
Susana Magadan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602182/publications.pdf Version: 2024-02-01

SUSANA MACADAN

#	Article	IF	CITATIONS
1	Proteomics for Development of Food Allergy Vaccines. Methods in Molecular Biology, 2022, 2410, 673-689.	0.9	2
2	Clonotypic IgH Response against Systemic Viral infection in Pronephros and Spleen of a Teleost Fish. Journal of Immunology, 2022, 208, 2573-2582.	0.8	3
3	Human immunology and immunotherapy: main achievements and challenges. Cellular and Molecular Immunology, 2021, 18, 805-828.	10.5	96
4	A long reads-based <i>de-novo</i> assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	40
5	Genomic analysis of a second rainbow trout line (Arlee) leads to an extended description of the IGH VDJ gene repertoire. Developmental and Comparative Immunology, 2021, 118, 103998.	2.3	7
6	Nanoparticles and trained immunity: Glimpse into the future. Advanced Drug Delivery Reviews, 2021, 175, 113821.	13.7	10
7	Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Advanced Drug Delivery Reviews, 2021, 176, 113860.	13.7	31
8	Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Frontiers in Immunology, 2021, 12, 753960.	4.8	6
9	From IgZ to IgT: A Call for a Common Nomenclature for Immunoglobulin Heavy Chain Genes of Ray-Finned Fish. Zebrafish, 2021, 18, 343-345.	1.1	9
10	Adaptive immune receptor repertoires, an overview of this exciting field. Immunology Letters, 2020, 221, 49-55.	2.5	4
11	Nasal Vaccination Drives Modifications of Nasal and Systemic Antibody Repertoires in Rainbow Trout. Journal of Immunology, 2019, 203, 1480-1492.	0.8	27
12	Standardized IMGT® Nomenclature of Salmonidae IGH Genes, the Paradigm of Atlantic Salmon and Rainbow Trout: From Genomics to Repertoires. Frontiers in Immunology, 2019, 10, 2541.	4.8	25
13	Molecular characterization of B-cell epitopes for the major fish allergen, parvalbumin, by shotgun proteomics, protein-based bioinformatics and IgE-reactive approaches. Journal of Proteomics, 2019, 200, 123-133.	2.4	26
14	Sequential Immunization With Heterologous Viruses Does Not Result in Attrition of the B Cell Memory in Rainbow Trout. Frontiers in Immunology, 2019, 10, 2687.	4.8	6
15	Origin of Public Memory B Cell Clones in Fish After Antiviral Vaccination. Frontiers in Immunology, 2018, 9, 2115.	4.8	21
16	Omics in fish mucosal immunity. Developmental and Comparative Immunology, 2017, 75, 99-108.	2.3	72
17	Surface expression of trout CD4-1 and CD4-2 defines novel populations of functionally distinct CD4+ T cells in teleost fish. Fish and Shellfish Immunology, 2016, 53, 88.	3.6	5
18	Comparison of clonal complexity of primary and secondary trout IGM and IGT response using deep sequencing Fish and Shellfish Immunology, 2016, 53, 85.	3.6	0

#	Article	IF	CITATIONS
19	Novel Teleost CD4-Bearing Cell Populations Provide Insights into the Evolutionary Origins and Primordial Roles of CD4+ Lymphocytes and CD4+ Macrophages. Journal of Immunology, 2016, 196, 4522-4535.	0.8	109
20	Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish and Shellfish Immunology, 2015, 44, 214-223.	3.6	25
21	Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results and Problems in Cell Differentiation, 2015, 57, 235-264.	0.7	52
22	InÂvitro and inÂvivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. Fish and Shellfish Immunology, 2014, 41, 570-580.	3.6	65
23	Immunoglobulin genes of the turtles. Immunogenetics, 2013, 65, 227-237.	2.4	28
24	Immunoglobulin genes in medaka. No IgT and only one light chain isotype. Fish and Shellfish Immunology, 2013, 34, 1664.	3.6	1
25	Immunoglobulin light chains in medaka (Oryzias latipes). Immunogenetics, 2013, 65, 387-396.	2.4	9
26	lgH loci of American alligator and saltwater crocodile shed light on IgA evolution. Immunogenetics, 2013, 65, 531-541.	2.4	42
27	The Past, Present, and Future of Immune Repertoire Biology – The Rise of Next-Generation Repertoire Analysis. Frontiers in Immunology, 2013, 4, 413.	4.8	164
28	The Astonishing Diversity of Ig Classes and B Cell Repertoires in Teleost Fish. Frontiers in Immunology, 2013, 4, 28.	4.8	164
29	Development and validation of a molecular tool for assessing triploidy in turbot (Scophthalmus) Tj ETQq1 1 0.7	34314 rgB 3.5	T /Qyerlock]
30	Snakes antibodies. Developmental and Comparative Immunology, 2012, 38, 1-9.	2.3	30
31	Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evolutionary Biology, 2011, 11, 165.	3.2	49
32	Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Developmental and Comparative Immunology, 2010, 34, 114-122.	2.3	88
33	Generation of a human IgM monoclonal antibody directed against HLA class II molecules: a potential agent in the treatment of haematological malignancies. Cancer Immunology, Immunotherapy, 2009, 58, 351-360.	4.2	6
34	The immunoglobulin heavy chain locus in the reptile Anolis carolinensis. Molecular Immunology, 2009, 46, 1679-1687.	2.2	27
35	The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Molecular Immunology, 2009, 46, 2515-2523.	2.2	38
36	Assessing Methods for Blood Cell Cytotoxic Responses to Inorganic Nanoparticles and Nanoparticle Aggregates. Small, 2008, 4, 2025-2034.	10.0	166

#	Article	IF	CITATIONS
37	Rearrangement of only one human IGHV gene is sufficient to generate a wide repertoire of antigen specific antibody responses in transgenic mice. Molecular Immunology, 2006, 43, 1827-1835.	2.2	15
38	Feeding strategies of the copepod Acartia clausi on single and mixed diets of toxic and non-toxic strains of the dinoflagellate Alexandrium minutum. Marine Ecology - Progress Series, 2006, 316, 115-125.	1.9	20
39	The use of transgenic mice for the production of a human monoclonal antibody specific for human CD69 antigen. Journal of Immunological Methods, 2003, 282, 147-158.	1.4	8
40	Production of Antigen-Specific Human Monoclonal Antibodies: Comparison of Mice Carrying IgH/κ or IgH/κ/λ Transloci. BioTechniques, 2002, 33, 680-690.	1.8	23
41	Production of Antigen-Specific Human Monoclonal Antibodies: Comparison of Mice Carrying IgH/κ or IgH/κ/λ Transloci. BioTechniques, 2002, 33, 680-690.	1.8	2