Nancy R Gough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86006/publications.pdf

Version: 2024-02-01

		759233	552781
563	867	12	26
papers	citations	h-index	g-index
632	632	632	1956
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Impaired reciprocal regulation between SIRT6 and TGFâ€Î² signaling in fatty liver. FASEB Journal, 2022, 36, e22335.	0.5	6
2	Using quantitative immunohistochemistry in patients at high risk for hepatocellular cancer. Genes and Cancer, 2022, 13, 9-20.	1.9	3
3	TGF- \hat{l}^2 Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology, 2021, 161, 434-452.e15.	1.3	81
4	Targeting the E3 Ubiquitin Ligase PJA1 Enhances Tumor-Suppressing $TGF\hat{l}^2$ Signaling. Cancer Research, 2020, 80, 1819-1832.	0.9	17
5	Secretome profiling identifies neuron-derived neurotrophic factor as a tumor-suppressive factor in lung cancer. JCI Insight, 2019, 4, .	5.0	15
6	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
7	Channeling pain through GPCRs. Science, 2017, 355, 143.8-144.	12.6	1
8	Focus Issue: Cancerâ€"Beyond tumor genetics to protein landscapes. Science Signaling, 2017, 10, .	3.6	3
9	Placing the nuclear pore in the metformin mechanism of action. Science Signaling, 2017, 10, .	3.6	1
10	Tumors block pain with CXCL12. Science Signaling, 2017, 10, .	3.6	1
11	New connections: NHERF gates activity. Science Signaling, 2017, 10, .	3.6	2
12	Papers of note in <i>Nature</i> 541 (7636). Science Signaling, 2017, 10, .	3.6	0
13	Papers of note in <i>Nature</i> 540 (7634). Science Signaling, 2017, 10, .	3.6	0
14	Daily oxygen rhythms. Science Signaling, 2017, 10, .	3.6	0
15	Lysosomes get into the action. Science Signaling, 2017, 10, .	3.6	0
16	Translational complex for differentiation. Science Signaling, 2017, 10, .	3.6	0
17	Pseudophosphatase as E3 ubiquitin ligase inhibitor. Science Signaling, 2017, 10, .	3.6	0
18	Unveiling the molecular details of plant signaling. Science Signaling, 2016, 9, eg9.	3.6	2

#	Article	IF	Citations
19	Emerging roles for organelles in cellular regulation. Science Signaling, 2016, 9, eg11.	3.6	2
20	Beyond canonical: The Wnt and \hat{l}^2 -catenin story. Science Signaling, 2016, 9, eg5.	3.6	14
21	Leveraging signaling research to understand and treat disease. Science Signaling, 2016, 9, eg4.	3.6	1
22	Focus Issue: New insights in GPCR to G protein signaling. Science Signaling, 2016, 9, eg6.	3.6	2
23	Focus Issue: The ins and outs of ORAI in immune cells. Science Signaling, 2016, 9, eg3.	3.6	1
24	Signaling proteins in the spotlight. Science Signaling, 2016, 9, eg8.	3.6	1
25	A MEK threshold in the placenta. Science, 2016, 351, i-462.	12.6	0
26	Focus Issue: Cell biology meets cancer therapy. Science Signaling, 2016, 9, eg2.	3.6	0
27	Helping cancer cells exit blood vessels. Science, 2016, 351, 676-676.	12.6	0
28	Plants send out a bacterial mimic. Science, 2016, 351, 134-135.	12.6	0
29	Rewarded with active Rap1. Science Signaling, 2016, 9, .	3.6	1
30	PP2A to Alzheimer's rescue. Science Signaling, 2016, 9, .	3.6	2
31	Paths to dyskinesia from nerve cell replacement. Science Signaling, 2016, 9, .	3.6	1
32	TLR9 sustains autophagic flux. Science Signaling, 2016, 9, .	3.6	3
33	Limiting T cell histidine phosphorylation. Science Signaling, 2016, 9, .	3.6	1
34	Papers of note in <i>Science Translational Medicine</i> . Science Signaling, 2016, 9, .	3.6	0
35	Papers of note in <i>Science /i>. Science Signaling, 2016, 9, .</i>	3.6	0
36	Papers of note in <i>Science Translational Medicine</i> . Science Signaling, 2016, 9, .	3.6	0

#	Article	IF	Citations
37	Impairing cognition with TNF-α. Science Signaling, 2016, 9, .	3 . 6	O
38	Papers of note in <i>Science (i). Science Signaling, 2016, 9, .</i>	3.6	0
39	Papers of note in <i>Science /i>. Science Signaling, 2016, 9, .</i>	3.6	0
40	Papers of note in <i>Science </i> . Science Signaling, 2016, 9, .	3.6	0
41	Building the enteric nervous system. Science Signaling, 2016, 9, .	3.6	0
42	Paper of note in <i>Science Translational Medicine</i>	3.6	0
43	Papers of note in <i>Science Translational Medicine</i> . Science Signaling, 2016, 9, .	3.6	O
44	A fibrotic trio. Science Signaling, 2016, 9, .	3.6	0
45	Papers of note in <i>Science Translational Medicine</i> . Science Signaling, 2016, 9, .	3.6	O
46	Paper of note in <i>Science</i> . Science Signaling, 2016, 9, .	3.6	0
47	Paper of note in <i>Science Translational Medicine</i> Science Signaling, 2016, 9, .	3 . 6	O
48	Papers of note in <i>Science</i> . Science Signaling, 2016, 9, .	3.6	0
49	Bacteria give that full feeling. Science Signaling, 2016, 9, .	3.6	O
50	Papers of note in <i>Science </i> . Science Signaling, 2016, 9, .	3.6	0
51	New connections: Interpreting calcium signals. Science Signaling, 2016, 9, .	3.6	O
52	Papers of note in <i>Science Translational Medicine</i> . Science Signaling, 2016, 9, .	3.6	0
53	Papers of note in <i>Science (i). Science Signaling, 2016, 9, .</i>	3.6	0
54	Toxic TRPA1 activity degrades myelin. Science Signaling, 2016, 9, .	3 . 6	0

#	Article	IF	CITATIONS
55	Controlling glutamine metabolism by acetylation. Science Signaling, 2016, 9, .	3.6	O
56	Pannexin1: A mediator of NMDA and adrenergic receptor signaling. Science Signaling, 2016, 9, .	3 . 6	0
57	New connections: Taming vascular inflammation. Science Signaling, 2016, 9, .	3.6	0
58	Improved glucose metabolism without skeletal muscle MED13. Science Signaling, 2016, 9, .	3.6	0
59	New connections: Setting the GABA response. Science Signaling, 2016, 9, .	3.6	0
60	New connections: Moonlighting proteins, YAP and BUB1. Science Signaling, 2016, 9, .	3.6	0
61	New connections: Reprogramming NK and T cells to attack cancer. Science Signaling, 2016, 9, .	3 . 6	0
62	From maternal infection to aberrant fetal brain development. Science Signaling, $2016, 9, .$	3.6	0
63	Polo kinase at the mitochondria. Science Signaling, 2016, 9, .	3.6	0
64	New connections: T cell actin dynamics. Science Signaling, 2016, 9, .	3.6	0
65	Two faces of WNT signaling. Science Signaling, 2016, 9, .	3.6	0
66	New connections: From virtual screening to biological reality. Science Signaling, 2016, 9, .	3.6	0
67	A bad time of day to get an infection. Science Signaling, 2016, 9, .	3.6	0
68	Alternative splicing in development. Science Signaling, 2016, 9, .	3.6	0
69	IP ₆ in chromosome dynamics. Science Signaling, 2016, 9, .	3.6	0
70	Preventing infant blindness. Science Signaling, 2016, 9, .	3.6	0
71	Cancerous splice variants. Science Signaling, 2016, 9, .	3.6	0
72	New connections: Therapeutic nanoparticles. Science Signaling, 2016, 9, .	3.6	0

#	Article	IF	Citations
73	New connections: Making discoveries in complex data sets. Science Signaling, 2016, 9, .	3.6	O
74	Boosting energy expenditure. Science Signaling, 2016, 9, .	3.6	0
75	Another mTOR complex?. Science Signaling, 2016, 9, .	3.6	0
76	Pore-forming death signal. Science Signaling, 2016, 9, .	3.6	0
77	Shutting down oxygen use. Science Signaling, 2016, 9, .	3.6	0
78	The mechanics of the first heartbeat. Science Signaling, 2016, 9, .	3.6	0
79	DNA memories for mating. Science Signaling, 2016, 9, .	3.6	0
80	New connections: Regulating transporters. Science Signaling, 2016, 9, .	3.6	1
81	Reversible acetylation in brassinosteroid signaling. Science Signaling, 2016, 9, .	3.6	0
82	Longer life through cysteine sulfenylation. Science Signaling, 2016, 9, .	3.6	0
83	Hypoxia limits IgG-producing B cells. Science Signaling, 2016, 9, .	3.6	1
84	Long noncoding RNA tells myeloid cells how long to live. Science Signaling, 2016, 9, .	3.6	0
85	Surviving the flood. Science Signaling, 2016, 9, .	3.6	0
86	Improving the health of newborns of obese mothers. Science Signaling, 2016, 9, .	3.6	0
87	New connections: Detecting tumor-specific signaling. Science Signaling, 2016, 9, .	3.6	0
88	Signaling when to fill up. Science Signaling, 2016, 9, .	3.6	0
89	Auxin signaling without Aux/IAAs. Science Signaling, 2016, 9, .	3. 6	0
90	Misbehaving without MeCP2. Science Signaling, 2016, 9, .	3.6	0

#	Article	IF	CITATIONS
91	TRAF6 targets p53. Science Signaling, 2016, 9, .	3.6	O
92	SUMO versus ubiquitin in Hedgehog signaling. Science Signaling, 2016, 9, .	3.6	0
93	Wnt couples the cell cycle to the circadian cycle. Science Signaling, 2016, 9, .	3.6	O
94	Focus Issue: Tackling reproducibility and accuracy in cell signaling experiments. Science Signaling, 2015, 8, eg4.	3.6	5
95	The computable cell: A step toward personalized medicine. Science Signaling, 2015, 8, eg6.	3.6	0
96	Criteria for biological reproducibility: What does " <i>n</i> ―mean?. Science Signaling, 2015, 8, fs7.	3.6	22
97	Enhancing and Inhibiting TGF-Î ² Signaling in Infection. Science Signaling, 2015, 8, .	3.6	6
98	Rice that tolerates a chill. Science Signaling, 2015, 8, .	3.6	1
99	Dual action: Demethylase and ubiquitin ligase. Science Signaling, 2015, 8, .	3.6	1
100	Microbes message gut secretory cells. Science Signaling, 2015, 8, .	3.6	1
101	Wnt to YAP pathway. Science Signaling, 2015, 8, .	3.6	2
102	Pyroptosis mediator identified. Science Signaling, 2015, 8, .	3.6	1
103	Converting mucus-making cells into mucus-clearing cells. Science Signaling, 2015, 8, .	3.6	2
104	ER trap for blood pressure control. Science Signaling, 2015, 8, .	3.6	0
105	Limiting S1P production with Nogo-B. Science Signaling, 2015, 8, .	3.6	0
106	Antibiotics for sickle cell disease. Science Signaling, 2015, 8, .	3.6	0
107	Changing properties of interneurons. Science Signaling, 2015, 8, .	3.6	0
108	Senescent Cells Promote Tissue Repair. Science Signaling, 2015, 8, .	3.6	0

#	Article	IF	CITATIONS
109	Fewer lesions, more baby mice. Science Signaling, 2015, 8, .	3.6	O
110	Insulin Promotes Serotonin Uptake. Science Signaling, 2015, 8, .	3.6	0
111	Turned off by chloride. Science Signaling, 2015, 8, .	3.6	0
112	Endocannabinoids in glucocorticoid-induced metabolic syndrome. Science Signaling, 2015, 8, .	3.6	0
113	Invasion of the T tubules. Science Signaling, 2015, 8, .	3.6	0
114	Changing progeny's inheritance. Science Signaling, 2015, 8, .	3.6	0
115	Finding the decretin hormone. Science Signaling, 2015, 8, .	3.6	0
116	Turning down inflammation with dopamine. Science Signaling, 2015, 8, .	3.6	0
117	Bound by a IncRNA. Science Signaling, 2015, 8, .	3.6	0
118	How insects survive desiccation and cold. Science Signaling, 2015, 8, .	3.6	0
119	From signaling knowledge to personalized therapy. Science Signaling, 2015, 8, .	3.6	0
120	Melanoma's triple threat. Science Signaling, 2015, 8, .	3.6	0
121	Calcium regulator hidden in a long "noncoding―RNA. Science Signaling, 2015, 8, .	3.6	0
122	GABA receptors as oxytocin targets. Science Signaling, 2015, 8, .	3.6	2
123	Immunotherapy according to GARP. Science Signaling, 2015, 8, .	3.6	0
124	Sending survival signals. Science Signaling, 2015, 8, .	3.6	0
125	Donor monocytes suppress graft-versus-host disease. Science Signaling, 2015, 8, .	3.6	0
126	Switched on by metal. Science Signaling, 2015, 8, .	3.6	0

#	Article	IF	Citations
127	Which receptor underlies chronic pain?. Science Signaling, 2015, 8, .	3.6	0
128	Metabolic signals in the hypoxic response. Science Signaling, 2015, 8, .	3.6	1
129	Neurons promote glioma growth. Science Signaling, 2015, 8, .	3.6	0
130	Targeting the duodenum to control diabetes. Science Signaling, 2015, 8, .	3.6	1
131	Metastatic trio: Macrophages, neutrophils, and $\hat{I}^3\hat{I}$ T cells. Science Signaling, 2015, 8, .	3.6	0
132	Going nuclear for long life. Science Signaling, 2015, 8, .	3.6	0
133	Giving translation rhythm. Science Signaling, 2015, 8, .	3.6	0
134	Awake, but not hyperactive. Science Signaling, 2015, 8, .	3.6	0
135	Differentiating between nutrient sources. Science Signaling, 2015, 8, .	3.6	0
136	Degron for autophagic disposal. Science Signaling, 2015, 8, .	3.6	0
137	Taking the STING out of infection. Science Signaling, 2015, 8, .	3.6	O
138	PPP to the rescue. Science Signaling, 2015, 8, .	3.6	1
139	STIM-ulating SR calcium uptake. Science Signaling, 2015, 8, .	3.6	0
140	Inducing tumor heterogeneity with PI3K. Science Signaling, 2015, 8, .	3.6	0
141	Actively quiescent. Science Signaling, 2015, 8, .	3.6	0
142	Understanding empathy. Science Signaling, 2015, 8, .	3.6	0
143	IFT-A for Wnt signaling. Science Signaling, 2015, 8, .	3.6	1
144	Cytosolic functions of ER^2 in apoptosis and inflammasome regulation. Science Signaling, 2015, 8, .	3.6	0

#	Article	lF	Citations
145	Better treatment for dyskinesia. Science Signaling, 2015, 8, .	3.6	O
146	Rubbing sodium in a wound. Science Signaling, 2015, 8, .	3 . 6	0
147	Guiding vessels in the developing brain. Science Signaling, 2015, 8, .	3.6	0
148	Focus Issue: TGF- \hat{l}^2 and the Mesenchymal Transition in Physiology and Disease. Science Signaling, 2014, 7, eg3.	3.6	6
149	2013: Signaling Breakthroughs of the Year. Science Signaling, 2014, 7, eg1.	3.6	2
150	Natural Killer Cells on the Attack. Science Signaling, 2014, 7, .	3.6	1
151	Bioprinting Cartilage Scaffolds. Science Signaling, 2014, 7, .	3.6	5
152	Immune Regulatory Functions of Mutant p53. Science Signaling, 2014, 7, .	3.6	1
153	Gender-Specific Differences in Hematopoeisis. Science Signaling, 2014, 7, .	3.6	0
154	Deacetylase Activity Not Required. Science Signaling, 2014, 7, .	3.6	0
155	Metabolic Reprogramming with a Long Noncoding RNA. Science Signaling, 2014, 7, .	3.6	0
156	N-End Rules Again. Science Signaling, 2014, 7, .	3.6	0
157	Biased in the Absence of Sodium. Science Signaling, 2014, 7, .	3.6	0
158	Activating mTOR with Ral Instead of Rheb. Science Signaling, 2014, 7, .	3.6	1
159	Hexokinase-II Integrates Glycolysis and Autophagy. Science Signaling, 2014, 7, .	3.6	0
160	Suppressed by B Cells. Science Signaling, 2014, 7, .	3.6	0
161	Brain Tumor by NF-κB Fusion. Science Signaling, 2014, 7, .	3.6	0
162	Resolving a Painful Controversy. Science Signaling, 2014, 7, .	3.6	0

#	Article	IF	Citations
163	Extracellular miRNAs Mediate Pain. Science Signaling, 2014, 7, .	3.6	O
164	Defended by Lipids. Science Signaling, 2014, 7, .	3.6	0
165	Inhibited from Across the Way. Science Signaling, 2014, 7, .	3.6	0
166	Depressed by Dual Insults. Science Signaling, 2014, 7, .	3.6	0
167	More Myeloid Cells, STAT!. Science Signaling, 2014, 7, .	3.6	0
168	Cycling Akt Activity. Science Signaling, 2014, 7, .	3.6	0
169	Casting a NET in Gout. Science Signaling, 2014, 7, .	3.6	0
170	Signals of a Successful Bariatric Surgery. Science Signaling, 2014, 7, .	3.6	0
171	Giving Mitochondria a Boost. Science Signaling, 2014, 7, .	3.6	0
172	Dual Action Pain Modulator. Science Signaling, 2014, 7, .	3.6	0
173	Antigenic Metabolites. Science Signaling, 2014, 7, .	3.6	0
174	Giving Mitochondria a Boost with PTENα. Science Signaling, 2014, 7, .	3.6	2
175	Pinpointing the Pressure Responder. Science Signaling, 2014, 7, .	3.6	0
176	Meet Up at the Mitochondria. Science Signaling, 2014, 7, .	3.6	0
177	Creating Separate Channel Parts. Science Signaling, 2014, 7, .	3.6	0
178	Preventing Myoblasts from Premature Differentiation. Science Signaling, 2014, 7, .	3.6	0
179	Combined Treatment for Rett Syndrome. Science Signaling, 2014, 7, .	3.6	0
180	PKR, Not Just for Infected Cells. Science Signaling, 2014, 7, .	3.6	0

#	Article	IF	CITATIONS
181	Astrocytes Control Appetite. Science Signaling, 2014, 7, .	3.6	O
182	Getting the Right Receptors to the Synapse. Science Signaling, 2014, 7, .	3.6	0
183	EMT by p53Ï [^] . Science Signaling, 2014, 7, .	3.6	0
184	No Blood Cells Without Cyclin D. Science Signaling, 2014, 7, .	3.6	0
185	Treating Diabetes with FGF1. Science Signaling, 2014, 7, .	3.6	0
186	Sox2 Holds the Key to Lung Cancer Susceptibility. Science Signaling, 2014, 7, .	3.6	0
187	Shorter Filaments Yield a Better Antiviral Response. Science Signaling, 2014, 7, .	3.6	0
188	Tubing with VIP. Science Signaling, 2014, 7, .	3.6	0
189	Inhibiting HIF with Fructose-1,6-Bisphosphastase. Science Signaling, 2014, 7, .	3.6	0
190	Transporting the Calcium Signal to the Nucleus. Science Signaling, 2014, 7, .	3.6	0
191	Unhinging Muscle Injury. Science Signaling, 2014, 7, .	3.6	0
192	Signaling from the Surface and the Nucleus. Science Signaling, 2014, 7, .	3.6	0
193	Chemoresistance Mediated by the Endothelium. Science Signaling, 2014, 7, .	3.6	0
194	Rewiring the Metabolism of Cancer Cells. Science Signaling, 2014, 7, .	3.6	1
195	Building Bone with Nuclear Oxytocin Receptors. Science Signaling, 2014, 7, .	3.6	0
196	Reducing DNA Damage with Tyrosyl-tRNA Synthetase. Science Signaling, 2014, 7, .	3.6	0
197	Heparan Sulfate Proteoglycans Control Basal Inflammation. Science Signaling, 2014, 7, .	3.6	0
198	Knowing Where to S-Nitrosylate. Science Signaling, 2014, 7, .	3.6	1

#	Article	IF	Citations
199	IKK \hat{I}^2 : Commanding the Inflammatory Response. Science Signaling, 2014, 7, .	3.6	O
200	Revealing a Role for Presynaptic Glutamate Receptors in LTP. Science Signaling, 2014, 7, .	3.6	0
201	2012: Signaling Breakthroughs of the Year. Science Signaling, 2013, 6, eg1.	3.6	2
202	Focus Issue: From Genomic Mutations to Oncogenic Pathways. Science Signaling, 2013, 6, eg3.	3.6	8
203	Focus Issue: Uncovering the Mechanisms of Neurological Disease. Science Signaling, 2013, 6, eg4.	3.6	0
204	Reconstituting Angiogenesis in Vitro. Science Signaling, 2013, 6, .	3.6	1
205	Translating Memories. Science Signaling, 2013, 6, .	3.6	4
206	Resistance Through cAMP Signaling. Science Signaling, 2013, 6, .	3.6	2
207	Golgi Fragmentation in Hyperactive Neurons. Science Signaling, 2013, 6, .	3.6	0
208	Preventing Airway Hypercontractility. Science Signaling, 2013, 6, .	3.6	0
209	Converging on Syx. Science Signaling, 2013, 6, .	3.6	O
210	Chronic Infection, But Limited Inflammation. Science Signaling, 2013, 6, .	3.6	0
211	Nitrosylation Promotes AMPA Receptor Phosphorylation. Science Signaling, 2013, 6, .	3.6	0
212	AM and FM Tuning of ERK Signaling. Science Signaling, 2013, 6, .	3.6	0
213	Promoting Biofilm Formation. Science Signaling, 2013, 6, .	3.6	O
214	Surviving Birth. Science Signaling, 2013, 6, .	3.6	0
215	Targeting Dimerization. Science Signaling, 2013, 6, .	3.6	0
216	VEGFR Internalization Promotes Sprouting. Science Signaling, 2013, 6, .	3.6	0

#	Article	IF	Citations
217	Protection from Toxic Shock. Science Signaling, 2013, 6, .	3.6	0
218	Mind Games. Science Signaling, 2013, 6, .	3.6	0
219	Unable to Filter the Signal. Science Signaling, 2013, 6, .	3.6	0
220	Pathway of Neurotoxicity. Science Signaling, 2013, 6, .	3.6	0
221	Transcriptional Reprogramming by TOR. Science Signaling, 2013, 6, .	3.6	0
222	AKAP Functions for Rac1. Science Signaling, 2013, 6, .	3.6	0
223	Promoting Single-Cell Invasion. Science Signaling, 2013, 6, .	3.6	0
224	Hypoxia Prevents miRNA Processing. Science Signaling, 2013, 6, .	3.6	0
225	Primed to Die. Science Signaling, 2013, 6, .	3.6	0
226	A Damaging Survival Signal. Science Signaling, 2013, 6, .	3.6	0
227	Defense Without Compromising Development. Science Signaling, 2013, 6, .	3.6	0
228	Phosphorylation-Mediated Knockdown. Science Signaling, 2013, 6, .	3.6	0
229	Coordinating Neuronal Development. Science Signaling, 2013, 6, .	3.6	0
230	Almost Open. Science Signaling, 2013, 6, .	3.6	0
231	Two Endogenous Modulators in One. Science Signaling, 2013, 6, .	3.6	0
232	Centered on SAM. Science Signaling, 2013, 6, .	3.6	0
233	Delivering a Mixed Message. Science Signaling, 2013, 6, .	3.6	0
234	Viral Hypoxia Response. Science Signaling, 2013, 6, .	3.6	0

#	Article	IF	CITATIONS
235	Discovery of Cartilage-Forming Stem Cells. Science Signaling, 2013, 6, .	3.6	O
236	Rejecting the Wrong Mate. Science Signaling, 2013, 6, .	3.6	0
237	Halting Mitochondria at Axonal Branch Points. Science Signaling, 2013, 6, .	3.6	0
238	Painful Long Noncoding RNA. Science Signaling, 2013, 6, .	3.6	0
239	Turning On the Repulsive System. Science Signaling, 2013, 6, .	3.6	0
240	Sensing the Bitter in the Sweet. Science Signaling, 2013, 6, .	3.6	0
241	Painful Subversion of the Host Defense. Science Signaling, 2013, 6, .	3.6	0
242	Demethylation Needed to Forget. Science Signaling, 2013, 6, .	3.6	0
243	Arginine GlcNAcylation for Infection. Science Signaling, 2013, 6, .	3.6	0
244	From Moles to Melanoma. Science Signaling, 2013, 6, .	3.6	0
245	Dictating the Route. Science Signaling, 2013, 6, .	3.6	0
246	Tricellular Cooperation. Science Signaling, 2013, 6, .	3.6	0
247	Tears Signal Immaturity. Science Signaling, 2013, 6, .	3.6	0
248	Connecting Energy Status to Proliferation. Science Signaling, 2013, 6, .	3.6	0
249	Long Life Through Damaged Mitochondria. Science Signaling, 2013, 6, .	3.6	0
250	Thrombosis Prevention Without Bleeding Extension. Science Signaling, 2013, 6 , .	3.6	0
251	Programming Neuronal Regeneration. Science Signaling, 2013, 6, .	3.6	0
252	An Addictive Switch. Science Signaling, 2013, 6, .	3.6	0

#	Article	IF	CITATIONS
253	Opioid-Related Peptides for Treating Anxiety. Science Signaling, 2013, 6, .	3.6	О
254	Focus Issue: Signaling Architecture from Domains to Complexes. Science Signaling, 2012, 5, eg7.	3.6	0
255	Focus Issue: Wnt and β-Catenin Signaling in Development and Disease. Science Signaling, 2012, 5, eg2.	3.6	60
256	Focus Issue: TOR Signaling, a Tale of Two Complexes. Science Signaling, 2012, 5, eg4.	3.6	18
257	First Sulfhydration, Then Nitrosylation. Science Signaling, 2012, 5, .	3.6	1
258	Limiting Notch Signaling with Akt. Science Signaling, 2012, 5, .	3.6	1
259	Anticancer Glycyl-tRNA Synthetase from the Outside. Science Signaling, 2012, 5, .	3.6	1
260	Neuroprotective Mitochondrial Glutamate Receptors. Science Signaling, 2012, 5, .	3.6	3
261	ERK Activation Without Ras. Science Signaling, 2012, 5, .	3.6	1
262	Tuning the Response to Pathogens. Science Signaling, 2012, 5, .	3.6	0
263	Nuclear PTEN Promotes Neuronal Survival. Science Signaling, 2012, 5, .	3.6	O
264	Oxygen and Two Friends. Science Signaling, 2012, 5, .	3.6	0
265	Shifting the Antiviral Response. Science Signaling, 2012, 5, .	3.6	O
266	Of Oncogenes and Apoptosis. Science Signaling, 2012, 5, .	3.6	0
267	A Coincidence Detector with a Memory. Science Signaling, 2012, 5, .	3.6	1
268	Coupling Lipid and Amino Acid Metabolism. Science Signaling, 2012, 5, .	3.6	0
269	LRP2 Gives Patched a Hand. Science Signaling, 2012, 5, .	3.6	0
270	Sphingolipids Lower the Death Threshold. Science Signaling, 2012, 5, .	3.6	0

#	Article	IF	Citations
271	Toxin Receptors Unite. Science Signaling, 2012, 5, .	3.6	0
272	PKM2 Moonlights as a Protein Kinase. Science Signaling, 2012, 5, .	3.6	1
273	Detecting Injury to Infer Predators. Science Signaling, 2012, 5, .	3.6	0
274	Local Synthesis for Retrograde Signaling. Science Signaling, 2012, 5, .	3.6	0
275	Adjusting for Stochasticity?. Science Signaling, 2012, 5, .	3.6	0
276	Glucose-Induced Isoform of ChREBP. Science Signaling, 2012, 5, .	3.6	0
277	Morphine's Inflammatory Receptor. Science Signaling, 2012, 5, .	3.6	0
278	Responding to Membrane Stress. Science Signaling, 2012, 5, .	3.6	0
279	Fighting Infection with Liposomes. Science Signaling, 2012, 5, .	3.6	0
280	Calpains Cleave and Activate TRPC5. Science Signaling, 2012, 5, .	3.6	0
281	Channeling Death. Science Signaling, 2012, 5, .	3.6	0
282	Grb2: Adapting to Basal Activity. Science Signaling, 2012, 5, .	3.6	0
283	Neurotoxic MicroRNA. Science Signaling, 2012, 5, .	3.6	0
284	Complement Is Bad for Aging. Science Signaling, 2012, 5, .	3.6	0
285	Opioid Receptor Satiety Signal. Science Signaling, 2012, 5, .	3.6	0
286	Two for One in Iron Homeostasis. Science Signaling, 2012, 5, .	3.6	0
287	Promoting Fibroblast Migration with mTORC2. Science Signaling, 2012, 5, .	3.6	0
288	Anchors Away. Science Signaling, 2012, 5, .	3.6	0

#	Article	IF	Citations
289	Protecting Cancer Cells from Death. Science Signaling, 2012, 5, .	3.6	0
290	Stable, But Transcriptionally Inactive. Science Signaling, 2012, 5, .	3.6	0
291	Elimination by Extrusion. Science Signaling, 2012, 5, .	3.6	0
292	Hollowing Out the Center. Science Signaling, 2012, 5, .	3.6	0
293	Repurposing Antiepileptic Drugs for Multiple Sclerosis. Science Signaling, 2012, 5, .	3.6	0
294	Timing the Immune Response. Science Signaling, 2012, 5, .	3.6	0
295	Is NO a Cause for Depression?. Science Signaling, 2012, 5, .	3.6	0
296	Virulence Through Cysteine Phosphorylation. Science Signaling, 2012, 5, .	3.6	0
297	Neutrophils Suppress Insulin Signaling. Science Signaling, 2012, 5, .	3.6	0
298	TORC4 in a Parasite's Life Cycle. Science Signaling, 2012, 5, .	3.6	0
299	Neutrophils Generate Their Own Activators. Science Signaling, 2012, 5, .	3.6	0
300	Targeting TRPV4 to Treat Metabolic Disease. Science Signaling, 2012, 5, .	3.6	0
301	Defining a Linear Ubiquitin-Binding Domain. Science Signaling, 2012, 5, .	3.6	0
302	Tumorigenic Targets of ΙΚΚĴμ. Science Signaling, 2012, 5, .	3.6	0
303	Shuttling Plasticity. Science Signaling, 2012, 5, .	3.6	0
304	ADP Ribosylation in the ER Stress Response. Science Signaling, 2012, 5, .	3.6	0
305	Connecting TrkB to Dendritic Remodeling. Science Signaling, 2012, 5, .	3.6	1
306	Directing Receptors into Cilia. Science Signaling, 2012, 5, .	3.6	0

#	Article	IF	CITATIONS
307	Disrupting the Endothelial Barrier. Science Signaling, 2012, 5, .	3.6	O
308	Bacterial Cooperation. Science Signaling, 2012, 5, .	3.6	0
309	Neurons Get the Neuroligin-1 Advantage. Science Signaling, 2012, 5, .	3.6	0
310	Switching from Shh-Mediated Attraction to Repulsion. Science Signaling, 2012, 5, .	3.6	0
311	Focus Issue: Rendering Resistance Futile. Science Signaling, 2011, 4, eg3.	3.6	2
312	Focus Issue: Cracking the G Protein–Coupled Receptor Code. Science Signaling, 2011, 4, eg7.	3.6	2
313	Focus Issue: Choreographing the Dance of the Mitotic Kinases. Science Signaling, 2011, 4, eg5.	3.6	2
314	Focus Issue: Conquering the Data Mountain. Science Signaling, 2011, 4, eg2.	3.6	12
315	Focus Issue: Series on Computational and Systems Biology. Science Signaling, 2011, 4, eg8.	3.6	0
316	Focus Issue: Recruiting Players for a Game of ERK. Science Signaling, 2011, 4, eg9.	3.6	11
317	Repair and Protect. Science Signaling, 2011, 4, .	3.6	7
318	Understanding Wnt's Role in Osteoarthritis. Science Signaling, 2011, 4, .	3.6	3
319	Stressing Bacteria to Death. Science Signaling, 2011, 4, .	3.6	4
320	Understanding Atrophy. Science Signaling, 2011, 4, .	3.6	0
321	Regulating Ras Trafficking with FKPB12. Science Signaling, 2011, 4, .	3.6	0
322	Down with Ceramide. Science Signaling, 2011, 4, .	3.6	0
323	PP2A, the Key to Life and Death. Science Signaling, 2011, 4, .	3.6	0
324	Currents for GPCRs. Science Signaling, 2011, 4, .	3.6	0

#	Article	IF	Citations
325	Avoiding CO ₂ . Science Signaling, 2011, 4, .	3.6	O
326	Immune Protection from Metabolic Syndrome?. Science Signaling, 2011, 4, .	3.6	0
327	Neogenin, a "Neo―Receptor for BMP. Science Signaling, 2011, 4, .	3.6	0
328	Coupled by Caveolin. Science Signaling, 2011, 4, .	3.6	0
329	Limiting Inflammatory Signaling with EPO. Science Signaling, 2011, 4, .	3.6	0
330	Stress Builds Bone. Science Signaling, 2011, 4, .	3.6	0
331	Wearing the Same Cap. Science Signaling, 2011, 4, .	3.6	0
332	Chromatin-Associated PKC. Science Signaling, 2011, 4, .	3.6	0
333	Dual Mode of Oncogenesis. Science Signaling, 2011, 4, .	3.6	O
334	Sphingolipids and Retinal Degeneration. Science Signaling, 2011, 4, .	3.6	0
335	Death by Lysosome. Science Signaling, 2011, 4, .	3.6	0
336	Healed into Cancer. Science Signaling, 2011, 4, .	3.6	0
337	Limiting Heart Hypertrophy. Science Signaling, 2011, 4, .	3.6	0
338	Terms of Disengagement. Science Signaling, 2011, 4, .	3.6	0
339	One Step at a Time. Science Signaling, 2011, 4, .	3.6	0
340	One Channel for Pain and Smell. Science Signaling, 2011, 4, .	3.6	0
341	Just the Right Amount (of Activation). Science Signaling, 2011, 4, .	3.6	0
342	Recovering from Bladder Injury. Science Signaling, 2011, 4, .	3.6	0

#	Article	IF	Citations
343	Polycystin-1: A Double-Duty Activator. Science Signaling, 2011, 4, .	3.6	O
344	Two Cells, One Receptor Complex. Science Signaling, 2011, 4, .	3.6	0
345	Sleepy Signal for Neurogenesis. Science Signaling, 2011, 4, .	3.6	0
346	Adapting to a Hot Meal. Science Signaling, 2011, 4, .	3.6	0
347	Food Fit for a Queen. Science Signaling, 2011, 4, .	3.6	0
348	Bacteria Promote Repair. Science Signaling, 2011, 4, .	3.6	0
349	Light Sensing with Vitamin B ₁₂ . Science Signaling, 2011, 4, .	3.6	0
350	Food as Antibiotic?. Science Signaling, 2011, 4, .	3.6	0
351	Activating Sonic Hedgehog. Science Signaling, 2011, 4, .	3.6	0
352	Preventing Runaway Inflammation. Science Signaling, 2011, 4, .	3.6	0
353	Orphan GPCRs, R-Spondins, and Wnt Signaling. Science Signaling, 2011, 4, .	3.6	0
354	Dissecting Insulin's Actions in the Brain. Science Signaling, 2011, 4, .	3.6	0
355	Targeting Glioma Stem Cells. Science Signaling, 2011, 4, .	3.6	0
356	Activating \hat{I}^2 -Catenin with NCAM. Science Signaling, 2011, 4, .	3.6	0
357	Vampire Senses. Science Signaling, 2011, 4, .	3.6	0
358	CD36 Goes Line Dancing. Science Signaling, 2011, 4, .	3.6	0
359	Trafficking Rapid Responses. Science Signaling, 2011, 4, .	3.6	0
360	Death by Acetylation. Science Signaling, 2011, 4, .	3.6	0

#	Article	lF	Citations
361	Intrinsic Signal to Stop. Science Signaling, 2011, 4, .	3.6	O
362	First Damaging, Then Repairing. Science Signaling, 2011, 4, .	3.6	0
363	To Swim or Float?. Science Signaling, 2011, 4, .	3.6	0
364	Evading Apoptosis to Promote Persistent Infection. Science Signaling, 2011, 4, .	3.6	0
365	Ensuring Adequate Energy Supply. Science Signaling, 2011, 4, .	3.6	0
366	Fear No More. Science Signaling, 2011, 4, .	3.6	0
367	Localizing LPA Production. Science Signaling, 2011, 4, .	3.6	0
368	Not All Oxidative Stresses Are the Same. Science Signaling, 2011, 4, .	3.6	0
369	Maintaining Membranes. Science Signaling, 2011, 4, .	3.6	0
370	Skin Sees the Light with Rhodopsin. Science Signaling, 2011, 4, .	3.6	0
371	Coupling Oxygen to Protein Stability. Science Signaling, 2011, 4, .	3.6	0
372	Blocking Integrin Activation at the \hat{l}_{\pm} Subunit. Science Signaling, 2011, 4, .	3.6	0
373	Promoting Proliferation with Nuclear Pyruvate Kinase M2. Science Signaling, 2011, 4, .	3.6	0
374	Sensing H ₂ O ₂ with Lyn. Science Signaling, 2011, 4, .	3.6	0
375	Not Just for Translation. Science Signaling, 2011, 4, .	3.6	0
376	Preventing Inappropriate Activation. Science Signaling, 2011, 4, .	3.6	0
377	Degenerating Neurons Direct the Circuit. Science Signaling, 2011, 4, .	3.6	0
378	Focus Issue: External and Internal Regulators of Immune Responses. Science Signaling, 2010, 3, eg2.	3.6	0

#	Article	IF	CITATIONS
379	Focus Issue: Systems Analysis of Protein Phosphorylation. Science Signaling, 2010, 3, eg6.	3.6	7
380	Focus Issue: Teaching Tools and Learning Opportunities. Science Signaling, 2010, 3, eg3.	3.6	3
381	Focus Issue: The Evolution of Complexity. Science Signaling, 2010, 3, eg5.	3.6	4
382	Focus Issue: Endocrine Signaling from Clinic to Cell. Science Signaling, 2010, 3, eg9.	3.6	4
383	Focus Issue: Evolution III—Domains for Change. Science Signaling, 2010, 3, eg8.	3.6	0
384	Proline Promotes Virulence. Science Signaling, 2010, 3, .	3.6	1
385	Notch Protects the Mitochondria. Science Signaling, 2010, 3, .	3.6	1
386	UPR to TLR Connection. Science Signaling, 2010, 3, .	3.6	2
387	Moving in 2D Versus 3D. Science Signaling, 2010, 3, .	3.6	1
388	NF-κB Needs PPARγ. Science Signaling, 2010, 3, .	3.6	1
389	New Ligands for Neurexins. Science Signaling, 2010, 3, .	3.6	0
390	Statins for Wound Healing. Science Signaling, 2010, 3, .	3.6	0
391	Histone Eviction During Hypoxia. Science Signaling, 2010, 3, .	3.6	0
392	Synaptic Activity of ATM and ATR. Science Signaling, 2010, 3, .	3.6	0
393	Targeting the Resistance. Science Signaling, 2010, 3, .	3.6	0
394	Turned On by the Cold. Science Signaling, 2010, 3, .	3.6	0
395	Branching with Ubiquitin. Science Signaling, 2010, 3, .	3.6	0
396	Gaining Entry. Science Signaling, 2010, 3, .	3.6	0

#	Article	IF	CITATIONS
397	Limiting mTOR to Properly Limit Neurons. Science Signaling, 2010, 3, .	3.6	O
398	Challenging the $G\hat{l}^2\hat{l}^3$ Paradigm. Science Signaling, 2010, 3, .	3.6	0
399	Keeping the Host Live. Science Signaling, 2010, 3, .	3.6	0
400	Signaling Stop from the Inside. Science Signaling, 2010, 3, .	3.6	0
401	Quantifying Interactions. Science Signaling, 2010, 3, .	3.6	0
402	Immune Complications of Ablation Therapy. Science Signaling, 2010, 3, .	3.6	0
403	Building Muscle Is a Pain. Science Signaling, 2010, 3, .	3.6	0
404	Lymph Vessel Sites Defined by Monocytes. Science Signaling, 2010, 3, .	3.6	0
405	Source, Sensor, Channel. Science Signaling, 2010, 3, .	3.6	0
406	When a Channel Is Not a Channel. Science Signaling, 2010, 3, .	3.6	0
407	MHC Receptor for Retinal Circuitry. Science Signaling, 2010, 3, .	3.6	0
408	Double-Duty MicroRNA: Destroy and Decoy. Science Signaling, 2010, 3, .	3.6	0
409	One Egg at a Time. Science Signaling, 2010, 3, .	3.6	0
410	Keeping It Local. Science Signaling, 2010, 3, .	3.6	0
411	Tumor Suppression Through Metabolic Regulation. Science Signaling, 2010, 3, .	3.6	0
412	Signal to Slow Down. Science Signaling, 2010, 3, .	3.6	0
413	An ATPase for a Kinase. Science Signaling, 2010, 3, .	3.6	0
414	Systemic Nodulation Regulation. Science Signaling, 2010, 3, .	3.6	0

#	Article	IF	CITATIONS
415	Wnt Signaling Heterogeneity. Science Signaling, 2010, 3, .	3.6	O
416	Preventing Spasms After Spinal Cord Injury. Science Signaling, 2010, 3, .	3.6	0
417	Platelet NF-κB–PKA Complex. Science Signaling, 2010, 3, .	3.6	1
418	No Transcription Required. Science Signaling, 2010, 3, .	3.6	0
419	pH Signaling Through Arrestin. Science Signaling, 2010, 3, .	3.6	0
420	Making Yeast Horny. Science Signaling, 2010, 3, .	3.6	0
421	Even Flies Have Cravings. Science Signaling, 2010, 3, .	3.6	0
422	Local Caspase for Fertility, Not Death. Science Signaling, 2010, 3, .	3.6	0
423	Pricking Out Pain with Adenosine. Science Signaling, 2010, 3, .	3.6	0
424	"Dangerous" Hair. Science Signaling, 2010, 3, .	3.6	0
425	Radical Autonomic Insufficiency. Science Signaling, 2010, 3, .	3.6	0
426	Inhibiting Adhesion. Science Signaling, 2010, 3, .	3.6	0
427	Move or Divide?. Science Signaling, 2010, 3, .	3.6	0
428	Repressing Repressors to Make Memories. Science Signaling, 2010, 3, .	3.6	0
429	Spicy Diet to Reduce Hypertension. Science Signaling, 2010, 3, .	3.6	0
430	Muscle Building with Myc-Nick. Science Signaling, 2010, 3, .	3.6	0
431	Make Me a Path. Science Signaling, 2010, 3, .	3.6	0
432	Accelerated Aging by Compromised Wnt Signaling. Science Signaling, 2010, 3, .	3.6	0

#	Article	IF	Citations
433	Complement for Inflammation Resolution. Science Signaling, 2010, 3, .	3.6	O
434	Autophagy for Inflammation. Science Signaling, 2010, 3, .	3.6	0
435	Down with TRPV4. Science Signaling, 2010, 3, .	3.6	0
436	Gene-Associated AMPK. Science Signaling, 2010, 3, .	3.6	0
437	Shaping Up with Auxin. Science Signaling, 2010, 3, .	3.6	0
438	No Intermediates Needed. Science Signaling, 2010, 3, .	3.6	0
439	Prions Speed Muscle Repair. Science Signaling, 2010, 3, .	3.6	0
440	Enhancing Activity from the Inside. Science Signaling, 2010, 3, .	3.6	0
441	Preventing Depletion. Science Signaling, 2010, 3, .	3.6	0
442	Neuronal ER Stress. Science Signaling, 2010, 3, .	3.6	0
443	Coordinating Metabolism with Oxygen Supply. Science Signaling, 2010, 3, .	3.6	0
444	Live or Die with ErbB4. Science Signaling, 2010, 3, .	3.6	1
445	Focus Issue: Addressing Complicated Questions in Neuroscience. Science Signaling, 2009, 2, eg13.	3.6	0
446	Training for Peer Review. Science Signaling, 2009, 2, tr2.	3.6	6
447	Focus Issue: The Protein Dynamics of Cell Signaling. Science Signaling, 2009, 2, eg4.	3.6	4
448	Focus Issue: Demystifying mTOR Signaling. Science Signaling, 2009, 2, eg5.	3.6	5
449	Focus Issue: The Long and Short of Redox Signaling. Science Signaling, 2009, 2, .	3.6	5
450	Focus Issue: Unraveling Signaling Complexity. Science Signaling, 2009, 2, eg10.	3.6	4

#	Article	IF	CITATIONS
451	Taking Turns Sending and Receiving. Science Signaling, 2009, 2, .	3.6	1
452	Multiple Pathways to Antifungal Immunity. Science Signaling, 2009, 2, .	3.6	0
453	Wait for Me. Science Signaling, 2009, 2, .	3.6	1
454	Roads to Death City. Science Signaling, 2009, 2, .	3.6	0
455	Scaffolding Through Phosphatidic Acid–Enriched Domains. Science Signaling, 2009, 2, .	3.6	0
456	Ionic Signals to Community Formation. Science Signaling, 2009, 2, .	3.6	0
457	Nuclear Glutaredoxin Promotes Petals. Science Signaling, 2009, 2, .	3.6	0
458	Pathways Talk at Endosomes. Science Signaling, 2009, 2, .	3.6	0
459	Transcription Factor for p75 ^{NTR} . Science Signaling, 2009, 2, .	3.6	0
460	Yet Another Ubiquitin Arrangement for NF-κB. Science Signaling, 2009, 2, .	3.6	0
461	More Roles for Cryptochromes. Science Signaling, 2009, 2, .	3.6	0
462	Follow the Water. Science Signaling, 2009, 2, .	3.6	0
463	Extracellular Functions of a Ribosomal Protein. Science Signaling, 2009, 2, .	3.6	0
464	Bringing Src to the Phosphatase. Science Signaling, 2009, 2, .	3.6	0
465	Endogenous Antisense Increases p53. Science Signaling, 2009, 2, .	3.6	0
466	Encoding Hypertrophy Separately from Contraction. Science Signaling, 2009, 2, .	3.6	0
467	Oligomers of Dementia. Science Signaling, 2009, 2, .	3.6	0
468	Stalled at Endosomes. Science Signaling, 2009, 2, .	3.6	0

#	Article	IF	Citations
469	Delivering a Toxic Message. Science Signaling, 2009, 2, .	3.6	0
470	From Quiescent to Proliferating. Science Signaling, 2009, 2, .	3.6	0
471	Knowing When to Stop. Science Signaling, 2009, 2, .	3.6	0
472	Growth Cones Need p53. Science Signaling, 2009, 2, .	3.6	0
473	Feminizing Liver Metabolism. Science Signaling, 2009, 2, .	3.6	0
474	Duality to NF-κB. Science Signaling, 2009, 2, .	3.6	0
475	Endosomes for Asymmetry. Science Signaling, 2009, 2, .	3.6	0
476	Why Embryos Need a Beating Heart. Science Signaling, 2009, 2, .	3.6	0
477	Satiety Signal and Memory Enhancer. Science Signaling, 2009, 2, .	3.6	0
478	Oral Delivery of siRNA. Science Signaling, 2009, 2, .	3.6	0
479	Inducible RNase Prevents Autoimmune Disease. Science Signaling, 2009, 2, .	3.6	0
480	Controlling Trafficking with a Ubiquitin Switch. Science Signaling, 2009, 2, .	3.6	0
481	Oxidative Stress Mediates Sensory Decline. Science Signaling, 2009, 2, .	3.6	0
482	ERADicating Cadmium. Science Signaling, 2009, 2, .	3.6	0
483	Touch of Life. Science Signaling, 2009, 2, .	3.6	1
484	Rheb Permits Aggresome Formation. Science Signaling, 2009, 2, .	3.6	0
485	Small but Strong. Science Signaling, 2009, 2, .	3.6	2
486	Building Biocounters. Science Signaling, 2009, 2, .	3.6	0

#	Article	IF	Citations
487	Patched Gets a GRK. Science Signaling, 2009, 2, .	3.6	O
488	Kinetic Control of NF-κB. Science Signaling, 2009, 2, .	3.6	0
489	Last Fly Standing. Science Signaling, 2009, 2, .	3.6	0
490	Cancer Is Depressing. Science Signaling, 2009, 2, .	3.6	0
491	Kinase Conformation, Not Activity, Required. Science Signaling, 2009, 2, .	3.6	0
492	Translation Required for Translational Repression. Science Signaling, 2009, 2, .	3.6	0
493	Fat and Susceptible to Infection. Science Signaling, 2009, 2, .	3.6	0
494	EGFL7: An Anti-Notch Ligand. Science Signaling, 2009, 2, .	3.6	0
495	Switching Macrophage Responses. Science Signaling, 2009, 2, .	3.6	0
496	When a Better Immune Response Is Bad. Science Signaling, 2009, 2, .	3.6	0
497	Building Better Antibacterials. Science Signaling, 2009, 2, .	3.6	0
498	When Repair Is Suicide. Science Signaling, 2009, 2, .	3.6	0
499	Restoring the Barrier While Promoting Communication. Science Signaling, 2009, 2, .	3.6	0
500	Memorable microRNA. Science Signaling, 2009, 2, .	3.6	0
501	Paths to Resistance. Science Signaling, 2009, 2, .	3.6	0
502	cAMP Signaling Timer. Science Signaling, 2009, 2, .	3.6	0
503	Differentiated with ROS. Science Signaling, 2009, 2, .	3.6	0
504	Not Constitutively Active After All?. Science Signaling, 2009, 2, .	3.6	0

#	Article	IF	Citations
505	PI3K-Independent Function of PTEN. Science Signaling, 2009, 2, .	3.6	0
506	Delivering the Wnt Signal. Science Signaling, 2009, 2, .	3.6	0
507	Nicotine Irritation. Science Signaling, 2009, 2, .	3.6	0
508	T Cells Get the Nod. Science Signaling, 2009, 2, .	3.6	0
509	Staying on Track. Science Signaling, 2009, 2, .	3.6	0
510	Picking a Promoter. Science Signaling, 2009, 2, .	3.6	0
511	Self-Activating, but Still Regulated. Science Signaling, 2009, 2, .	3.6	0
512	Fats Deliver a Painful Message. Science Signaling, 2009, 2, .	3.6	0
513	Lighting Up the Epigenome. Science Signaling, 2009, 2, .	3.6	0
514	It's All Relative. Science Signaling, 2009, 2, .	3.6	0
515	Better Alzheimer's Options. Science Signaling, 2009, 2, .	3.6	0
516	Those Irritating Acellular Mitochondria. Science Signaling, 2009, 2, .	3.6	0
517	Focus Issue: From Input to Output—Are All Paths Equal?. Science Signaling, 2008, 1, eg6.	3.6	2
518	Hear It, Watch It, Read It. Science Signaling, 2008, 1, eg2.	3.6	0
519	2007: Signaling Breakthroughs of the Year. Science Signaling, 2008, 1, eg1.	3.6	2
520	Focus Issue: An Expanding World for TGF-Î ² Signaling. Science Signaling, 2008, 1, eg8.	3.6	2
521	Thrombin Targets Notch Signaling. Science Signaling, 2008, 1, .	3.6	1
522	Pulling on the TCR. Science Signaling, 2008, 1, .	3.6	0

#	Article	IF	Citations
523	Memory Formation Enhanced by Circadian Signaling. Science Signaling, 2008, 1, .	3.6	O
524	Ligand Not Required?. Science Signaling, 2008, 1, .	3.6	0
525	Promoting an Inactivating Partnership. Science Signaling, 2008, 1, .	3.6	1
526	\hat{l}^2 -Blockers: Both Antagonist and Agonist. Science Signaling, 2008, $1, .$	3.6	0
527	Receptor Trafficking Controls Signaling Strength. Science Signaling, 2008, 1, .	3.6	0
528	Big Brother's a Bully. Science Signaling, 2008, 1, .	3.6	0
529	Dynein Light Chain Connecting ROS to NF-κB. Science Signaling, 2008, 1, .	3.6	0
530	Kinase-Independent Signaling from TGF- \hat{I}^2 Receptors to TAK1. Science Signaling, 2008, $1,.$	3.6	1
531	More Light, Less Disease. Science Signaling, 2008, 1, .	3.6	0
532	MLK3 as a RhoGEF Partner. Science Signaling, 2008, 1, .	3.6	0
533	Why Albinism Impairs Eyesight. Science Signaling, 2008, 1, .	3.6	0
534	Preventing Seed Germination. Science Signaling, 2008, 1, .	3.6	0
535	Induced Pore Formation by Tetramerization. Science Signaling, 2008, 1, .	3.6	0
536	PRMT Versus Akt for FOXO. Science Signaling, 2008, 1, .	3.6	0
537	Surviving Lean Times. Science Signaling, 2008, 1, .	3.6	0
538	Light Sets the Beat. Science Signaling, 2008, 1, .	3.6	0
539	Detecting Signaling in Single Cells. Science Signaling, 2008, 1, .	3.6	1
540	Controlling Ectodomain Shedding from the Inside. Science Signaling, 2008, 1, .	3.6	0

#	Article	IF	Citations
541	From Gut to Bone. Science Signaling, 2008, 1, .	3.6	O
542	Luminal Sensors from the Basal Side. Science Signaling, 2008, 1, .	3.6	0
543	Lysyl Oxidase: A Matrix Inhibitor of TGF- \hat{l}^2 . Science Signaling, 2008, 1 , .	3.6	0
544	2006: Signaling Breakthroughs of the Year. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, eg1-eg1.	3.9	2
545	An Insider's View. Science, 2007, 318, 61-61.	12.6	2
546	Differentiation of PC12 Cells. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, tr9-tr9.	3.9	9
547	Size, Mates, and Fates. Science, 2006, 314, 1409-1409.	12.6	0
548	Focus Issue: Signaling Lipids. Science Signaling, 2006, 2006, eg2-eg2.	3.6	1
549	Focus Issue: Plant Communication. Science Signaling, 2006, 2006, eg3-eg3.	3.6	0
550	Focus Issue: Measurement on a Small Scale. Science Signaling, 2006, 2006, eg4-eg4.	3.6	1
551	Assessing Undergraduate Laboratory Performance. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, tr8-tr8.	3.9	4
552	Signal Reception and Transmission. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, eg13-eg13.	3.9	0
553	2005: Signaling Breakthroughs of the Year. Science Signaling, 2006, 2006, eg1-eg1.	3.6	1
554	Chemical Detectives. Science, 2006, 311, 1565-1565.	12.6	1
555	Signaling: From Stem Cells to Dead Cells. Science, 2005, 310, 65-65.	12.6	0
556	Common Signaling Themes. Science, 2004, 306, 1505-1505.	12.6	6
557	Building a Case for Signaling. Science, 2003, 300, 1523-1523.	12.6	0
558	Orienteering Strategies for a Signaling Maze. Science, 2002, 296, 1632-1633.	12.6	13

#	Article	lF	CITATIONS
559	<i>Science's</i> Signal Transduction Knowledge Environment. Annals of the New York Academy of Sciences, 2002, 971, 585-587.	3.8	56
560	Different Steady State Subcellular Distributions of the Three Splice Variants of Lysosome-associated Membrane Protein LAMP-2 Are Determined Largely by the COOH-terminal Amino Acid Residue. Journal of Cell Biology, 1997, 137, 1161-1169.	5.2	75
561	The Family of LAMP-2 Proteins Arises by Alternative Splicing from a Single Gene: Characterization of the Avian LAMP-2 Gene and Identification of Mammalian Homologs of LAMP-2b and LAMP-2c. DNA and Cell Biology, 1995, 14, 863-867.	1.9	61
562	Oligomerization of Chicken Acetylcholinesterase Does Not Require Intersubunit Disulfide Bonds. Journal of Neurochemistry, 1995, 65, 2734-2741.	3.9	12
563	Cloning and analysis of chicken acetylcholinesterase transcripts from muscle and brain. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 453-456.	2.4	19