
Chang-Feng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/860226/publications.pdf Version: 2024-02-01

CHANC-FENC WU

#	Article	IF	CITATIONS
1	Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angewandte Chemie - International Edition, 2013, 52, 3086-3109.	13.8	954
2	Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging. ACS Nano, 2008, 2, 2415-2423.	14.6	656
3	Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal of the American Chemical Society, 2010, 132, 15410-15417.	13.7	494
4	Ratiometric Temperature Sensing with Semiconducting Polymer Dots. Journal of the American Chemical Society, 2011, 133, 8146-8149.	13.7	361
5	Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles. Langmuir, 2006, 22, 2956-2960.	3.5	348
6	Ratiometric Singleâ€Nanoparticle Oxygen Sensors for Biological Imaging. Angewandte Chemie - International Edition, 2009, 48, 2741-2745.	13.8	345
7	Design of Highly Emissive Polymer Dot Bioconjugates for Inâ€Vivo Tumor Targeting. Angewandte Chemie - International Edition, 2011, 50, 3430-3434.	13.8	330
8	Conjugated Polymer Dots for Multiphoton Fluorescence Imaging. Journal of the American Chemical Society, 2007, 129, 12904-12905.	13.7	301
9	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	16.6	289
10	Development of Ultrabright Semiconducting Polymer Dots for Ratiometric pH Sensing. Analytical Chemistry, 2011, 83, 1448-1455.	6.5	245
11	Single Molecule Nanoparticles of the Conjugated Polymer MEHâ^'PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy. Journal of Physical Chemistry B, 2005, 109, 8543-8546.	2.6	235
12	Ultrabright and Bioorthogonal Labeling of Cellular Targets Using Semiconducting Polymer Dots and Click Chemistry. Angewandte Chemie - International Edition, 2010, 49, 9436-9440.	13.8	215
13	Gold nanoparticles as a contrast agent for <i>in vivo</i> tumor imaging with photoacoustic tomography. Nanotechnology, 2009, 20, 395102.	2.6	214
14	Energy Transfer in a Nanoscale Multichromophoric System:  Fluorescent Dye-Doped Conjugated Polymer Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 1772-1781.	3.1	210
15	Near-Infrared Fluorescent Dye-Doped Semiconducting Polymer Dots. ACS Nano, 2011, 5, 1468-1475.	14.6	202
16	Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano, 2013, 7, 376-384.	14.6	197
17	Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale, 2010, 2, 1999.	5.6	191
18	Energy Transfer Mediated Fluorescence from Blended Conjugated Polymer Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 14148-14154.	2.6	188

#	Article	IF	CITATIONS
19	Enhanced Phototherapy by Nanoparticle-Enzyme via Generation and Photolysis of Hydrogen Peroxide. Nano Letters, 2017, 17, 4323-4329.	9.1	188
20	Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale, 2015, 7, 12045-12050.	5.6	176
21	Semiconducting Polymer Dots with Dualâ€Enhanced NIRâ€IIa Fluorescence for Throughâ€Skull Mouseâ€Brain Imaging. Angewandte Chemie - International Edition, 2020, 59, 3691-3698.	13.8	171
22	Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes. Applied Physics Letters, 2003, 82, 520-522.	3.3	170
23	Copper(ii) and iron(ii) ion sensing with semiconducting polymer dots. Chemical Communications, 2011, 47, 2820.	4.1	160
24	Multi-ion cooperative processes in Yb3+ clusters. Light: Science and Applications, 2014, 3, e193-e193.	16.6	148
25	Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. Journal of the American Chemical Society, 2015, 137, 173-178.	13.7	145
26	<i>In Vivo</i> Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano, 2016, 10, 6769-6781.	14.6	132
27	Nanoscale 3D Tracking with Conjugated Polymer Nanoparticles. Journal of the American Chemical Society, 2009, 131, 18410-18414.	13.7	126
28	Amplified Singlet Oxygen Generation in Semiconductor Polymer Dots for Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2016, 8, 3624-3634.	8.0	124
29	Swelling-Controlled Polymer Phase and Fluorescence Properties of Polyfluorene Nanoparticles. Langmuir, 2008, 24, 5855-5861.	3.5	121
30	Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging. Advanced Materials, 2012, 24, 3498-3504.	21.0	120
31	Ratiometric Luminescent Detection of Bacterial Spores with Terbium Chelated Semiconducting Polymer Dots. Analytical Chemistry, 2013, 85, 9087-9091.	6.5	114
32	A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 2012, 48, 1778.	4.1	109
33	Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots. ACS Nano, 2012, 6, 5429-5439.	14.6	108
34	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	13.8	108
35	Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials, 2017, 144, 42-52.	11.4	107
36	Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Nearâ€Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Advanced Functional Materials, 2020, 30, 1909673.	14.9	107

#	Article	IF	CITATIONS
37	Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Applied Catalysis B: Environmental, 2016, 187, 367-374.	20.2	100
38	Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics, 2018, 8, 663-675.	10.0	99
39	Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring <i>via</i> a Smartphone. ACS Nano, 2018, 12, 5176-5184.	14.6	97
40	A New Cubic Phase for a NaYF ₄ Host Matrix Offering High Upconversion Luminescence Efficiency. Advanced Materials, 2015, 27, 5528-5533.	21.0	94
41	Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromolecules, 2016, 17, 2128-2136.	5.4	94
42	Semiconducting Polymer Dots Doped with Europium Complexes Showing Ultranarrow Emission and Long Luminescence Lifetime for Timeâ€Gated Cellular Imaging. Angewandte Chemie - International Edition, 2013, 52, 11294-11297.	13.8	92
43	Enhancement of ultraviolet upconversion in Yb3+ and Tm3+ codoped amorphous fluoride film prepared by pulsed laser deposition. Journal of Applied Physics, 2003, 93, 4328-4330.	2.5	81
44	Conjugated Polymer Dots for Ultraâ€Stable Fullâ€Color Fluorescence Patterning. Small, 2014, 10, 4270-4275.	10.0	78
45	Small Photoblinking Semiconductor Polymer Dots for Fluorescence Nanoscopy. Advanced Materials, 2017, 29, 1604850.	21.0	78
46	Photosensitizer-doped conjugated polymer nanoparticles with high cross-sections for one- and two-photon excitation. Nanoscale, 2011, 3, 1451.	5.6	77
47	Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Interfaces, 2015, 7, 14477-14484.	8.0	77
48	Size-Dependent Property and Cell Labeling of Semiconducting Polymer Dots. ACS Applied Materials & Interfaces, 2014, 6, 10802-10812.	8.0	74
49	Multicolor Super-resolution Fluorescence Microscopy with Blue and Carmine Small Photoblinking Polymer Dots. ACS Nano, 2017, 11, 8084-8091.	14.6	74
50	Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4 microcrystals under 980 nm excitation. Journal of Materials Chemistry C, 2013, 1, 2485.	5.5	72
51	Polymer Dots Compartmentalized in Liposomes as a Photocatalyst for In Situ Hydrogen Therapy. Angewandte Chemie - International Edition, 2019, 58, 2744-2748.	13.8	72
52	Facile Synthesis, Macroscopic Separation, E/Z Isomerization, and Distinct AIE properties of Pure Stereoisomers of an Oxetane-Substituted Tetraphenylethene Luminogen. Chemistry of Materials, 2016, 28, 6628-6636.	6.7	71
53	Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chemical Science, 2017, 8, 3390-3398.	7.4	67
54	Therapeutic Considerations and Conjugated Polymerâ€Based Photosensitizers for Photodynamic Therapy. Macromolecular Rapid Communications, 2018, 39, 1700614.	3.9	67

#	Article	IF	CITATIONS
55	Tracking of Single Charge Carriers in a Conjugated Polymer Nanoparticle. Nano Letters, 2012, 12, 1300-1306.	9.1	63
56	Nanoscale metal–organic frameworks coated with poly(vinyl alcohol) for ratiometric peroxynitrite sensing through FRET. Chemical Science, 2017, 8, 5101-5106.	7.4	57
57	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie - International Edition, 2019, 58, 7008-7012.	13.8	57
58	Highly Luminescent Eu3+Chelate Nanoparticles Prepared by a Reprecipitationâ^'Encapsulation Method. Langmuir, 2007, 23, 1591-1595.	3.5	56
59	Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 3419-3431.	8.0	56
60	Multicolor Photoâ€Crosslinkable AIEgens toward Compact Nanodots for Subcellular Imaging and STED Nanoscopy. Small, 2017, 13, 1702128.	10.0	56
61	Biodegradable Polymer Nanoparticles for Photodynamic Therapy by Bioluminescence Resonance Energy Transfer. Biomacromolecules, 2018, 19, 201-208.	5.4	54
62	Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties. Chemistry of Materials, 2016, 28, 7537-7543.	6.7	52
63	Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots. Analytical Chemistry, 2018, 90, 14629-14634.	6.5	52
64	Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation. Optics Communications, 2004, 242, 215-219.	2.1	49
65	Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nature Communications, 2021, 12, 3089.	12.8	48
66	NIR-II Fluorescence Imaging Reveals Bone Marrow Retention of Small Polymer Nanoparticles. Nano Letters, 2021, 21, 798-805.	9.1	48
67	Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography. Optics Communications, 2005, 253, 214-221.	2.1	47
68	Generation of functionalized and robust semiconducting polymer dots with polyelectrolytes. Chemical Communications, 2012, 48, 3161.	4.1	46
69	Bright Polymer Dots Tracking Stem Cell Engraftment and Migration to Injured Mouse Liver. Theranostics, 2017, 7, 1820-1834.	10.0	46
70	Quinoxaline-Based Semiconducting Polymer Dots for in Vivo NIR-II Fluorescence Imaging. Macromolecules, 2019, 52, 5735-5740.	4.8	46
71	Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography. Optics Letters, 2005, 30, 3054.	3.3	45
72	A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer. Advanced Materials, 2018, 30, e1804556.	21.0	44

#	Article	IF	CITATIONS
73	Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation. Optics Letters, 2016, 41, 634.	3.3	43
74	Infrared-to-violet upconversion from Yb3+ and Er3+ codoped amorphous fluoride film prepared by pulsed laser deposition. Journal of Applied Physics, 2002, 92, 6936-6938.	2.5	42
75	Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films. Journal of Materials Chemistry A, 2015, 3, 12016-12022.	10.3	39
76	A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography. Optics Communications, 2005, 255, 366-374.	2.1	37
77	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	13.8	37
78	Europium-Complex-Grafted Polymer Dots for Amplified Quenching and Cellular Imaging Applications. Langmuir, 2014, 30, 8607-8614.	3.5	36
79	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. ACS Applied Materials & Interfaces, 2017, 9, 21200-21208.	8.0	36
80	A PIID-DTBT based semi-conducting polymer dots with broad and strong optical absorption in the visible-light region: Highly effective contrast agents for multiscale and multi-spectral photoacoustic imaging. Nano Research, 2017, 10, 64-76.	10.4	36
81	A study of the luminescence properties of Eu3+ -doped borate crystal and glass. Solid State Communications, 2007, 141, 436-439.	1.9	35
82	Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. Journal of Materials Chemistry C, 2016, 4, 1764-1768.	5.5	35
83	Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host–Guest Interactions, and Enhanced Drug/siRNA Delivery. Small, 2018, 14, e1800239.	10.0	34
84	Recent advances in semiconducting polymer dots as optical probes for biosensing. Biomaterials Science, 2021, 9, 328-346.	5.4	34
85	A versatile method for generating semiconducting polymer dot nanocomposites. Nanoscale, 2012, 4, 7246.	5.6	31
86	Full-colour carbon dots: integration of multiple emission centres into single particles. Nanoscale, 2017, 9, 13326-13333.	5.6	31
87	Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS Applied Materials & Interfaces, 2018, 10, 26928-26935.	8.0	30
88	Semiconducting Polymer Dots with Dualâ€Enhanced NIRâ€Na Fluorescence for Throughâ€Skull Mouseâ€Brain Imaging. Angewandte Chemie, 2020, 132, 3720-3727.	2.0	30
89	Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjugate Chemistry, 2020, 31, 1857-1872.	3.6	30
90	In vivo dynamic cell tracking with long-wavelength excitable and near-infrared fluorescent polymer dots. Biomaterials, 2020, 254, 120139.	11.4	30

#	Article	IF	CITATIONS
91	Nearâ€Infrared Broadband Polymerâ€Dot Modulator with High Optical Nonlinearity for Ultrafast Pulsed Lasers. Laser and Photonics Reviews, 2019, 13, 1800326.	8.7	28
92	Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging. Chemical Communications, 2017, 53, 8612-8615.	4.1	27
93	Highly efficient near-infrared organic dots based on novel AEE fluorogen for specific cancer cell imaging. RSC Advances, 2015, 5, 36837-36844.	3.6	26
94	Brightness calibrates particle size in single particle fluorescence imaging. Optics Letters, 2015, 40, 1242.	3.3	26
95	Utilizing Polymer Micelle to Control Dye J-aggregation and Enhance Its Theranostic Capability. IScience, 2019, 22, 229-239.	4.1	26
96	Lightâ€Harvesting Fluorescent Spherical Nucleic Acids Selfâ€Assembled from a DNAâ€Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2022, 61,	13.8	25
97	Dual mode emission of core–shell rare earth nanoparticles for fluorescence encoding. Journal of Materials Chemistry C, 2015, 3, 6314-6321.	5.5	24
98	NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Research, 2020, 13, 2632-2640.	10.4	24
99	Finite-element-based photoacoustic tomography: phantom and chicken bone experiments. Applied Optics, 2006, 45, 3177.	2.1	23
100	Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography. BioMed Research International, 2015, 2015, 1-11.	1.9	23
101	Mesoporous Carbon Nanospheres as Broadband Saturable Absorbers for Pulsed Laser Generation. Advanced Optical Materials, 2018, 6, 1800606.	7.3	23
102	Near-Infrared Polymer Dots with Aggregation-Induced Emission for Tumor Imaging. ACS Applied Polymer Materials, 2020, 2, 74-79.	4.4	23
103	Thermosensitive Polymer Dot Nanocomposites for Trimodal Computed Tomography/Photoacoustic/Fluorescence Imaging-Guided Synergistic Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 2020, 12, 51174-51184.	8.0	23
104	Laser selective spectroscopy of europium complex embedded in colloidal silica spheres. Chemical Physics Letters, 2004, 388, 400-405.	2.6	22
105	Spontaneous growth and luminescence of Si/SiOx core-shell nanowires. Chemical Physics Letters, 2003, 378, 368-373.	2.6	21
106	Enhanced bandwidth of white light communication using nanomaterial phosphors. Nanotechnology, 2018, 29, 455708.	2.6	21
107	Modified spontaneous emission of europium complex nanoclusters embedded in colloidal silica spheres. Chemical Physics Letters, 2005, 403, 129-134.	2.6	20
108	Lyophilization of Semiconducting Polymer Dot Bioconjugates. Analytical Chemistry, 2013, 85, 4316-4320.	6.5	20

#	Article	IF	CITATIONS
109	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	4.8	20
110	Dual fluorescence polymorphs: Wide-range emission from blue to red regulated by TICT and their dynamic electron state behavior under external pressure. Dyes and Pigments, 2017, 145, 294-300.	3.7	19
111	Purification of Semiconducting Polymer Dots by Size Exclusion Chromatography Prior to Cytotoxicity Assay and Stem Cell Labeling. Analytical Chemistry, 2018, 90, 5569-5575.	6.5	19
112	Liveâ€cell imaging of octaarginineâ€modified polymer dots via single particle tracking. Cell Proliferation, 2019, 52, e12556.	5.3	19
113	Fluorescent chemo-sensors based on "dually smart―optical micro/nano-waveguides lithographically fabricated with AIE composite resins. Materials Horizons, 2020, 7, 1782-1789.	12.2	19
114	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie - International Edition, 2021, 60, 19331-19336.	13.8	19
115	Infrared-to-visible upconversion luminescence of Er3+ and Yb3+ co-doped germanate glass. Journal of Non-Crystalline Solids, 2004, 347, 52-55.	3.1	18
116	Ultrasensitive Detection of Proteins on Western Blots with Semiconducting Polymer Dots. Macromolecular Rapid Communications, 2013, 34, 785-790.	3.9	18
117	Semiconducting Polymer Dots with Modulated Photoblinking for Highâ€Order Superâ€Resolution Optical Fluctuation Imaging. Advanced Optical Materials, 2019, 7, 1900007.	7.3	18
118	Enhancing the Longâ€Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Advanced Healthcare Materials, 2021, 10, e2001019.	7.6	18
119	Expansion Microscopy with Multifunctional Polymer Dots. Advanced Materials, 2021, 33, e2007854.	21.0	18
120	Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system. Optical Materials, 2016, 62, 1-6.	3.6	17
121	Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging. ChemBioChem, 2019, 20, 521-525.	2.6	17
122	Bioconjugation of IgG Secondary Antibodies to Polymer Dots for Multicolor Subcellular Imaging. ACS Applied Nano Materials, 2020, 3, 2214-2220.	5.0	17
123	Lightâ€Controlled Precise Delivery of NIRâ€Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability. Advanced Healthcare Materials, 2021, 10, e2100569.	7.6	16
124	Deep-red polymer dots with bright two-photon fluorescence and high biocompatibility for in vivo mouse brain imaging. Optics Communications, 2017, 399, 120-126.	2.1	16
125	Semiconducting polymer dots with monofunctional groups. Chemical Communications, 2014, 50, 5604-5607.	4.1	15
126	Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Materials Chemistry Frontiers, 2017, 1, 2638-2642.	5.9	15

#	Article	IF	CITATIONS
127	Sialylglycan-Assembled Supra-Dots for Ratiometric Probing and Blocking of Human-Infecting Influenza Viruses. ACS Applied Materials & Interfaces, 2017, 9, 25164-25170.	8.0	15
128	Thermoacoustic endoscopy. Applied Physics Letters, 2020, 116, .	3.3	15
129	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	2.0	15
130	Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots. Nanoscale, 2013, 5, 7265.	5.6	14
131	Multilayered upconversion nanocomposites with dual photosensitizing functions for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 8169-8177.	5.8	14
132	Cooperative Blinking from Dye Ensemble Activated by Energy Transfer for Super-resolution Cellular Imaging. Analytical Chemistry, 2019, 91, 4179-4185.	6.5	14
133	Narrow-band polymer dots with pronounced fluorescence fluctuations for dual-color super-resolution imaging. Nanoscale, 2020, 12, 7522-7526.	5.6	14
134	Silica-encapsulated semiconductor polymer dots as stable phosphors for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 7281-7285.	5.5	13
135	Multimode Time-Resolved Superresolution Microscopy Revealing Chain Packing and Anisotropic Single Carrier Transport in Conjugated Polymer Nanowires. Nano Letters, 2021, 21, 4255-4261.	9.1	13
136	Supramolecular Polymer Dot Ensemble for Ratiometric Detection of Lectins and Targeted Delivery of Imaging Agents. ACS Applied Materials & amp; Interfaces, 2017, 9, 3272-3276.	8.0	12
137	Polymer Dots Compartmentalized in Liposomes as a Photocatalyst for In Situ Hydrogen Therapy. Angewandte Chemie, 2019, 131, 2770-2774.	2.0	12
138	Growth of hexagonal phase sodium rare earth tetrafluorides induced by heterogeneous cubic phase core. RSC Advances, 2014, 4, 13490.	3.6	11
139	Measuring Cellular Uptake of Polymer Dots for Quantitative Imaging and Photodynamic Therapy. Analytical Chemistry, 2021, 93, 7071-7078.	6.5	11
140	Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 2021, 93, 2359-2366.	6.5	11
141	Near-infrared-to-visible photon upconversion in Mo-doped rutile titania. Chemical Physics Letters, 2002, 366, 205-210.	2.6	10
142	Semiconductor Polymer Dots Induce Proliferation in Human Gastric Mucosal and Adenocarcinoma Cells. Macromolecular Bioscience, 2015, 15, 318-327.	4.1	10
143	Lightâ€Induced PEGylation and Functionalization of Semiconductor Polymer Dots. ChemNanoMat, 2017, 3, 755-759.	2.8	10
144	Semiconducting polymer dots with photosensitizer loading and peptide modification for enhanced cell penetration and photodynamic effect. Chinese Chemical Letters, 2017, 28, 2164-2168.	9.0	9

#	Article	IF	CITATIONS
145	OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles. Analyst, The, 2017, 142, 4503-4510.	3.5	9
146	Spiro[pyrrol-benzopyran]-based probe with high asymmetry for chiroptical sensing <i>via</i> circular dichroism. Chemical Communications, 2019, 55, 7438-7441.	4.1	9
147	Long-Term <i>In Vivo</i> Glucose Monitoring by Polymer-Dot Transducer in an Injectable Hydrogel Implant. Analytical Chemistry, 2022, 94, 2195-2203.	6.5	9
148	Infrared-to-ultraviolet up-conversion luminescence from AlF3: 0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation. Solid State Communications, 2003, 125, 377-379.	1.9	8
149	Single-Chain Semiconducting Polymer Dots. Langmuir, 2015, 31, 499-505.	3.5	8
150	The biocompatibility studies of polymer dots on pregnant mice and fetuses. Nanotheranostics, 2017, 1, 261-271.	5.2	8
151	Semiconducting polymer nanoparticles for amplified photoacoustic imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1510.	6.1	8
152	Metalloporphyrin loaded semiconducting polymer dots as potent photosensitizers via triplet-triplet energy transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111988.	3.9	8
153	A biodegradable nano-photosensitizer with photoactivatable singlet oxygen generation for synergistic phototherapy. Journal of Materials Chemistry B, 2021, 9, 4826-4831.	5.8	8
154	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	2.0	8
155	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€6pecific Enzyme. Angewandte Chemie, 2021, 133, 19480-19485.	2.0	8
156	FRET acceptor suppressed single-particle photobleaching in semiconductor polymer dots. Optics Letters, 2016, 41, 2370.	3.3	7
157	White light-emitting diodes of high color rendering index with polymer dot phosphors. RSC Advances, 2016, 6, 106225-106229.	3.6	7
158	Up-converting Yb3+–Er3+ co-doped amorphous fluoride thin films prepared by pulsed-laser deposition for visible light source. Solid State Communications, 2001, 120, 211-214.	1.9	6
159	Highly ConcentratedSi1â^'xCxAlloy with an Ordered Superstructure. Physical Review Letters, 2003, 90, 245503.	7.8	6
160	Allâ€inâ€One Photoacoustic Theranostics Using Multiâ€Functional Nanoparticles. Advanced Functional Materials, 2022, 32, 2107624.	14.9	6
161	Improved Ultraviolet Upconversion Emissions of Ho ³⁺ in Hexagonal NaYF ₄ Microcrystals Under 980 nm Excitation. Journal of Nanoscience and Nanotechnology, 2014, 14, 3490-3493.	0.9	4
162	Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber. Laser Physics Letters, 2016, 13, 125101.	1.4	4

#	Article	IF	CITATIONS
163	Efficient synthesis and facile functionalization of highly fluorescent spiro[pyrrol-pyran]. Dyes and Pigments, 2019, 171, 107777.	3.7	4
164	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie, 2019, 131, 7082-7086.	2.0	4
165	In vivo imaging and tracking of exosomes for theranostics. Journal of Innovative Optical Health Sciences, 0, , 2130005.	1.0	4
166	Semiconductor Polymer Dots: Small Photoblinking Semiconductor Polymer Dots for Fluorescence Nanoscopy (Adv. Mater. 5/2017). Advanced Materials, 2017, 29, .	21.0	3
167	Multicolor Photoacoustic Volumetric Imaging of Subcellular Structures. ACS Nano, 2022, 16, 3231-3238.	14.6	3
168	Imaging Fast Cellular Uptake of Polymer Dots via Receptor-Mediated Endocytosis. Journal of Analysis and Testing, 2018, 2, 61-68.	5.1	2
169	Confining Fluorescent Probes in Nanochannels to Construct Reusable Nanosensors for Ion Current and Fluorescence Dual Gating. Nanomaterials, 2022, 12, 1468.	4.1	2
170	Flying upconversion fluorescent particles and direct observation of energy transfer and depopulation processes. CrystEngComm, 2015, 17, 587-591.	2.6	1
171	Gold Nanoparticles as Contrast Agent for in Vivo Photoacoustic Tomography of Tumor. , 2008, , .		1
172	Covalent Crossâ€Linking: Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3577-3577.	21.0	0
173	Semiconductor Polymer Dots for Optical Imaging and Phototherapy. , 2017, , .		0
174	Organic Nanodots for Superresolution Optical Imaging. , 2017, , .		0
175	Lightâ€Harvesting Fluorescent Spherical Nucleic Acids Selfâ€Assembled from a DNAâ€Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angewandte Chemie, 0, , .	2.0	0