Dietrich Or Keppler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8600343/publications.pdf

Version: 2024-02-01

199 papers 22,990 citations

81 h-index 148 g-index

206 all docs 206 docs citations

206 times ranked 11646 citing authors

#	Article	IF	CITATIONS
1	Progress in the Molecular Characterization of Hepatobiliary Transporters. Digestive Diseases, 2017, 35, 197-202.	0.8	24
2	The Roles of MRP2, MRP3, OATP1B1, and OATP1B3 in Conjugated Hyperbilirubinemia. Drug Metabolism and Disposition, 2014, 42, 561-565.	1.7	165
3	In Vitro Methods to Support Transporter Evaluation in Drug Discovery and Development. Clinical Pharmacology and Therapeutics, 2013, 94, 95-112.	2.3	224
4	Emerging Transporters of Clinical Importance: An Update From the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2013, 94, 52-63.	2.3	307
5	Promoting drug discovery by collaborative innovation: a novel risk- and reward-sharing partnership between the German Cancer Research Center and Bayer HealthCare. Drug Discovery Today, 2012, 17, 1242-1248.	3.2	15
6	Multidrug Resistance Proteins (MRPs, ABCCs): Importance for Pathophysiology and Drug Therapy. Handbook of Experimental Pharmacology, 2011, , 299-323.	0.9	250
7	Cholestasis and the Role of Basolateral Efflux Pumps. Zeitschrift Fur Gastroenterologie, 2011, 49, 1553-1557.	0.2	36
8	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
9	Vectorial Transport of Nucleoside Analogs from the Apical to the Basolateral Membrane in Double-Transfected Cells Expressing the Human Concentrative Nucleoside Transporter hCNT3 and the	1.7	21
	Export Pump ABCC4. Drug Metabolism and Disposition, 2010, 38, 1054-1063.		
10	Channels and Transporters. Chimia, 2010, 64, 662.	0.3	4
10		0.3	56
	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA		
11	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Molecular Cancer Therapeutics, 2009, 8, 225-231. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic	1.9	56
11 12	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Molecular Cancer Therapeutics, 2009, 8, 225-231. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50, 1227-1240. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1).	1.9 3.6	56 316
11 12 13	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Molecular Cancer Therapeutics, 2009, 8, 225-231. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50, 1227-1240. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 449-461. ATP-Dependent Transport of Leukotrienes B ₄ and C ₄ by the Multidrug Resistance Protein ABCC4 (MRP4). Journal of Pharmacology and Experimental Therapeutics, 2008, 324,	1.9 3.6 1.4	56 316 99
11 12 13	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Molecular Cancer Therapeutics, 2009, 8, 225-231. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50, 1227-1240. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 449-461. ATP-Dependent Transport of Leukotrienes B ₄ and C ₄ by the Multidrug Resistance Protein ABCC4 (MRP4). Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 86-94. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the	1.9 3.6 1.4 1.3	56 316 99 123
11 12 13 14	Channels and Transporters. Chimia, 2010, 64, 662. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Molecular Cancer Therapeutics, 2009, 8, 225-231. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50, 1227-1240. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 449-461. ATP-Dependent Transport of Leukotrienes B ₄ and C ₄ by the Multidrug Resistance Protein ABCC4 (MRP4). Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 86-94. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 545-568. Involvement of Mitogen-Activated Protein Kinase Signaling Pathways in Microcystin-LR-Induced Apoptosis after its Selective Uptake Mediated by OATP1B1 and OATP1B3. Toxicological Sciences, 2007, 97,	1.9 3.6 1.4 1.3	56 316 99 123 114

#	Article	IF	CITATIONS
19	Human multidrug resistance protein 8 (MRP8/ABCC11), an apical efflux pump for steroid sulfates, is an axonal protein of the CNS and peripheral nervous system. Neuroscience, 2006, 137, 1247-1257.	1.1	90
20	Molecular Characterization and Inhibition of Amanitin Uptake into Human Hepatocytes. Toxicological Sciences, 2006, 91, 140-149.	1.4	254
21	Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. American Journal of Physiology - Renal Physiology, 2006, 290, G640-G649.	1.6	146
22	Vectorial Transport of Enalapril by Oatplal/Mrp2 and OATP1B1 and OATP1B3/MRP2 in Rat and Human Livers. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 395-402.	1.3	99
23	Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology, 2005, 41, 1160-1172.	3.6	214
24	Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. International Journal of Cancer, 2005, 115, 359-367.	2.3	165
25	Human Hepatobiliary Transport of Organic Anions Analyzed by Quadruple-Transfected Cells. Molecular Pharmacology, 2005, 68, 1031-1038.	1.0	193
26	ABCC Drug Efflux Pumps and Organic Anion Uptake Transporters in Human Gliomas and the Blood-Tumor Barrier. Cancer Research, 2005, 65, 11419-11428.	0.4	266
27	Vectorial Transport of the Peptide CCK-8 by Double-Transfected MDCKII Cells Stably Expressing the Organic Anion Transporter OATP1B3 (OATP8) and the Export Pump ABCC2. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 549-556.	1.3	70
28	Uptake and Efflux Transporters for Conjugates in Human Hepatocytes. Methods in Enzymology, 2005, 400, 531-542.	0.4	39
29	PROSTANOID TRANSPORT BY MULTIDRUG RESISTANCE PROTEIN 4 (MRP4/ABCC4) LOCALIZED IN TISSUES OF THE HUMAN UROGENITAL TRACT. Journal of Urology, 2005, 174, 2409-2414.	0.2	93
30	Expression and immunolocalization of the multidrug resistance proteins, MRP1–MRP6 (ABCC1–ABCC6), in human brain. Neuroscience, 2004, 129, 349-360.	1.1	345
31	Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics and Genomics, 2004, 14, 441-452.	5.7	170
32	Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics and Genomics, 2004, 14, 213-223.	5.7	84
33	Transport of Bilirubin Conjugates across Hepatocellular Membrane Domains and the Conjugated Hyperbilirubinemia of Dubin-Johnson Syndrome. , 2004, , 195-210.		0
34	Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology, 2003, 38, 374-384.	3.6	306
35	Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 368, 415-420.	1.4	90
36	Detection of the Human Organic Anion Transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in Liver and Hepatocellular Carcinoma. Laboratory Investigation, 2003, 83, 527-538.	1.7	105

3

#	Article	IF	Citations
37	Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. Journal of Hepatology, 2003, 39, 693-702.	1.8	149
38	MRP2, THE APICAL EXPORT PUMP FOR ANIONIC CONJUGATES. , 2003, , 423-443.		29
39	A common Dubin-Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). American Journal of Physiology - Renal Physiology, 2003, 284, G165-G174.	1.6	108
40	Reconstitution of Transport-Active Multidrug Resistance Protein 2 (MRP2; ABCC2) in Proteoliposomes. Biological Chemistry, 2002, 383, 1001-9.	1.2	13
41	A Naturally Occurring Mutation in the SLC21A6Gene Causing Impaired Membrane Localization of the Hepatocyte Uptake Transporter. Journal of Biological Chemistry, 2002, 277, 43058-43063.	1.6	127
42	The human hepatocyte-specific organic anion transporter encoded by the SLC21A8 gene. Gastroenterology, 2002, 122, 1545-1546.	0.6	2
43	Transport of leukotriene C4 and structurally related conjugates. Vitamins and Hormones, 2002, 64, 153-184.	0.7	48
44	Immunolocalization of Multidrug Resistance Protein 5 in the Human Genitourinary System. Journal of Urology, 2002, 167, 2271-2275.	0.2	52
45	Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochemical Pharmacology, 2002, 64, 151-158.	2.0	48
46	Cysteinyl leukotrienes in the bile of patients with obstructive jaundice. Journal of Gastroenterology, 2002, 37, 821-830.	2.3	6
47	Structural requirements for the apical sorting of human multidrug resistance protein 2 (ABCC2). FEBS Journal, 2002, 269, 1866-1876.	0.2	64
48	Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genetics, 2002, 31, 320-325.	9.4	298
49	Expression and localization of the multidrug resistance proteins MRP2 and MRP3 in human gallbladder epithelia. Gastroenterology, 2001, 121, 1203-1208.	0.6	99
50	Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2. Molecular Pharmacology, 2001, 60, 934-943.	1.0	209
51	The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. Journal of Neurochemistry, 2001, 76, 627-636.	2.1	153
52	Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. International Journal of Cancer, 2001, 94, 492-499.	2.3	163
53	Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C–dependent mechanisms in cholestatic rat liver. Hepatology, 2001, 33, 1206-1216.	3.6	224
54	Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology, 2001, 34, 351-359.	3.6	260

#	Article	IF	CITATIONS
55	Hepatic Uptake of Bilirubin and Its Conjugates by the Human Organic Anion Transporter SLC21A6. Journal of Biological Chemistry, 2001, 276, 9626-9630.	1.6	458
56	ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney International, 2000, 57, 1636-1642.	2.6	151
57	Characterization of the 5′-flanking region of the human multidrug resistance protein 2 (MRP2) gene and its regulation in comparison withthe multidrug resistance protein 3 (MRP3) gene. FEBS Journal, 2000, 267, 1347-1358.	0.2	87
58	Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in dubin-johnson syndrome. Hepatology, 2000, 32, 1317-1328.	3.6	132
59	A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. American Journal of Physiology - Renal Physiology, 2000, 278, G156-G164.	1.6	479
60	MRP2, a human conjugate export pump, is present and transports fluo 3 into apical vacuoles of Hep G2 cells. American Journal of Physiology - Renal Physiology, 2000, 278, G522-G531.	1.6	59
61	The Multidrug Resistance Protein 5 Functions as an ATP-dependent Export Pump for Cyclic Nucleotides. Journal of Biological Chemistry, 2000, 275, 30069-30074.	1.6	391
62	Hepatic Secretion of Conjugated Drugs and Endogenous Substances. Seminars in Liver Disease, 2000, Volume 20, 265-272.	1.8	224
63	Localization and Genomic Organization of a New Hepatocellular Organic Anion Transporting Polypeptide. Journal of Biological Chemistry, 2000, 275, 23161-23168.	1.6	462
64	Localization, substrate specificity, and drug resistance conferred by conjugate export pumps of the MRP family. Advances in Enzyme Regulation, 2000, 40, 339-349.	2.9	71
65	Enhanced urinary excretion of cysteinyl leukotrienes in patients with acute alcohol intoxication. Gastroenterology, 2000, 118, 1140-1148.	0.6	8
66	Purification of the human apical conjugate export pump MRP2. Reconstitution and functional characterization as substrate-stimulated ATPase. FEBS Journal, 1999, 265, 281-289.	0.2	39
67	Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. British Journal of Cancer, 1999, 79, 1053-1060.	2.9	49
68	Export pumps for glutathione S-conjugates. Free Radical Biology and Medicine, 1999, 27, 985-991.	1.3	125
69	Changes in the localization of the rat canalicular conjugate export pump mrp2 in phalloidin-induced cholestasis. Hepatology, 1999, 29, 814-821.	3.6	124
70	Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology, 1999, 29, 1156-1163.	3.6	430
71	Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology, 1999, 30, 485-490.	3.6	151
72	Export pumps for anionic conjugates encoded by MRP genes. Advances in Enzyme Regulation, 1999, 39, 237-246.	2.9	86

#	Article	IF	Citations
73	Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 377-394.	1.4	681
74	Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin–Johnson syndrome. Gastroenterology, 1999, 117, 653-660.	0.6	148
75	Expression of the MRP2 Gene-Encoded Conjugate Export Pump in Human Kidney Proximal Tubules and in Renal Cell Carcinoma. Journal of the American Society of Nephrology: JASN, 1999, 10, 1159-1169.	3.0	224
76	Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione. British Journal of Cancer, 1998, 77, 201-209.	2.9	78
77	ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chemico-Biological Interactions, 1998, 111-112, 153-161.	1.7	92
78	Expression of the apical conjugate export pump, Mrp2, in the polarized hepatoma cell line, WIF-B. Hepatology, 1998, 28, 1332-1340.	3.6	82
79	Induction of hepatic mrp2 (cmrp / cmoat) gene expression in nonhuman primates treated with rifampicin or tamoxifen. Archives of Toxicology, 1998, 72, 763-768.	1.9	67
80	[45] Transport function and substrate specificity of multidrug resistance protein. Methods in Enzymology, 1998, 292, 607-616.	0.4	98
81	Human Mast Cells Secreting Leukotriene C4 Express the MRP1 Gene-Encoded Conjugate Export Pump. Biological Chemistry, 1998, 379, 1121-6.	1.2	25
82	Identification and Characterization of Two Cysteinyl-Leukotriene High Affinity Binding Sites with Receptor Characteristics in Human Lung Parenchyma. Molecular Pharmacology, 1998, 53, 750-758.	1.0	34
83	Tumorzellregulation. , 1998, , 43-56.		0
84	ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochemical Journal, 1997, 327, 305-310.	1.7	278
85	Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology, 1997, 113, 1438-1442.	0.6	111
86	The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Advances in Enzyme Regulation, 1997, 37, 321-333.	2.9	82
87	Induction of cMrp/cMoat gene expression by cisplatin, 2- acetylaminofluorene, or cycloheximide in rat hepatocytes. Hepatology, 1997, 26, 980-985.	3.6	3
88	The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 1997, 113, 255-264.	0.6	477
89	Introduction: Transport across the hepatocyte canalicular membrane. FASEB Journal, 1997, 11, 15-18.	0.2	94
90	Expression and localization of the conjugate export pump encoded by the <i>MRP2 (cMRP/cMOAJ)</i> gene in liver. FASEB Journal, 1997, 11, 509-515.	0.2	265

#	Article	IF	CITATIONS
91	Characterization and Quantification of Rat Bile Phosphatidylcholine by Electrospray–Tandem Mass Spectrometry. Analytical Biochemistry, 1997, 246, 102-110.	1.1	85
92	The function of the multidrug resistance proteins (MRP and cMRP) in drug conjugate transport and hepatobiliary excretion. Advances in Enzyme Regulation, 1996, 36, 17-29.	2.9	37
93	Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin-Johnson syndrome. Hepatology, 1996, 23, 1061-1066.	3.6	129
94	ATP-dependent glutathione disulphide transport mediated by the <i>MRP</i> gene-encoded conjugate export pump. Biochemical Journal, 1996, 314, 433-437.	1.7	272
95	Activation of Gene Transcription by Prostacyclin Analogues is Mediated by the Peroxisome-Proliferators-Activated Receptor (PPAR). FEBS Journal, 1996, 235, 242-247.	0.2	95
96	Identification of the Multidrug-Resistance Protein (MRP) as the Glutathione-S-Conjugate Export Pump of Erythrocytes. FEBS Journal, 1996, 241, 644-648.	0.2	76
97	Identification of the Biosynthetic Leukotriene C4 Export Pump in Murine Mastocytoma Cells as a Homolog of the Multidrug-Resistance Protein. FEBS Journal, 1996, 242, 201-205.	0.2	17
98	cDNA Cloning of the Hepatocyte Canalicular Isoform of the Multidrug Resistance Protein, cMrp, Reveals a Novel Conjugate Export Pump Deficient in Hyperbilirubinemic Mutant Rats. Journal of Biological Chemistry, 1996, 271, 15091-15098.	1.6	580
99	Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology, 1995, 21, 1568-1575.	3.6	43
100	Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport-deficient mutant hepatocytes Journal of Cell Biology, 1995, 131, 137-150.	2.3	215
101	Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology, 1995, 21, 1568-1575.	3.6	1
102	Phorbol ester-induced leukotriene biosynthesis and tumor promotion in mouse epidermis. Carcinogenesis, 1994, 15, 2823-2827.	1.3	29
103	Impaired Degradation of Prostaglandins and Thromboxane in Zellweger Syndrome. Pediatric Research, 1994, 36, 449-455.	1.1	11
104	Cysteinyl leukotrienes in the urine of patients with liver diseases. Hepatology, 1994, 20, 804-812.	3.6	37
105	Functional Reconstitution of ATP-Dependent Transporters from the Solubilized Hepatocyte Canalicular Membrane. FEBS Journal, 1994, 224, 345-352.	0.2	19
106	Characterization of the ATP-dependent leukotriene C4 export carrier in mastocytoma cells. FEBS Journal, 1994, 220, 599-606.	0.2	141
107	Hepatobiliary elimination of the peroxisome proliferator nafenopin by conjugation and subsequent atp-dependent transport across the canalicular membrane. Biochemical Pharmacology, 1994, 48, 1113-1120.	2.0	13
108	ATP-dependent transport of amphiphilic cations across the hepatocyte canalicular membrane mediated bymdr1P-glycoprotein. FEBS Letters, 1994, 343, 168-172.	1.3	48

#	Article	IF	CITATIONS
109	ATP-dependent export pumps and their inhibition by cyclosporins. Advances in Enzyme Regulation, 1994, 34, 371-380.	2.9	53
110	Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology, 1994, 107, 255-265.	0.6	156
111	Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Letters, 1993, 333, 193-196.	1.3	117
112	Peroxisomal leukotriene degradation: Biochemical and clinical implications. Advances in Enzyme Regulation, 1993, 33, 181-194.	2.9	30
113	Inhibition by cyclosporin A of Adenosine triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology, 1993, 104, 1507-1514.	0.6	107
114	Impaired degradation of leukotrienes in patients with peroxisome deficiency disorders Journal of Clinical Investigation, 1993, 91, 881-888.	3.9	62
115	Inhibition of protein N-glycosylation by 2-deoxy-2-fluoro-d-galactose. Biochemical Journal, 1992, 285, 821-826.	1.7	3
116	Transport and in vivo elimination of cysteinyl leukotrienes. Advances in Enzyme Regulation, 1992, 32, 107-116.	2.9	28
117	Leukotrienes: Biosynthesis, transport, inactivation, and analysis. Reviews of Physiology, Biochemistry and Pharmacology, 1992, 121, 1-30.	0.9	81
118	Halothane metabolism. Impairment of hepatic omega-oxidation of leukotrienes in vivo and in vitro. FEBS Journal, 1992, 206, 869-879.	0.2	15
119	Leukotriene uptake by hepatocytes and hepatoma cells. FEBS Journal, 1992, 209, 281-289.	0.2	24
120	The preparation of a 11C-labelled 5-lipoxygenase product. 5(S)-hydroxy-6(R)-(N-[1-11C]acetyl)cysteinyl-7,9-trans-11,14-ciseicosatetraenoic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1992, 31, 903-913.	0.5	8
121	Transport of Cysteinyl Leukotrienes., 1992,, 275-282.		0
122	ATP-dependent leukotriene export from mastocytoma cells. FEBS Letters, 1991, 279, 83-86.	1.3	60
123	2-Deoxy-2-fluoro-D-galactose protein N -glycosylation. FEBS Letters, 1991, 294, 217-220.	1.3	10
124	Generation and Metabolism of Cysteinyl Leukotrienes in Vivo. Annals of the New York Academy of Sciences, 1991, 629, 100-104.	1.8	18
125	Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster Journal of Clinical Investigation, 1991, 87, 2036-2041.	3.9	194
126	Metabolism and actions of 2-deoxy-2-fluoro-d-galactose in vivo. FEBS Journal, 1990, 190, 11-19.	0.2	21

#	Article	IF	CITATIONS
127	Metabolism of cysteinyl leukotrienes in monkey and man. FEBS Journal, 1990, 194, 309-315.	0.2	76
128	Inhibition of leukotriene ï‰-oxidation by ï‰-trifluoro analogs of leukotrienes. Archives of Biochemistry and Biophysics, 1990, 282, 333-339.	1.4	15
129	In vivo metabolism and UTP-depleting action of 2-deoxy-2-fluoro-d-galactose. Advances in Enzyme Regulation, 1990, 30, 231-242.	2.9	6
130	Prevention of endogenous leukotriene production during anaphylaxis in the guinea pig by an inhibitor of leukotriene biosynthesis (MK-886) but not by dexamethasone Journal of Experimental Medicine, 1989, 170, 1905-1918.	4.2	37
131	Analysis of cysteinyl leukotrienes in human urine:enhanced excretion in patients with liver cirrhosis and hepatorenal syndrome*. European Journal of Clinical Investigation, 1989, 19, 53-60.	1.7	46
132	Ethanol-induced inhibition of leukotriene degradation by omega-oxidation. FEBS Journal, 1989, 182, 223-229.	0.2	38
133	Direct photoaffinity labeling of leukotriene binding sites. FEBS Journal, 1989, 186, 741-747.	0.2	31
134	Metabolic inactivation of leukotrienes. Advances in Enzyme Regulation, 1989, 28, 307-319.	2.9	24
135	Tumor necrosis factor \hat{l}_{\pm} stimulates leukotriene production in vivo. European Journal of Immunology, 1988, 18, 2085-2088.	1.6	80
136	Metabolism and Analysis of Endogenous Cysteinyl Leukotrienes. Annals of the New York Academy of Sciences, 1988, 524, 68-74.	1.8	39
137	Leukotriene C4Metabolism During its Action on Glucose and Lactate Balance and Flow in Perfused Rat Liver. Biological Chemistry Hoppe-Seyler, 1988, 369, 1131-1136.	1.4	12
138	Leukotrienes as Mediators in Diseases of the Liver. Seminars in Liver Disease, 1988, 8, 357-366.	1.8	42
139	Role of Leukotrienes in Endotoxin Action in Vivo. Clinical Infectious Diseases, 1987, 9, S580-S584.	2.9	25
140	Enterohepatic circulation of N-acetyl-leukotriene E4. Prostaglandins, 1987, 34, 63-70.	1.2	7
141	w-Oxidation products of leukotriene E4 in bile and urine of the monkey. Biochemical and Biophysical Research Communications, 1987, 148, 664-670.	1.0	35
142	Leukotriene C4 metabolism by hepatoma cells and liver. Advances in Enzyme Regulation, 1987, 26, 211-224.	2.9	26
143	Staphylococcal Enterotoxin B as a Nonimmunological Mast Cell Stimulus in Primates: The Role of Endogenous Cysteinyl Leukotrienes. International Archives of Allergy and Immunology, 1987, 82, 289-291.	0.9	56
144	Hereditary defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepatology, 1987, 7, 224-228.	3.6	150

#	Article	IF	Citations
145	Leukotrienes as mediators in frog virus 3-induced hepatitis in rats. Hepatology, 1987, 7, 732-736.	3.6	73
146	Inhibition of leukotriene D4 catabolism by D-penicillamine. FEBS Journal, 1987, 167, 73-79.	0.2	42
147	Cysteinyl leukotrienes as mediators of staphylococcal enterotoxin B in the monkey. European Journal of Clinical Investigation, 1987, 17, 455-459.	1.7	37
148	Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotrience E4. Prostaglandins, 1986, 31, 239-251.	1.2	110
149	UDP-glucosamine as a substrate for dolichyl monophosphate glucosamine synthesis. Biochemical Journal, 1986, 233, 749-754.	1.7	13
150	Leukotriene C4 metabolism by hepatoma cells deficient in the uptake of cysteinyl leukotrienes. FEBS Journal, 1986, 154, 559-562.	0.2	26
151	Cysteinyl leukotrienes undergo enterohepatic circulation. Prostaglandins, Leukotrienes, and Medicine, 1986, 21, 321-322.	0.8	16
152	The relation of leukotrienes to liver injury. Hepatology, 1985, 5, 883-891.	3.6	223
153	Leukotrienes as mediators in tissue trauma. Science, 1985, 230, 330-332.	6.0	210
154	Uridylate-trapping sugar analogs in combination with inhibitors of uridylate synthesis de novo and 5-fluorouridine. Advances in Enzyme Regulation, 1985, 23, 61-79.	2.9	15
155	Potentation of antimetabolite action by uridylate trapping. Advances in Enzyme Regulation, 1985, 24, 417-427.	2.9	9
156	First clinical experiences with a selective chemotherapy of hepatocellular carcinoma with 5-fluorouridine in combination with other antipyrimidines. Advances in Enzyme Regulation, 1985, 24, 429-434.	2.9	3
157	Production of peptide leukotrienes in endotoxin shock. FEBS Letters, 1985, 180, 309-313.	1.3	120
158	45Calcium Uptake During the Transition from Reversible to Irreversible Liver Injury Induced by D-Galactosamine In Vivo. Hepatology, 1984, 4, 855-861.	3.6	16
159	Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells. Biochemical Pharmacology, 1984, 33, 2291-2298.	2.0	31
160	d-glucosamine-induced changes in nucleotide metabolism and growth of colon-carcinoma cells in culture. Biochemical Journal, 1984, 217, 701-708.	1.7	44
161	Separation and analysis of 4′-epimeric UDP-sugars by borate high-performance liquid chromatography. Analytical Biochemistry, 1983, 132, 405-412.	1.1	33
162	Combined action of acivicin and d-galactosamine on pyrimidine nucleotide metabolism in hepatoma cells. Biochemical Pharmacology, 1983, 32, 1865-1869.	2.0	5

#	Article	IF	CITATIONS
163	Uridylate trapping, induction of UTP deficiency, and stimulation of pyrimidine synthesis de novo by d-galactosone. Biochemical Journal, 1982, 206, 139-146.	1.7	17
164	Uridylate Trapping Induced by the C-2-Modified d-Glucose Analogs Glucosone, Fluoroglucose, and Glucosamine. FEBS Journal, 1982, 121, 469-474.	0.2	44
165	Liver calcium and endotoxin action. Die Naturwissenschaften, 1982, 69, 147-149.	0.6	8
166	Leukotriene antagonists prevent endotoxin lethality. Die Naturwissenschaften, 1982, 69, 594-595.	0.6	61
167	Dual Role of Hexose-1-phosphate Uridylyltransferase in Galactosamine Metabolism. FEBS Journal, 1982, 128, 163-168.	0.2	25
168	Inhibition of tyrosine aminotransferase induction by UTP deficiency and its reversal by 5-fluorouridine in cultured hepatoma cells. Nucleic Acids and Protein Synthesis, 1981, 655, 34-40.	1.7	2
169	Preventive effects of 5-fluorouridine and uridine on d-galactosamine-induced liver injury. Experimental and Molecular Pathology, 1981, 34, 170-182.	0.9	14
170	Selective Guanosine Phosphate Deficiency in Hepatoma Cells Induced by Inhibitors of IMP Dehydrogenase. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1980, 361, 1503-1510.	1.7	8
171	Depletion of cytidine triphosphate as a consequence of cellular uridine triphosphate deficiency. FEBS Letters, 1979, 103, 165-167.	1.3	7
172	Enzymatic analysis of guanine nucleotides in tissues and cells. Analytical Biochemistry, 1978, 86, 147-153.	1.1	18
173	Increased formation of nucleotide derivatives of 5-fluorouridine in hepatoma cells treated with inhibitors of pyrimidine synthesis and D-galactosamine. FEBS Letters, 1978, 95, 361-365.	1.3	27
174	Aspartate carbamoyltransferase inhibition and uridylate trapping result in a synergistic depression of uridine triphosphate in hepatoma cells. FEBS Letters, 1977, 73, 263-266.	1.3	14
175	Metabolism of 2-deoxy-d-galactose results in the accumulation of 2-deoxy-d-galactose 1-phosphate in brain. Journal of Neurochemistry, 1977, 29, 603-604.	2.1	10
176	2-Deoxy-d-galactose Metabolism in Ascites Hepatoma Cells Results in Phosphate Trapping and Glycolysis Inhibition. FEBS Journal, 1977, 73, 83-92.	0.2	39
177	Increased de Novo Pyrimidine Nucleotide Synthesis in Liver Induced by Ammonium Ions in Amounts Surpassing the Urea Cycle Capacity. FEBS Journal, 1977, 76, 157-163.	0.2	29
178	Metabolism of 2-Deoxy-D-galactose in Liver Induces Phosphate and Uridylate Trapping. FEBS Journal, 1977, 80, 373-379.	0.2	28
179	Increased serum urate in galactosemia patients after a galactose load: A possible role of nucleotide deficiency in galactosemic liver injury. Klinische Wochenschrift, 1975, 53, 1169-1170.	0.6	3
180	Effects of galactose on human leukocyte uracil nucleotides. International Journal of Biochemistry & Cell Biology, 1975, 6, 751-755.	0.8	1

#	Article	IF	Citations
181	Uridine-5′-triphosphate, Uridine-5′-diphosphate, and Uridine-5′-monophosphate. , 1974, , 2172-2178.		11
182	Determination of 5′-Nucleotides as Nucleoside-5′-monophosphates. , 1974, , 2088-2096.		11
183	Selective Uridine Triphosphate Deficiency Induced by d-Galactosamine in Liver and Reversed by Pyrimidine Nucleotide Precursors. Journal of Biological Chemistry, 1974, 249, 211-216.	1.6	217
184	Liver injury induced by 2-deoxy-d-galactose. Experimental and Molecular Pathology, 1973, 19, 365-377.	0.9	17
185	Increased activities of hepatic orotidine 5′-phosphate pyrophosphorylase and orotidine 5′-phosphate decarboxylase induced by orotate. FEBS Letters, 1972, 20, 330-332.	1.3	7
186	Activity and distribution of the enzymes of uridylate synthesis from orotate in animal tissues. Biochimica Et Biophysica Acta - Biomembranes, 1972, 258, 395-403.	1.4	29
187	Ultrastructural studies on the effect of choline orotate on galactosamine induced hepatic injury in rats. Experimental and Molecular Pathology, 1972, 16, 33-46.	0.9	25
188	Cytosine Nucleotides in Liver. Hoppe-Seyler's Zeitschrift Fýr Physiologische Chemie, 1971, 352, 275-279.	1.7	30
189	Cell Damage by Trapping of Biosynthetic Intermediates. The Role of Uracil Nucleotides in Experimental Hepatitis. Hoppe-Seyler's Zeitschrift Fýr Physiologische Chemie, 1971, 352, 412-418.	1.7	49
190	Fate of Intravenously Administered UDPglucose. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1970, 351, 729-736.	1.7	23
191	Liver restitution after acute galactosamine hepatitis: Autoradiographic and biochemical studies in rats. Experimental and Molecular Pathology, 1970, 12, 58-69.	0.9	80
192	The Trapping of Uridine Phosphates by d-Galactosamine, d-Glucosamine, and 2-Deoxy-d-galactose. A Study on the Mechanism of Galactosamine Hepatitis. FEBS Journal, 1970, 17, 246-253.	0.2	280
193	Enzymic determination of uracil nucleotides in tissues. Analytical Biochemistry, 1970, 38, 105-114.	1.1	125
194	Trapping of uridine phosphates by D-galactose in ethanol-treated liver. FEBS Letters, 1970, 11, 193-196.	1.3	17
195	Studies on the Mechanism of Galactosamine Hepatitis: Accumulation of Galactosamine-1-Phosphate and its Inhibition of UDP-Glucose Pyrophosphorylase. FEBS Journal, 1969, 10, 219-225.	0.2	198
196	Changes in uridine nucleotides during liver perfusion with D-galactosamine. FEBS Letters, 1969, 4, 278-280.	1.3	39
197	Experimental hepatitis induced by d-galactosamine. Experimental and Molecular Pathology, 1968, 9, 279-290.	0.9	515
198	The substrate supply of the human skeletal muscle at rest, during and after work. Experientia, 1967, 23, 974-979.	1.2	59

ARTICLE IF CITATIONS

199 Multidrug Resistance Proteins of the ABCC Subfamily. , 0, , 263-318. 7