Behdad Afzali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602236/publications.pdf

Version: 2024-02-01

76326 76900 5,870 85 40 74 citations h-index g-index papers 119 119 119 8673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nature Immunology, 2022, 23, 62-74.	14.5	105
2	The state of complement in COVID-19. Nature Reviews Immunology, 2022, 22, 77-84.	22.7	159
3	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	12.6	84
4	BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nature Immunology, 2021, 22, 370-380.	14.5	75
5	MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 2021, 54, 514-525.e6.	14.3	30
6	SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Science Immunology, 2021, 6, .	11.9	144
7	Fibroblast tissue primingâ€"not so nice to C you!. Immunity, 2021, 54, 847-850.	14.3	4
8	Host-Virus Chimeric Events in SARS-CoV-2-Infected Cells Are Infrequent and Artifactual. Journal of Virology, 2021, 95, e0029421.	3.4	28
9	Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections― Science, 2021, 373, eabi8835.	12.6	5
10	Reply to Grigoriev et al., "Sequences of SARS-CoV-2 "Hybrids―with the Human Genome: Signs 1 of Non-coding RNA?― Journal of Virology, 2021, , JVI0169021.	3.4	0
11	Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Advances in Immunology, 2021, 152, 1-81.	2.2	7
12	Mitochondrial C5aR1 activity in macrophages controls IL- $1\hat{l}^2$ production underlying sterile inflammation. Science Immunology, 2021, 6, eabf2489.	11.9	50
13	Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut, 2020, 69, 578-590.	12.1	84
14	Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. Journal of Virology, 2020, 94, .	3.4	26
15	Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression in Immune Cells. Immunity, 2020, 52, 513-527.e8.	14.3	57
16	Integrated Pan-Cancer Map of EBV-Associated Neoplasms Reveals Functional Host–Virus Interactions. Cancer Research, 2019, 79, 6010-6023.	0.9	43
17	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.8	29
18	Human retinoic acid–regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nature Immunology, 2018, 19, 1403-1414.	14.5	86

#	Article	IF	Citations
19	Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nature Communications, 2018, 9, 4186.	12.8	75
20	Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Advances in Immunology, 2018, 138, 35-70.	2.2	20
21	BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nature Immunology, 2017, 18, 813-823.	14.5	113
22	Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development. JCI Insight, 2017, 2, e87379.	5.0	28
23	The C3-like molecule CD109 controls Th1 versus Th17 induction in CD4+ T cells. Immunobiology, 2016, 221, 1195-1196.	1.9	0
24	T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4 ⁺ T cells. Science, 2016, 352, aad1210.	12.6	395
25	Developing in vitro expanded CD45RA ⁺ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut, 2016, 65, 584-594.	12.1	163
26	Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica, 2016, 101, 91-100.	3.5	64
27	Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. ELife, 2016, 5, .	6.0	74
28	EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 2015, 5, 10643.	3.3	129
29	Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses. Immunity, 2015, 42, 1033-1047.	14.3	190
30	Regulatory T-Cell Therapy in the Induction of Transplant Tolerance. Transplantation, 2014, 98, 370-379.	1.0	70
31	Vitamin D in Renal Transplantation – from Biological Mechanisms to Clinical Benefits. American Journal of Transplantation, 2014, 14, 1259-1270.	4.7	44
32	<scp>CD</scp> 161 expression characterizes a subpopulation of human regulatory <scp>T</scp> cells that produces <scp>IL</scp> â€17 in a <scp>STAT</scp> 3â€dependent manner. European Journal of Immunology, 2013, 43, 2043-2054.	2.9	114
33	Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation. Immunity, 2013, 39, 1143-1157.	14.3	444
34	Assessment of regulatory T-cell function in forthcoming clinical trials of cell therapy. Expert Review of Molecular Diagnostics, 2013, 13, 5-7.	3.1	4
35	Comparison of Regulatory T Cells in Hemodialysis Patients and Healthy Controls. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1396-1405.	4.5	77
36	Regulatory <scp>T</scp> cells in renal cell carcinoma: additional fuel to the bonfire of debate. BJU International, 2013, 112, 538-539.	2.5	0

#	Article	IF	Citations
37	Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+CD25+FOXP3+ T regulatory cell subpopulations. Haematologica, 2013, 98, 1291-1299.	3.5	127
38	Thymic Versus Induced Regulatory T Cells $\hat{a} \in$ "Who Regulates the Regulators?. Frontiers in Immunology, 2013, 4, 169.	4.8	74
39	Helicobacter pyloriinducesin-vivoexpansion of human regulatory T cells through stimulating interleukin- $1\hat{1}^2$ production by dendritic cells. Clinical and Experimental Immunology, 2012, 170, 300-309.	2.6	23
40	Core Concepts in Renal TransplantationEdited by Anil Chandraker Mohamed H Sayegh Ajay K Singh Springer 2012 £126.00. 242 978 1 4614 0007 3. British Journal of Hospital Medicine (London, England:) Tj ETQ	q@@50 rgE	BT ø Overlock
41	A rapid diagnostic test for human regulatory T-cell function to enable regulatory T-cell therapy. Blood, 2012, 119, e57-e66.	1.4	74
42	Relative Resistance of Human CD4+ Memory T Cells to Suppression by CD4+CD25+ Regulatory T Cells. American Journal of Transplantation, 2011, 11, 1734-1742.	4.7	34
43	Cell therapy to promote transplantation tolerance: a winning strategy?. Immunotherapy, 2011, 3, 28-31.	2.0	17
44	IL-2 Regulates Expression of <i>C-MAF</i> in Human CD4 T Cells. Journal of Immunology, 2011, 187, 3721-3729.	0.8	29
45	T-cell alloimmunity and chronic allograft dysfunction. Kidney International, 2010, 78, S2-S12.	5.2	53
46	Anti-TNFα therapyâ€"killing two birds with one stone?. Lancet, The, 2010, 375, 2278.	13.7	10
47	T.10.5. Subversion of Human CD4+CD25+Regulatory T Cells to IL-17-Producing T Cells by Pathogen-induced Inflammatory Milieu. Clinical Immunology, 2009, 131, S50.	3.2	0
48	ILâ€17â€producing CD4 ⁺ T cells, proâ€inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. British Journal of Haematology, 2009, 145, 64-72.	2.5	169
49	The T helper 17–regulatory T cell axis in transplant rejection and tolerance. Current Opinion in Organ Transplantation, 2009, 14, 326-331.	1.6	81
50	Imbalance of effector and regulatory CD4 T cells is associated with graft-versus-host disease after hematopoietic stem cell transplantation using a reduced intensity conditioning regimen and alemtuzumab. Haematologica, 2009, 94, 956-966.	3.5	32
51	Relative roles of Th1 and Th17 effector cells in allograft rejection. Current Opinion in Organ Transplantation, 2009, 14, 23-29.	1.6	59
52	Translational Mini-Review Series on Th17 Cells: Induction of interleukin-17 production by regulatory T cells. Clinical and Experimental Immunology, 2009, 159, 120-130.	2.6	124
53	Pathways of major histocompatibility complex allorecognition. Current Opinion in Organ Transplantation, 2008, 13, 438-444.	1.6	125
54	Increased Number of IL-17 Producing CD4+ T Cells in Low Risk Myelodysplastic Syndrome (MDS). Blood, 2008, 112, 637-637.	1.4	0

#	Article	IF	CITATIONS
55	The maintenance of human CD4+CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. International Immunology, 2007, 19, 785-799.	4.0	89
56	CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood, 2007, 110, 847-850.	1.4	234
57	Falls, hypokalaemia, and a dry mouth. Lancet, The, 2007, 370, 192.	13.7	4
58	Long-term risks of increased use of intravenous iron. Lancet, The, 2007, 370, 482.	13.7	1
59	Allorecognition and the alloresponse: clinical implications. Tissue Antigens, 2007, 69, 545-556.	1.0	142
60	The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clinical and Experimental Immunology, 2007, 148, 32-46.	2.6	632
61	Diabetes, kidney disease and anaemia: time to tackle a troublesome triad?. International Journal of Clinical Practice, 2007, 61, 281-289.	1.7	20
62	Intercellular Transfer of MHC and Immunological Molecules: Molecular Mechanisms and Biological Significance. American Journal of Transplantation, 2007, 7, 1442-1449.	4.7	67
63	Posttransplantation Anemia in Adult Renal Allograft Recipients: Prevalence and Predictors. Transplantation, 2006, 81, 1112-1118.	1.0	104
64	Anaemia in diabetic patients with chronic kidney diseaseâ€"prevalence and predictors. Diabetologia, 2006, 49, 1183-1189.	6.3	59
65	Transmission of Syphilis by Solid Organ Transplantation. American Journal of Transplantation, 2006, 6, 2497-2499.	4.7	39
66	Anemia After Renal Transplantation. American Journal of Kidney Diseases, 2006, 48, 519-536.	1.9	72
67	Post-transplantation anaemia in adult and paediatric renal allograft recipientsâ€"Guy's Hospital experience. Nephrology Dialysis Transplantation, 2006, 21, 1974-1980.	0.7	25
68	Compromise of renal transplant blood flow by an arteriovenous graft. Nephrology Dialysis Transplantation, 2006, 21, 2644-2646.	0.7	2
69	Bleeding post coronary artery bypass surgery. Clopidogrel-cure or culprit?. Journal Medical Libanais, 2006, 54, 11-6.	0.0	6
70	Low-Dose Mycophenolate Mofetil is an Effective and Safe Treatment to Permit Phased Reduction in Calcineurin Inhibitors in Chronic Allograft Nephropathy. Transplantation, 2005, 79, 304-309.	1.0	27
71	What we CAN do about chronic allograft nephropathy: Role of immunosuppressive modulations. Kidney International, 2005, 68, 2429-2443.	5.2	23
72	Commentary: Microalbuminuria â€" the next target for vascular disease prevention?. British Journal of Diabetes and Vascular Disease, 2005, 5, 342-343.	0.6	0

#	Article	IF	CITATIONS
73	Embryo and Fetal Pathology. Color Atlas with Ultrasound Correlation. Journal of Clinical Pathology, 2005, 58, 784-784.	2.0	1
74	Treatment of unilateral obstruction reversing heavy and bilateral proteinuria. Nephrology Dialysis Transplantation, 2005, 20, 210-212.	0.7	8
75	Measuring Blood Pressure in Stable Renal Transplant Recipients: What You Measure Depends on What You Use. Nephron Clinical Practice, 2004, 97, c98-c102.	2.3	0
76	From Finland to Fatland: Beneficial Effects of Statins for Patients with Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2004, 15, 2161-2168.	6.1	24
77	Beneficial effects of statins on the kidney: the evidence moves from mouse to man. Nephrology Dialysis Transplantation, 2004, 19, 1032-1036.	0.7	16
78	Cardiovascular disease in renal allograft recipients is associated with elevated sialic acid or markers of inflammation. Clinical Transplantation, 2004, 18, 201-204.	1.6	26
79	Cardiac calcification in renal patients: what we do and don't know. American Journal of Kidney Diseases, 2004, 43, 234-243.	1.9	72
80	Intravenous iron therapy in renal failure: friend and foe?. Journal of Nephrology, 2004, 17, 487-95.	2.0	21
81	Successful retransplantation using rapamycin in a patient with previous calcineurin inhibitor-induced posterior leukoencephalopathy syndrome. Clinical Nephrology, 2003, 59, 225-228.	0.7	2
82	Raised plasma total sialic acid levels are markers of cardiovascular disease in renal dialysis patients. Journal of Nephrology, 2003, 16, 540-5.	2.0	20
83	Differential expression of \hat{l}^2 1 and \hat{l}^2 2 integrins and L-selectin on CD4+ and CD8+ T lymphocytes in human blood: comparative analysis between isolated cells, whole blood samples and cryopreserved preparations. Clinical and Experimental Immunology, 2002, 127, 60-65.	2.6	22
84	Haematogenous Cell Responses to CNS Injury. , 1998, , 61-78.		0
85	Infections in Hemodialysis. , 0, , 441-451.		1