Ying Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601101/publications.pdf

Version: 2024-02-01

90 10,810 39
papers citations h-index

39 87 h-index g-index

91 91 docs citations

91 times ranked 16284 citing authors

#	Article	IF	CITATIONS
1	Freeâ€Standing Nanofilm Electrode Arrays for Longâ€Term Stable Neural Interfacings. Advanced Materials, 2022, 34, e2107343.	21.0	11
2	Multimodal neural probes for combined optogenetics and electrophysiology. IScience, 2022, 25, 103612.	4.1	14
3	Remote neural regulation mediated by nanomaterials. Nanotechnology, 2022, 33, 272002.	2.6	4
4	In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables. Frontiers of Materials Science, 2022, $16,\ldots$	2.2	2
5	Flexible and highly responsive photodetectors based on heterostructures of MoS ₂ and all-carbon transistors. Nanotechnology, 2021, 32, 315209.	2.6	9
6	Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosensors and Bioelectronics, 2021, 192, 113477.	10.1	13
7	Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nature Communications, 2021, 12, 5871.	12.8	29
8	Carbon nanotube spiderweb promoted growth of hierarchical transition metal dichalcogenide nanostructures for seamless devices. Nanotechnology, 2020, 31, 365601.	2.6	5
9	Bioinspired flexible electronics for seamless neural interfacing and chronic recording. Nanoscale Advances, 2020, 2, 3095-3102.	4.6	20
10	Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Research, 2020, 13, 1244-1252.	10.4	42
11	Acceptor-free photomultiplication-type organic photodetectors. Nanoscale, 2019, 11, 16406-16413.	5.6	24
12	Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings. Nano Letters, 2019, 19, 8032-8039.	9.1	24
13	Implantable and Flexible Electronics for In vivo Brain Activity Recordings. Chinese Journal of Analytical Chemistry, 2019, 47, 1549-1558.	1.7	10
14	Crack Control in Biotemplated Gold Films for Wideâ€Range, Highly Sensitive Strain Sensing. Advanced Materials Interfaces, 2019, 6, 1901223.	3.7	17
15	Photomultiplication type all-polymer photodetectors with single carrier transport property. Science China Chemistry, 2019, 62, 1619-1624.	8.2	8
16	Elastocapillary self-assembled neurotassels for stable neural activity recordings. Science Advances, 2019, 5, eaav2842.	10.3	142
17	Binary Thiol-Capped Gold Nanoparticle Monolayer Films for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS Applied Materials & Scattering Analysis. ACS Applied Materials & Scattering Analysis. ACS Applied Materials & Scattering Analysis.	8.0	38
18	Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings. Small, 2019, 15, e1900582.	10.0	21

#	Article	IF	CITATIONS
19	Transparent graphene bioelectronics as a new tool for multimodal neural interfaces. Nano Today, 2019, 26, 13-15.	11.9	12
20	Nanowire Bioelectronics. Nanostructure Science and Technology, 2019, , 337-352.	0.1	0
21	Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces. Advanced Materials, 2019, 31, e1804895.	21.0	66
22	Photomultiplication Type Organic Photodetectors with Broadband and Narrowband Response Ability. Advanced Optical Materials, 2018, 6, 1800001.	7.3	98
23	Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording. Nano Research, 2018, 11, 5604-5614.	10.4	26
24	Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosensors and Bioelectronics, 2018, 105, 109-115.	10.1	7
25	Carbon-Nanotube-Wrapped Spider Silks for Directed Cardiomyocyte Growth and Electrophysiological Detection. ACS Applied Materials & Interfaces, 2018, 10, 6793-6798.	8.0	26
26	A General Method for the Chemical Synthesis of Largeâ€Scale, Seamless Transition Metal Dichalcogenide Electronics. Advanced Materials, 2018, 30, e1706215.	21.0	36
27	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33049-33059.	8.0	58
28	Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small, 2018, 14, e1800819.	10.0	326
29	Peptide-functionalized carbon dots for sensitive and selective Ca2+ detection. Sensors and Actuators B: Chemical, 2018, 273, 1654-1659.	7.8	22
30	Biomedical Applications of Graphene. , 2018, , 215-232.		15
31	Organic Photodetectors with Gain and Broadband/Narrowband Response under Top/Bottom Illumination Conditions. Advanced Optical Materials, 2018, 6, 1800249.	7.3	108
32	Highly Narrowband Photomultiplication Type Organic Photodetectors. Nano Letters, 2017, 17, 1995-2002.	9.1	278
33	Photomultiplication type narrowband organic photodetectors working at forward and reverse bias. Physical Chemistry Chemical Physics, 2017, 19, 14424-14430.	2.8	41
34	Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper. Carbon, 2017, 118, 675-679.	10.3	16
35	Highly Crumpled All-Carbon Transistors for Brain Activity Recording. Nano Letters, 2017, 17, 71-77.	9.1	38
36	Ultramicroelectrode array modified with magnetically labeled Bacillus subtilis, palladium nanoparticles and reduced carboxy graphene for amperometric determination of biochemical oxygen demand. Mikrochimica Acta, 2017, 184, 763-771.	5.0	10

#	Article	IF	Citations
37	Highly Sensitive Lowâ∈Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ∈Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	14.9	148
38	High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. Chemistry of Materials, 2017, 29, 7808-7815.	6.7	38
39	Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon, 2017, 123, 786-793.	10.3	44
40	High Detectivity Graphene‧ilicon Heterojunction Photodetector. Small, 2016, 12, 595-601.	10.0	370
41	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional Materials, 2016, 26, 2078-2084.	14.9	328
42	Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires. Journal of Applied Physics, 2016, 119, .	2.5	23
43	Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector. Journal of Applied Physics, 2016, 119, 124303.	2.5	18
44	Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper. Chemistry of Materials, 2016, 28, 3360-3366.	6.7	28
45	Blown-Bubble Assembly and in Situ Fabrication of Sausage-like Graphene Nanotubes Containing Copper Nanoblocks. Nano Letters, 2016, 16, 4917-4924.	9.1	13
46	Largeâ€Area Ultrathin Graphene Films by Singleâ€Step Marangoni Selfâ€Assembly for Highly Sensitive Strain Sensing Application. Advanced Functional Materials, 2016, 26, 1322-1329.	14.9	326
47	Recent advances in nanopore-based nucleic acid analysis and sequencing. Mikrochimica Acta, 2016, 183, 925-939.	5.0	15
48	Organic bioelectronics for neural interfaces. Journal of Materials Chemistry C, 2015, 3, 6424-6430.	5.5	44
49	Syringe-injectable electronics. Nature Nanotechnology, 2015, 10, 629-636.	31.5	543
50	Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy, 2015, 17, 216-223.	16.0	30
51	Carbon Nanotube Network Embroidered Graphene Films for Monolithic All arbon Electronics. Advanced Materials, 2015, 27, 682-688.	21.0	62
52	Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Research, 2015, 8, 900-906.	10.4	32
53	Controlled construction of nanostructures in graphene. Chinese Physics B, 2014, 23, 028102.	1.4	4
54	The design of <i>d</i> -character Dirac cones based on graphene. Journal of Physics Condensed Matter, 2014, 26, 385501.	1.8	4

#	Article	IF	CITATIONS
55	Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	15
56	Switchable supramolecular assemblies on graphene. Nanoscale, 2014, 6, 8387-8391.	5.6	32
57	Flexible bio-interfaced nanoelectronics. Journal of Materials Chemistry C, 2014, 2, 1178.	5.5	7
58	In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide. Nanoscale Research Letters, 2014, 9, 311.	5.7	22
59	Soluble Polymer-Based, Blown Bubble Assembly of Single- and Double-Layer Nanowires with Shape Control. ACS Nano, 2014, 8, 3522-3530.	14.6	24
60	Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary. Nano Letters, 2014, 14, 6342-6347.	9.1	116
61	Nanodevices for Cellular Interfaces and Electrophysiological Recording. Advanced Materials, 2013, 25, 3881-3887.	21.0	20
62	CVD Growth of Large Area Smooth-edged Graphene Nanomesh by Nanosphere Lithography. Scientific Reports, 2013, 3, 1238.	3.3	111
63	Topological insulators in transition-metal intercalated graphene: The role of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math> electrons in significantly increasing the spin-orbit gap. Physical Review B. 2013. 87	3.2	43
64	Colloidal Antireflection Coating Improves Graphene–Silicon Solar Cells. Nano Letters, 2013, 13, 1776-1781.	9.1	303
65	Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors. Nano Letters, 2013, 13, 3287-3292.	9.1	132
66	Sensitivity Limits and Scaling of Bioelectronic Graphene Transducers. Nano Letters, 2013, 13, 2902-2907.	9.1	31
67	The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials, 2013, 34, 1383-1390.	11.4	46
68	Facile Solution Synthesis and Photoelectric Properties of Monolithic Tin(II) Sulfide Nanobelt Arrays. Chemistry - an Asian Journal, 2013, 8, 2483-2488.	3.3	7
69	Nanobelt–carbon nanotube cross-junction solar cells. Energy and Environmental Science, 2012, 5, 6119.	30.8	11
70	Local electrical potential detection of DNA by nanowire–nanopore sensors. Nature Nanotechnology, 2012, 7, 119-125.	31.5	288
71	Unraveling Stressâ€Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism. Advanced Materials, 2012, 24, 5391-5397.	21.0	213
72	Graphene: Unraveling Stress-Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism (Adv. Mater. 39/2012). Advanced Materials, 2012, 24, 5390-5390.	21.0	2

#	Article	IF	Citations
73	Control of Carrier Type and Density in Exfoliated Graphene by Interface Engineering. ACS Nano, 2011, 5, 408-412.	14.6	124
74	Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO ₂ -Supported Graphene Devices. Nano Letters, 2011, 11, 767-771.	9.1	461
75	Suspended Graphene Sensors with Improved Signal and Reduced Noise. Nano Letters, 2010, 10, 1864-1868.	9.1	280
76	Generating Electricity from Biofluid with a Nanowireâ€Based Biofuel Cell for Selfâ€Powered Nanodevices. Advanced Materials, 2010, 22, 5388-5392.	21.0	99
77	Fabrication of suspended graphene devices and their electronic properties. Chinese Physics B, 2010, 19, 097307.	1.4	13
78	Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording. Nano Letters, 2010, 10, 1098-1102.	9.1	365
79	Carbon Nanotube and CdSe Nanobelt Schottky Junction Solar Cells. Nano Letters, 2010, 10, 3583-3589.	9.1	90
80	Self-Assembled 1-Octadecanethiol Monolayers on Graphene for Mercury Detection. Nano Letters, 2010, 10, 4738-4741.	9.1	164
81	Coaxial silicon nanowires as solar cells and nanoelectronic power sources. , 2010, , 58-62.		1
82	Ultrasmall silicon quantum dots. Journal of Applied Physics, 2009, 105, .	2.5	20
83	Grayscale photomask fabricated by laser direct writing in metallic nano-films. Optics Express, 2009, 17, 19981.	3.4	52
83		3.4 9.1	52 49
	19981.		
84	19981. Real-Time Study of Graphene's Phase Transition in Polymer Matrices. Nano Letters, 2009, 9, 2129-2132. Diameter-dependent dopant location in silicon and germanium nanowires. Proceedings of the National	9.1	49
84	Real-Time Study of Graphene's Phase Transition in Polymer Matrices. Nano Letters, 2009, 9, 2129-2132. Diameter-dependent dopant location in silicon and germanium nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15254-15258.	9.1 7.1	49 106
84 85 86	Real-Time Study of Graphene's Phase Transition in Polymer Matrices. Nano Letters, 2009, 9, 2129-2132. Diameter-dependent dopant location in silicon and germanium nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15254-15258. Spin States of the First Four Holes in a Silicon Nanowire Quantum Dot. Nano Letters, 2009, 9, 1071-1079.	9.1 7.1 9.1	49 106 78
84 85 86	Real-Time Study of Graphene's Phase Transition in Polymer Matrices. Nano Letters, 2009, 9, 2129-2132. Diameter-dependent dopant location in silicon and germanium nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15254-15258. Spin States of the First Four Holes in a Silicon Nanowire Quantum Dot. Nano Letters, 2009, 9, 1071-1079. Spontaneous Formation of Nanostructures in Graphene. Nano Letters, 2009, 9, 3599-3602. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449,	9.1 7.1 9.1 9.1	49 106 78