Hiroshi Naganuma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601606/publications.pdf

Version: 2024-02-01

202 papers

5,119 citations

35 h-index 106344 65 g-index

204 all docs

204 docs citations

times ranked

204

4728 citing authors

#	Article	IF	CITATIONS
1	Perpendicular Magnetic Tunnel Junctions With Four Anti-Ferromagnetically Coupled Co/Pt Pinning Layers. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	3
2	Effect of Magnetic Coupling Between Two CoFeB Layers on Thermal Stability in Perpendicular Magnetic Tunnel Junctions With MgO/CoFeB/Insertion Layer/CoFeB/MgO Free Layer. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	2
3	Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/ <i>L</i>)1 ₀ -FePd Interface with a Robust and Perpendicular Orbital Moment. ACS Nano, 2022, 16, 4139-4151.	14.6	10
4	Effect of oxygen incorporation on dynamic magnetic properties in Ta-O/Co-Fe-B bilayer films under out-of-plane and in-plane magnetic fields. AIP Advances, 2022, 12, 035133.	1.3	0
5	Enhancement of magnetic coupling and magnetic anisotropy in MTJs with multiple CoFeB/MgO interfaces for high thermal stability. AIP Advances, 2021, 11, .	1.3	6
6	Effect of surface modification treatment on top-pinned MTJ with perpendicular easy axis. AIP Advances, 2021, 11, .	1.3	3
7	First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM. IEEE Transactions on Electron Devices, 2021, 68, 2680-2685.	3.0	8
8	Comparison of hexagonal boron nitride and MgO tunnel barriers in Fe,Co magnetic tunnel junctions. Applied Physics Reviews, $2021,8,.$	11.3	15
9	Magnetic and ferroelectric properties of oxygen octahedron/tetrahedron mixed ultrathin multiferroic layer by oxygen desorption. Journal of Applied Physics, 2021, 129, 034101.	2.5	1
10	High-Quality Sputtered BiFeO ₃ for Ultrathin Epitaxial Films. ACS Applied Electronic Materials, 2021, 3, 4836-4848.	4.3	6
11	Scalability of Quad Interface p-MTJ for 1X nm STT-MRAM With 10-ns Low Power Write Operation, 10 Years Retention and Endurance > 10¹¹. IEEE Transactions on Electron Devices, 2020, 67, 5368-5373.	3.0	26
12	Growth mechanism and domain structure study on epitaxial BiFeO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3. Journal of Applied Physics, 2020, 127, .	2.5	5
13	Flux-Mediated Doping of Bi into (La,Sr)MnO ₃ Films Grown on NdGdO ₃ (110) Substrates. ACS Applied Electronic Materials, 2020, 2, 3658-3666.	4.3	3
14	Micromagnetic simulation of the temperature dependence of the switching energy barrier using string method assuming sidewall damages in perpendicular magnetized magnetic tunnel junctions. AIP Advances, 2020, 10, .	1.3	10
15	A perpendicular graphene/ferromagnet electrode for spintronics. Applied Physics Letters, 2020, 116, .	3.3	17
16	Short range biaxial strain relief mechanism within epitaxially grown BiFeO3. Scientific Reports, 2019, 9, 6715.	3.3	6
17	Realization of a Spin-Wave Switch Based on the Spin-Transfer-Torque Effect. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	3
18	Growth and Electrostatic/chemical Properties of Metal/LaAlO $<$ sub $>3<$ /sub $>$ /SrTiO $<$ sub $>3<$ /sub $>$ Heterostructures. Journal of Visualized Experiments, 2018, , .	0.3	0

#	Article	IF	CITATIONS
19	Tensile stress effect on epitaxial BiFeO3 thin film grown on KTaO3. Scientific Reports, 2018, 8, 893.	3.3	13
20	Characterization of spin-transfer-torque effect induced magnetization dynamics driven by short current pulses. Applied Physics Letters, 2018, 112, .	3.3	3
21	Manipulation of multi-degrees of freedom in ferroic-ordering. Japanese Journal of Applied Physics, 2018, 57, 090201.	1.5	O
22	Thermooptic properties of epitaxial BiFeO ₃ films with different orientations. Japanese Journal of Applied Physics, 2018, 57, 11UF10.	1.5	0
23	Determination of rhombohedral structure of BiFeO ₃ single-domain-like films grown on SrTiO ₃ and LaAlO ₃ substrates by X-ray diffraction using \$(2ar{1}ar{3})_{ext{hex}}\$. Japanese Journal of Applied Physics, 2018, 57, 0902BC.	1.5	3
24	Strategy to utilize transmission electron microscopy and X-ray diffraction to investigate biaxial strain effect in epitaxial BiFeO ₃ films. Japanese Journal of Applied Physics, 2018, 57, 0902A5.	1.5	6
25	Elucidation of crystal and electronic structures within highly strained BiFeO3 by transmission electron microscopy and first-principles simulation. Scientific Reports, 2017, 7, 46498.	3.3	15
26	Tuning Up or Down the Critical Thickness in LaAlO ₃ /SrTiO ₃ through In Situ Deposition of Metal Overlayers. Advanced Materials, 2017, 29, 1700486.	21.0	30
27	Noise suppression and sensitivity manipulation of magnetic tunnel junction sensors with soft magnetic Co70.5Fe4.5Si15B10 layer. Journal of Applied Physics, 2017, 122, .	2.5	28
28	DC Bias Reversal Behavior of Spin–Torque Ferromagnetic Resonance Spectra in CoFeB/MgO/CoFeB Perpendicular Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	2
29	Experimental Investigation of the Temperature-Dependent Magnon Density and Its Influence on Studies of Spin-Transfer-Torque-Driven Systems. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	4
30	Magnetic field-controlled hysteresis loop bias in orthogonal exchange-spring coupling composite magnetic films. Applied Physics Express, 2016, 9, 063003.	2.4	3
31	Field-free spin Hall effect driven magnetization switching in Pd/Co/IrMn exchange coupling system. Applied Physics Letters, 2016, 109, .	3.3	48
32	Influence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mn> order parameter on Gilbert damping constants for FePd thin films investigated by means of time-resolved magneto-optical Kerr effect. Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:mrow></mml:math>	, 13.2	nn ₂₈ <mml:m< td=""></mml:m<>
33	Effect of annealing on Curie temperature and phase transition in La0.55Sr0.08Mn0.37O3 epitaxial films grown on SrTiO3 (100) substrates by reactive radio frequency magnetron sputtering. Materials Characterization, 2016, 118, 37-43.	4.4	7
34	Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxideÂinterfaces. Nature Materials, 2016, 15, 1261-1266.	27.5	403
35	Thickness dependence of crystal and electronic structures within heteroepitaxially grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BiFe</mml:mi><mml:msub><mml:m athvariant="normal">O<mml:mn>3</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> thin films. Physical Review B. 2016. 93	ni 3.2	11
36	Controlling magnetization switching and DC transport properties of magnetic tunnel junctions by mircowave injection. , 2016, , .		0

#	Article	IF	CITATIONS
37	Observation of single-spin transport in an island-shaped CoFeB double magnetic tunnel junction prepared by magnetron sputtering. Philosophical Magazine, 2016, 96, 310-319.	1.6	3
38	Low frequency noise in magnetic tunneling junctions with Co 40 Fe 40 B 20 /Co 70.5 Fe 4.5 Si 15 B 10 composite free layer. Journal of Magnetism and Magnetic Materials, 2016, 398, 215-219.	2.3	9
39	Magnetic Tunnel Junctions With [Co/Pd]-Based Reference Layer and CoFeB Sensing Layer for Magnetic Sensor. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	14
40	Ultrafast demagnetization of L1 _O FePt and FePd ordered alloys. Journal Physics D: Applied Physics, 2016, 49, 035002.	2.8	16
41	Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy. Scientific Reports, 2015, 5, 8537.	3.3	21
42	Influence of perpendicular magnetic field on angular dependent exchange bias of $[\text{Co/Pd}] < \inf > 5 < \inf > \text{CoFeB Electrodes.}$, 2015, , .		0
43	Systematic Investigation on Correlation Between Sensitivity and Nonlinearity in Magnetic Tunnel Junction for Magnetic Sensor. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	10
44	Temperature dependence of low frequency noise in magnetic tunneling junctions with Co <inf>40</inf> Fe <inf>40</inf> B <inf>20</inf> /Co <inf>70.5</inf> Fe <inf>4.5</inf> Si <inf>15</inf> B <inf>10</inf> composed free layer. , 2015, , .	>	0
45	Electrical Detection of Millimeter-Waves by Magnetic Tunnel Junctions Using Perpendicular Magnetized <i>L</i> 1 ₀ -FePd Free Layer. Nano Letters, 2015, 15, 623-628.	9.1	40
46	100-nm-sized magnetic domain reversal by the magneto-electric effect in self-assembled BiFeO3/CoFe2O4 bilayer films. Scientific Reports, 2015, 5, 9348.	3.3	25
47	Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal Physics D: Applied Physics, 2015, 48, 164016.	2.8	3
48	Magnetic damping constant in Co-based full heusler alloy epitaxial films. Journal Physics D: Applied Physics, 2015, 48, 164012.	2.8	36
49	Evidence of rhombohedral structure within BiFeO3thin film grown on SrTiO3. Applied Physics Express, 2015, 8, 031501.	2.4	10
50	All-optical characterisation of the spintronic Heusler compound Co ₂ Mn _{0.6} Fe _{0.4} Si. Journal Physics D: Applied Physics, 2015, 48, 164015.	2.8	15
51	Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers. Journal of Applied Physics, 2015, 118, .	2.5	12
52	Intrinsic Gilbert damping constant in epitaxial Co2Fe0.4Mn0.6Si Heusler alloys films. Journal of Applied Physics, 2015, 117, 17D140.	2.5	11
53	Optimization of Domain Wall Oscillations in Magnetic Nanowires. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	98
54	Preparation of monoclinic 0.9(BiFeO3)–0.1(BiCoO3) epitaxial films on orthorhombic YAlO3 (100) substrates by r.f. magnetron sputtering. Journal of Crystal Growth, 2015, 409, 18-22.	1.5	1

#	Article	IF	Citations
55	Ultrafast magnetization dynamics in Co-based Heusler compounds with tuned chemical ordering. New Journal of Physics, 2014, 16, 063068.	2.9	15
56	Tunnel magnetoresistance effect using perpendicularly magnetized tetragonal and cubic Mn-Co-Ga Heusler alloy electrode. Journal of Applied Physics, 2014, 115, 17C704.	2.5	10
57	Preparation of a heteroepitaxial LaxSryMnzO3/BiFeO3 bilayer by r.f. magnetron sputtering with various oxygen gas flow ratios. AIP Advances, 2014, 4, 087133.	1.3	2
58	Low precessional damping observed for L1-ordered FePd epitaxial thin films with large perpendicular magnetic anisotropy. Applied Physics Letters, 2014, 105, .	3.3	28
59	Non-Gilbert-damping Mechanism in a Ferromagnetic Heusler Compound Probed by Nonlinear Spin Dynamics. Physical Review Letters, 2014, 113, 227601.	7.8	19
60	Static and dynamic magnetic properties of cubic Mn-Co-Ga Heusler films. Journal of Applied Physics, 2014, 115, 17D133.	2.5	3
61	Spin-dependent transport behavior in C60 and Alq3 based spin valves with a magnetite electrode (invited). Journal of Applied Physics, 2014, 115, .	2.5	25
62	Mode change of vortex core oscillation induced by large direct current in 120 nm sized current perpendicular-to-plane giant magnetoresistance devices with a perpendicular polarizer. Applied Physics Letters, 2014, 105, 052407.	3.3	2
63	Multiferroic BiFeO3 glass-ceramics: Phase formation and physical property. Applied Physics Letters, 2014, 104, .	3.3	11
64	Gilbert damping constants of Ta/CoFeB/MgO(Ta) thin films measured by optical detection of precessional magnetization dynamics. Physical Review B, 2014, 89, .	3.2	127
65	Leakage current under high electric fields and magnetic properties in Co and Mn co-substituted BiFeO3 polycrystalline films. Thin Solid Films, 2014, 558, 194-199.	1.8	3
66	Penetration depth of transverse spin current in (001)-oriented epitaxial ferromagnetic films. Journal of Magnetism and Magnetic Materials, 2014, 368, 333-337.	2.3	1
67	Nonlinear Emission of Spin-Wave Caustics from an Edge Mode of a Microstructured <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Co</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:< td=""><td>i><mark>M</mark>n<td>nl:mi><mml:r< td=""></mml:r<></td></td></mml:<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	i> <mark>M</mark> n <td>nl:mi><mml:r< td=""></mml:r<></td>	nl:mi> <mml:r< td=""></mml:r<>
68	Magnetoresistance Enhancement in Mn\$_{m x}\$Ga\$_{100 - {m x}}\$/MgO/CoFeB Perpendicular Magnetic Tunnel Junctions by Using CoFeB Interlayer. IEEE Transactions on Magnetics, 2013, 49, 4339-4342.	2.1	3
69	Effect of Annealing Temperature on Structure and Magnetic Properties of \$L1_{0}\$-FePd/CoFeB Bilayer. IEEE Transactions on Magnetics, 2013, 49, 4409-4412.	2.1	2
70	Large refractive index in BiFeO3-BiCoO3 epitaxial films. Journal of Applied Physics, 2013, 113, 17A914.	2.5	3
71	Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nature Communications, 2013, 4, 1392.	12.8	140
72	Detection of Sub-Nano-Tesla Magnetic Field by Integrated Magnetic Tunnel Junctions with Bottom Synthetic Antiferro-Coupled Free Layer. Japanese Journal of Applied Physics, 2013, 52, 04CM07.	1.5	22

#	Article	IF	Citations
73	Observation of Precessional Magnetization Dynamics in L1 ₀ -FePt Thin Films with Different L1 ₀ Order Parameter Values. Japanese Journal of Applied Physics, 2013, 52, 073002.	1.5	22
74	Interface tailoring effect on magnetic properties and their utilization in MnGa-based perpendicular magnetic tunnel junctions. Physical Review B, 2013, 87, .	3.2	39
75	Tunneling magnetoresistance effect in MnGa based perpendicular magnetic tunnel junction with Fe/Co interlayer. Journal of Applied Physics, 2013, 114, 163913.	2.5	3
76	Magnetic tunnel junctions of perpendicularly magnetized L10-MnGa/Fe/MgO/CoFe structures: Fe-layer-thickness dependences of magnetoresistance effect and tunnelling conductance spectra. Journal Physics D: Applied Physics, 2013, 46, 155001.	2.8	17
77	The role of structure on magneto-transport properties of Heusler Co2MnSi films deposited on MgO(001). Journal of Applied Physics, 2013, 114, 163904.	2.5	3
78	Structural and magnetic properties of $\langle i \rangle L \langle i \rangle 1$ -FePd/MgO films on GaAs and InP lattice mismatched substrates. Applied Physics Letters, 2013, 102, .	3.3	10
79	Fabrication of L1 ₀ -Ordered MnAl Films for Observation of Tunnel Magnetoresistance Effect. Japanese Journal of Applied Physics, 2013, 52, 063003.	1.5	38
80	Fabrication of Magnetic Tunnel Junctions with Amorphous CoFeSiB Ferromagnetic Electrode for Magnetic Field Sensor Devices. Applied Physics Express, 2013, 6, 103004.	2.4	30
81	Annealing temperature dependence of exchange bias in BiFeO3/CoFe bilayers. Journal of Applied Physics, 2012, 111, 07D908.	2.5	10
82	Structural Analyses of Co- and Mn-Substituted BiFeO\$_{3}\$ Polycrystalline Films. Japanese Journal of Applied Physics, 2012, 51, 061501.	1.5	1
83	Dependence of spin-transfer switching characteristics in magnetic tunnel junctions with synthetic free layers on coupling strength. Journal of Applied Physics, 2012, 111, 07C905.	2.5	0
84	Fabrication of magnetic tunnel junctions with a bottom synthetic antiferro-coupled free layers for high sensitive magnetic field sensor devices. Journal of Applied Physics, 2012, 111, .	2.5	55
85	Promotion of L10 ordering of FePd films with amorphous CoFeB thin interlayer. Journal of Applied Physics, 2012, 111, 07C112.	2.5	6
86	Large change of perpendicular magnetic anisotropy in Cobalt ultrathin film induced by varying capping layers. Journal of Applied Physics, 2012, 111, 07B320.	2.5	10
87	Fabrication of $\langle i \rangle L \langle j \rangle 1$ -MnAl perpendicularly magnetized thin films for perpendicular magnetic tunnel junctions. Journal of Applied Physics, 2012, 111, .	2.5	64
88	Enhancement of magnetoresistance using CoFe/Ru/CoFe synthetic ferrimagnetic pinned layer in BiFeO3 based spin-valves. Applied Physics Letters, 2012, 101, 072901.	3.3	4
89	Magnetic properties of CoFe2O4 nanoparticles distributed in a multiferroic BiFeO3 matrix. Journal of Applied Physics, 2012, 111, 124101.	2.5	16
90	Low-damping spin-wave propagation in a micro-structured Co ₂ Mn _{0.6} Fe _{0.4} Si Heusler waveguide. Applied Physics Letters, 2012, 100, 112402.	3.3	80

#	Article	IF	Citations
91	Dependence of Tunnel Magnetoresistance Effect on Fe Thickness of Perpendicularly Magnetized L1\$_{0}\$-Mn\$_{62}\$Ga\$_{38}\$/Fe/MgO/CoFe Junctions. Applied Physics Express, 2012, 5, 043003.	2.4	28
92	Annealing Temperature and Co Layer Thickness Dependence of Magnetoresistance Effect for \$L1_{0}\$-MnGa/Co/MgO/CoFeB Perpendicular Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2012, 48, 2808-2811.	2.1	4
93	Magnetic Properties and Magnetic Domain Structures Evolution Modulated by CoFeB Layer in [Pd/Co]/CoFeB/MgO/CoFeB/[Co/Pd] Perpendicular MTJ Films. IEEE Transactions on Magnetics, 2012, 48, 2812-2815.	2.1	3
94	Chemical diffusion: Another factor affecting the magnetoresistance ratio in Ta/CoFeB/MgO/CoFeB/Ta magnetic tunnel junction. Applied Physics Letters, 2012, 101, .	3.3	33
95	Magnetoresistance effect in $\langle i \rangle L \langle i \rangle 1$ -MnGa/MgO/CoFeB perpendicular magnetic tunnel junctions with Co interlayer. Applied Physics Letters, 2012, 101, .	3.3	66
96	Composition dependence of magnetic properties in perpendicularly magnetized epitaxial thin films of Mn-Ga alloys. Physical Review B, $2012,85$, .	3.2	151
97	Variation of ferroelectric properties in (Bi,Pr)(Fe,Mn)O3/SrRuO3-Pt/CoFe2O4 layered film structure by applying direct current magnetic field. Journal of Applied Physics, 2012, 111, 124103.	2.5	3
98	Effect of metallic Mg insertion on the magnetoresistance effect in MgO-based tunnel junctions using <i>D</i> 22-Mn3-ÎGa perpendicularly magnetized spin polarizer. Journal of Applied Physics, 2011, 110, .	2.5	30
99	Gilbert Damping in Ni/Co Multilayer Films Exhibiting Large Perpendicular Anisotropy. Applied Physics Express, 2011, 4, 013005.	2.4	70
100	Fabrication of Magnetic Tunnel Junctions with a Synthetic Ferrimagnetic Free Layer for Magnetic Field Sensor Applications. Japanese Journal of Applied Physics, 2011, 50, 013001.	1.5	11
101	Influence of Pt Doping on Gilbert Damping in Permalloy Films and Comparison with the Perpendicularly Magnetized Alloy Films. Japanese Journal of Applied Physics, 2011, 50, 103003.	1.5	9
102	Magnetoresistance Effect in Co ₂ MnSi/semimetallic-Fe ₂ VAl/CoFe Junctions. Journal of Physics: Conference Series, 2011, 266, 012096.	0.4	3
103	Effect of structural transition on the temperature-dependent magnetic properties of epitaxial FePd alloy nanoparticles. Journal of Physics: Conference Series, 2011, 266, 012042.	0.4	3
104	Fabrication of MgO-based magnetic tunnel junctions for subnanosecond spin transfer switching. Journal of Physics: Conference Series, 2011, 266, 012086.	0.4	1
105	The effect of inserting thin Co ₂ MnAl layer into the Co ₂ MnSi/MgO interface on tunnel magnetoresistance effect. Journal of Physics: Conference Series, 2011, 266, 012104.	0.4	8
106	Magnetoresistance Effect in Tunnel Junctions with Perpendicularly Magnetized <i>D</i> O ₂₂ -Mn _{3-Î} Ga Electrode and MgO Barrier. Applied Physics Express, 2011, 4, 043002.	2.4	59
107	Influence of composition on structure and magnetic properties of epitaxial Mn-Ga films. Journal of Physics: Conference Series, 2011, 266, 012112.	0.4	3
108	Enhancement of magnetization at morphotropic phase boundary in epitaxial BiCoO3-BiFeO3 solid solution films grown on SrTiO3 (100) substrates. Journal of Applied Physics, 2011, 109, .	2.5	18

#	Article	IF	Citations
109	Hysteresis loops of polarization and magnetization in (BiNd0.05)(Fe0.97Mn0.03)O3/Pt/CoFe2O4 layered epitaxial thin film grown by pulsed laser deposition. Thin Solid Films, 2011, 519, 7727-7730.	1.8	7
110	Spin Transport in $\frac{Co}{Al}_{2}hbox{O}_{3}/hbox{Alq}_{3}/hbox{Co}$ Organic Spin Valve. IEEE Transactions on Magnetics, 2011, 47, 2649-2651.$	2.1	11
111	Time-Resolved Kerr Effect in Very Thin Films of CoCrPt Alloys. IEEE Transactions on Magnetics, 2011, 47, 3897-3900.	2.1	4
112	The magnetic and structural properties of Co ₂ MnSi Heusler alloy thin films on the orientation of Ge substrate. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 675-678.	1.8	3
113	Thermooptic Property of Polycrystalline BiFeO ₃ Film. Japanese Journal of Applied Physics, 2011, 50, 09NB02.	1.5	1
114	Spin transistor using magnetic tunnel junctions with half-metallic Co2MnSi Heusler alloy electrodes. Applied Physics Letters, 2011, 99, 132513.	3.3	16
115	Composition dependence of magnetoresistance effect and its annealing endurance in tunnel junctions having Mn-Ga electrode with high perpendicular magnetic anisotropy. Applied Physics Letters, 2011, 99,	3.3	45
116	Interface effects on perpendicular magnetic anisotropy for molecular-capped cobalt ultrathin films. Applied Physics Letters, 2011, 99, 162509.	3.3	16
117	Fast magnetization precession observed in L1-FePt epitaxial thin film. Applied Physics Letters, 2011, 98, .	3.3	100
118	Long-Lived Ultrafast Spin Precession in Manganese Alloys Films with a Large Perpendicular Magnetic Anisotropy. Physical Review Letters, 2011, 106, 117201.	7.8	293
119	The perpendicular anisotropy of Co40Fe40B20 sandwiched between Ta and MgO layers and its application in CoFeB/MgO/CoFeB tunnel junction. Applied Physics Letters, 2011, 99, .	3.3	92
120	Exchange biases of Co, Py, Co40Fe40B20, Co75Fe25, and Co50Fe50 on epitaxial BiFeO3 films prepared by chemical solution deposition. Journal of Applied Physics, 2011, 109, .	2.5	28
121	Large Magnetoresistance Effect in Epitaxial Co\$_{2}\$Fe\$_{0.4}\$Mn\$_{0.6}\$Si Devices. Applied Physics Express, 2011, 4, 113005.	2.4	99
122	Fabrication of Multiferroic Co-Substituted BiFeO3 Epitaxial Films on SrTiO3 (100) Substrates by Radio Frequency Magnetron Sputtering. Materials, 2011, 4, 1087-1095.	2.9	11
123	Magnetotransport properties of CoFeB/MgO/CoFe/MgO/CoFeB double barrier magnetic tunnel junctions with large negative magnetoresistance at room temperature. Journal of Physics: Conference Series, 2010, 200, 052009.	0.4	4
124	Magnetoresistance of perpendicularly magnetized tunnel junction using <i>L</i> l ₀ -CoNiPt with low saturation magnetization. Journal of Physics: Conference Series, 2010, 200, 052011.	0.4	1
125	Ultrafast demagnetization for Ni ₈₀ Fe ₂₀ and half-metallic Co ₂ MnSi heusler alloy films. Journal of Physics: Conference Series, 2010, 200, 042017.	0.4	7
126	Structural and magnetic properties of Mn _{2.5} Ga films. Journal of Physics: Conference Series, 2010, 200, 062037.	0.4	7

#	Article	IF	Citations
127	Interlayer exchange coupling in perpendicularly magnetized synthetic ferrimagnet structure using CoCrPt and CoFeB. Journal of Physics: Conference Series, 2010, 200, 072104.	0.4	4
128	Synthetic CoFeB/Ru/NiFe free layer on MgO barrier layer for spin transfer switching. Journal of Physics: Conference Series, 2010, 200, 062019.	0.4	0
129	Spin-transfer switching in magnetic tunnel junctions with synthetic ferri-magnetic free layer. Journal of Physics: Conference Series, 2010, 200, 052018.	0.4	2
130	Structural characterization of epitaxial multiferroic BiFeO3 films grown on SrTiO3 (100) substrates by crystallizing amorphous Bi-Fe-Ox. Journal of the Ceramic Society of Japan, 2010, 118, 648-651.	1.1	3
131	Evaluation of ferroelectric hysteresis loops of leaky multiferroic BiFeO3 films using a system with a high driving frequency of 100 kHz system. Journal of the Ceramic Society of Japan, 2010, 118, 656-658.	1.1	11
132	Dynamic Magnetic Intermediate State during Nanosecond Spin Transfer Switching for MgO-Based Magnetic Tunnel Junctions. Applied Physics Express, 2010, 3, 053002.	2.4	9
133	Magnetization Dynamics in CoFeB Buffered Perpendicularly Magnetized Co/Pd Multilayer. IEEE Transactions on Magnetics, 2010, 46, 2056-2059.	2.1	22
134	The Effect of Doping Concentration of Si on the Nature of Barrier of Co\$_{2}\$MnSi/MgO/n-Si Junctions. IEEE Transactions on Magnetics, 2010, 46, 1637-1640.	2.1	1
135	Structural and Magnetic Properties of Perpendicular Magnetized Mn\$_{2.5}\$Ga Epitaxial Films. IEEE Transactions on Magnetics, 2010, 46, 1863-1865.	2.1	28
136	Laser-Induced Fast Magnetization Precession and Gilbert Damping for CoCrPt Alloy Thin Films with Perpendicular Magnetic Anisotropy. Applied Physics Express, 2010, 3, 123001.	2.4	49
137	Structural, magnetic, and magnetotransport properties of FePt/MgO/CoPt perpendicularly magnetized tunnel junctions. Journal of Physics: Conference Series, 2010, 200, 052008.	0.4	11
138	Gilbert damping in perpendicularly magnetized Pt/Co/Pt films investigated by all-optical pump-probe technique. Applied Physics Letters, 2010, 96, .	3.3	157
139	Electrical transport properties of perpendicular magnetized Mn-Ga epitaxial films. Applied Physics Letters, 2010, 96, .	3.3	53
140	Spin transistor based on double tunnel junctions using half-metallic Co ₂ MnSi electrodes. Journal of Physics: Conference Series, 2010, 200, 052019.	0.4	3
141	Single crystal-like selection rules for unipolar-axis oriented tetragonal Pb(Zr,Ti)O3 thick epitaxial films. Applied Physics Letters, 2010, 97, 111901.	3.3	8
142	Reproducible trajectory on subnanosecond spin-torque magnetization switching under a zero-bias field for MgO-based ferromagnetic tunnel junctions. Applied Physics Letters, 2010, 96, 142502.	3.3	7
143	Epitaxial growth of Co2MnSi thin films at the vicinal surface of n-Ge(111) substrate. Applied Physics Letters, 2010, 96, .	3.3	15
144	Fabrication of perpendicularly magnetized magnetic tunnel junctions with L1-CoPt/Co2MnSi hybrid electrode. Journal of Applied Physics, 2010, 107, .	2.5	23

#	Article	IF	CITATIONS
145	Crystal Structures and Electrical Properties of Epitaxial BiFeO3Thin Films with (001), (110), and (111) Orientations. Japanese Journal of Applied Physics, 2010, 49, 09MB03.	1.5	51
146	Gilbert magnetic damping constant of epitaxially grown Co-based Heusler alloy thin films. Applied Physics Letters, 2010, 96, .	3.3	80
147	The effect of MgO barrier on the structure and magnetic properties of Co2MnSi films on n-Si(100) substrates. Journal of Applied Physics, 2009, 106, 103907.	2.5	O
148	Enhancement in tunnel magnetoresistance effect by inserting CoFeB to the tunneling barrier interface in Co2MnSi/MgO/CoFe magnetic tunnel junctions. Applied Physics Letters, 2009, 94, .	3.3	25
149	Composition control and thickness dependence of {100}-oriented epitaxial BiCoO3–BiFeO3 films grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 2009, 105, 061620.	2.5	17
150	THE OPTICAL PROPERTY OF MULTIFERROIC BiFeO3 FILMS. Integrated Ferroelectrics, 2009, 106, 11-16.	0.7	4
151	Magnetic and Electronic Properties of BaTiO3–(Ni,Cu,Zn)Fe2O4Ceramic Composite: Reflection of Kepler Conjecture. Journal of the Physical Society of Japan, 2009, 78, 124801.	1.6	4
152	Fabrication of MgO-based magnetic tunnel junctions with CoCrPt perpendicularly magnetized electrodes. Journal of Applied Physics, 2009, 105, 07C911.	2.5	16
153	Tunnel magnetoresistance effect in double magnetic tunnel junctions using half-metallic Heusler alloy electrodes. Journal of Applied Physics, 2009, 105, 07C920.	2.5	4
154	Structural and Magnetic Properties of Co ₂ MnSi Heusler Alloy Thin Films on Si. Japanese Journal of Applied Physics, 2009, 48, 083002.	1.5	8
155	Structural, magnetic, and ferroelectric properties of multiferroic BiFeO3-based composite films with exchange bias. Journal of Applied Physics, 2009, 105, 07D903.	2.5	11
156	Epitaxial Mn2.5Ga thin films with giant perpendicular magnetic anisotropy for spintronic devices. Applied Physics Letters, 2009, 94, .	3.3	193
157	Study of Structure, Magnetic and Electrical Properties of Co\$_{2}\$MnSi Heusler Alloy Thin Films Onto n-Si Substrates. IEEE Transactions on Magnetics, 2009, 45, 4030-4032.	2.1	6
158	Annealing temperature effect on ferroelectric and magnetic properties in Mn-added polycrystalline BiFeO3 films. Journal of Electroceramics, 2009, 22, 203-208.	2.0	14
159	Fabrication of conductive oxide polycrystalline BaPbO3 films by chemical solution deposition and their electrical resistivity. Journal of Electroceramics, 2009, 22, 78-81.	2.0	2
160	Optical Properties of BiFeO ₃ -System Multiferroic Thin Films. Japanese Journal of Applied Physics, 2009, 48, 09KB01.	1.5	17
161	Half-metallicity and Gilbert damping constant in Co2FexMn1â^'xSi Heusler alloys depending on the film composition. Applied Physics Letters, 2009, 94, .	3.3	214
162	Structural analysis of interfacial strained epitaxial BiMnO3 films fabricated by chemical solution deposition. Journal of Applied Physics, 2009, 105, .	2.5	5

#	Article	IF	CITATIONS
163	Influence of Pb and La contents on the lattice configuration of La-substituted Pb(Zr,Ti)O3 films fabricated by CSD method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 687-692.	3.0	1
164	Piezoelectric Endurance Properties of Lead Zirconate Titanate Thick Films for Micro-Device Applications. Ferroelectrics, 2009, 389, 49-54.	0.6	1
165	Direct Observation of Atomic Ordering and Interface Structure in Co2MnSi/MgO/Co2MnSi Magnetic Tunnel Junctions by High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy. Applied Physics Express, 2009, 2, 093001.	2.4	18
166	Estimation of Leakage Current Density and Remanent Polarization of BiFeO ₃ Films with Low Resistivity by Positive, Up, Negative, and Down Measurements. Japanese Journal of Applied Physics, 2008, 47, 5558.	1.5	13
167	Evaluation of Electrical Properties of Leaky BiFeO3Films in High Electric Field Region by High-Speed Positive-Up–Negative-Down Measurement. Applied Physics Express, 2008, 1, 061601.	2.4	60
168	Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films. Applied Physics Letters, 2008, 93, .	3.3	227
169	Dependence of ferroelectric and magnetic properties on measuring temperatures for polycrystalline BiFeO ₃ films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1046-1050.	3.0	15
170	Ferroelectric and magnetic properties of multiferroic BiFeO < sub > 3 < /sub > -based composite films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1051-1055.	3.0	5
171	Crystal Structure and Electrical Properties of {100}-Oriented Epitaxial BiCoO ₃ –BiFeO ₃ Films Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47, 7582.	1.5	40
172	Enhancement of ferroelectric and magnetic properties in BiFeO3 films by small amount of cobalt addition. Journal of Applied Physics, 2008, 103, .	2.5	35
173	Composition Dependence in BiFeO ₃ Film Capacitor with Suppressed Leakage Current by Nd and Mn Cosubstitution and Their Ferroelectric Properties. Japanese Journal of Applied Physics, 2008, 47, 7586.	1.5	70
174	Simple Process Synthesis of BaTiO⟨sub⟩3⟨/sub⟩–(Ni,Zn,Cu)Fe⟨sub⟩2⟨/sub⟩O⟨sub⟩4⟨/sub⟩ Ceramic Composite. Journal of the Physical Society of Japan, 2008, 77, 064801.	1.6	11
175	IMPRINT BEHAVIOR OF FERROELECTRIC Pb(ZrTi)O ₃ THIN-FILM CAPACITORS IN THE EARLY STAGE. Integrated Ferroelectrics, 2008, 96, 90-99.	0.7	3
176	Annealing Temperature Dependences of Ferroelectric and Magnetic Properties in Polycrystalline Co-Substituted BiFeO3Films. Japanese Journal of Applied Physics, 2008, 47, 7574-7578.	1.5	20
177	Electrooptic and Piezoelectric Properties of (Pb,La)(Zr,Ti)O3Films with Various Zr/Ti Ratios. Japanese Journal of Applied Physics, 2008, 47, 7541-7544.	1.5	6
178	Structural, magnetic, and ferroelectric properties of multiferroic BiFeO3 film fabricated by chemical solution deposition. Journal of Applied Physics, 2007, 101, 09M103.	2.5	73
179	Systematic Fabrication of (Ba, Sr)TiO ₃ Microdots with Various Ba/Sr Ratios by Ink-Jet Printing and Their Evaluation. Ferroelectrics, 2007, 357, 3-8.	0.6	1
180	LEAKAGE CURRENT MECHANISM OF POLYCRYSTALLINE BiFeO3 FILMS WITH PT ELECTRODE. Integrated Ferroelectrics, 2007, 95, 242-247.	0.7	7

#	Article	IF	Citations
181	Structural Analysis of Polycrystalline BiFeO ₃ Films by Transmission Electron Microscopy. Materials Transactions, 2007, 48, 2370-2373.	1.2	5
182	Optimization of Pb Content in a Precursor Solution for the Fabrication of (Pb,La)(Zr,Ti)O ₃ Films for Optical Applications by Chemical Solution Deposition. Ferroelectrics, 2007, 357, 223-227.	0.6	3
183	Ferroelectric and magnetic properties of multiferroic FeO <inf>x</inf> -BiFeO <inf>3</inf> composite films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
184	BI CONCENTRATION DEPENDENCE OF STRUCTURAL, FERROELECTRIC AND MAGNETIC PROPERTIES OF BiFeO ₃ Films. Integrated Ferroelectrics, 2007, 95, 234-241.	0.7	1
185	Structural and ferroelectric properties of BiFeO <inf>3</inf> -BiCoO <inf>3</inf> solid solution films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	O
186	Temperature dependence of ferroelectric and magnetic properties in polycrystalline BiFeO <inf>3</inf> films. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
187	Crystal Structure Analysis of Epitaxial BiFeO3–BiCoO3Solid Solution Films Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2007, 46, 6948-6951.	1.5	48
188	Leakage Current Property of Pb(Zr <inf>0.4</inf> , Ti <inf>0.6</inf>)O <inf>3</inf> Thin-film Capacitors with Highly Rectangular Hysteresis Property. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
189	Influence of Pb and La Contents on the Lattice Configuration of La-Substituted Pb($Zr<\inf>0.65$,) Tj ETQq1 1 2007, , .	0.784314 0.0	rgBT /Over 0
190	Preparation and characterization of Bi-perovskite oxide films for piezo applications. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
191	A new error backpropagation learning algorithm for a layered neural network with nondifferentiable units. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2007, 90, 40-49.	0.1	1
192	Particle size dependence of atomic ordering and magnetic properties of L10-FePd nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 310, 2356-2358.	2.3	21
193	Fabrication of oriented L10-FeCuPd and composite bcc-Feâ^L10-FeCuPd nanoparticles: Alloy composition dependence of magnetic properties. Journal of Applied Physics, 2006, 99, 08N706.	2.5	14
194	La Content Dependence of Electrooptic Properties of Polycrystalline (Pb,La)(Zr0.65,Ti0.35)O3Thick Films. Japanese Journal of Applied Physics, 2006, 45, 7279-7282.	1.5	19
195	Direct Synthesis of Oriented High-Density Islands of L10-FePtCu Alloy at 613 K. Japanese Journal of Applied Physics, 2006, 45, L608-L610.	1.5	9
196	Perpendicular magnetic anisotropy of epitaxially grown L10-FePdCu nanoparticles with preferential c-axis orientation. Journal of Applied Physics, 2006, 100, 074914.	2.5	13
197	Structure and Magnetic Properties of Iron Nitride Films Prepared by Reactive dc Magnetron Sputtering. Japanese Journal of Applied Physics, 2004, 43, 4166-4170.	1.5	6
198	Magnetic properties of weak itinerant ferromagnetic ζ-Fe2N film. Science and Technology of Advanced Materials, 2004, 5, 83-87.	6.1	12

#	Article	IF	CITATIONS
199	Magnetic and electrical properties of iron nitride films containing both amorphous matrices and nanocrystalline grains. Science and Technology of Advanced Materials, 2004, 5, 101-106.	6.1	25
200	Preparation of CoFe2O4Spin Valves and Improvement of Their Magnetoresistance Property by Postannealing. Japanese Journal of Applied Physics, 2003, 42, 6865-6868.	1.5	2
201	Polarized Raman Study for Epitaxial PZT Thick Film with the Mixture Orientation of (100)/(001). Key Engineering Materials, 0, 421-422, 99-102.	0.4	2
202	Large Tunnel Magnetoresistance of 1056% at Room Temperature in MgO Based Double Barrier Magnetic Tunnel Junction. Applied Physics Express, 0, 2, 083002.	2.4	60