE AND SHAPE IN AFRICAN <i>DROSOPHILA MELANOGASTER</i> : ONE CLINE OR MANY?. Evolution; International Journal of Organic Evolution, 2013, 67, 438-452.	2.3	71
27	Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16927-16932.	7.1	25
28	Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture. PLoS Genetics, 2012, 8, e1003080.	3.5	318
29	Genomic Variation in Natural Populations of <i>Drosophila melanogaster</i> . Genetics, 2012, 192, 533-598.	2.9	325
30	Measures of linkage disequilibrium among neighbouring SNPs indicate asymmetries across the house mouse hybrid zone. Molecular Ecology, 2011, 20, 2985-3000.	3.9	58
31	Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science, 2010, 329, 75-78.	12.6	1,339
32	Archaeology Augments Tibet's Genetic History—Response. Science, 2010, 329, 1467-1468.	12.6	3
33	Population genetic inference from genomic sequence variation. Genome Research, 2010, 20, 291-300.	5.5	200
34	Stepwise Modification of a Modular Enhancer Underlies Adaptation in a <i>Drosophila</i> Population. Science, 2009, 326, 1663-1667.	12.6	259
35	Inference of Historical Changes in Migration Rate From the Lengths of Migrant Tracts. Genetics, 2009, 181, 711-719.	2.9	179
36	The diploid genome sequence of an Asian individual. Nature, 2008, 456, 60-65.	27.8	834

John E Pool

#	Article	IF	CITATIONS
37	The Impact of Founder Events on Chromosomal Variability in Multiply Mating Species. Molecular Biology and Evolution, 2008, 25, 1728-1736.	8.9	35
38	Phylogenetic incongruence in the Drosophila melanogaster species group. Molecular Phylogenetics and Evolution, 2007, 43, 1138-1150.	2.7	30
39	The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Molecular Ecology, 2007, 16, 2844-2851.	3.9	132
40	POPULATION SIZE CHANGES RESHAPE GENOMIC PATTERNS OF DIVERSITY. Evolution; International Journal of Organic Evolution, 2007, 61, 3001-3006.	2.3	157
41	Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity, 2006, 97, 27-32.	2.6	65
42	History and Structure of Sub-Saharan Populations of Drosophila melanogaster. Genetics, 2006, 174, 915-929.	2.9	70
43	A Scan of Molecular Variation Leads to the Narrow Localization of a Selective Sweep Affecting Both Afrotropical and Cosmopolitan Populations of Drosophila melanogaster, Genetics, 2006, 172, 1093-1105,	2.9	35