
Lisa D Cabrita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8600139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamics of co-translational folding and ribosome–nascent chain interactions. Current Opinion in Structural Biology, 2022, 74, 102357.	5.7	9
2	Full-length TDP-43 and its C-terminal domain form filaments <i>inÂvitro</i> having non-amyloid properties. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2021, 28, 56-65.	3.0	6
3	Nascent chain dynamics and ribosome interactions within folded ribosome–nascent chain complexes observed by NMR spectroscopy. Chemical Science, 2021, 12, 13120-13126.	7.4	8
4	Interactions between nascent proteins and the ribosome surface inhibit co-translational folding. Nature Chemistry, 2021, 13, 1214-1220.	13.6	27
5	Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nature Communications, 2021, 12, 6447.	12.8	22
6	Common sequence motifs of nascent chains engage the ribosome surface and trigger factor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
7	How Does the Ribosome Fold the Proteome?. Annual Review of Biochemistry, 2020, 89, 389-415.	11.1	50
8	Probing the dynamic stalk region of the ribosome using solution NMR. Scientific Reports, 2019, 9, 13528.	3.3	10
9	Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9744-9749.	7.1	39
10	The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallographica Section D: Structural Biology, 2017, 73, 509-521.	2.3	32
11	Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5012-5017.	7.1	54
12	A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nature Protocols, 2016, 11, 1492-1507.	12.0	39
13	Two-Dimensional NMR Lineshape Analysis. Scientific Reports, 2016, 6, 24826.	3.3	161
14	A structural ensemble of a ribosome–nascent chain complex during cotranslational protein folding. Nature Structural and Molecular Biology, 2016, 23, 278-285.	8.2	135
15	The H50Q Mutation Induces a 10-fold Decrease in the Solubility of α-Synuclein. Journal of Biological Chemistry, 2015, 290, 2395-2404.	3.4	65
16	Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes. Journal of Biomolecular NMR, 2015, 63, 151-163.	2.8	10
17	Archaeal MBF1 binds to 30S and 70S ribosomes via its helix–turn–helix domain. Biochemical Journal, 2014, 462, 373-384.	3.7	16
18	Solution structure of the major factor VIII binding region on von Willebrand factor. Blood, 2014, 123, 4143-4151.	1.4	41

LISA D CABRITA

#	Article	IF	CITATIONS
19	Structural investigation of the folding of an immunoglobulin domain on the ribosome using NMR Spectroscopy (LB197). FASEB Journal, 2014, 28, LB197.	0.5	0
20	Solution-State Nuclear Magnetic Resonance Spectroscopy and Protein Folding. Methods in Molecular Biology, 2011, 752, 97-120.	0.9	2
21	Protein folding on the ribosome. Current Opinion in Structural Biology, 2010, 20, 33-45.	5.7	116
22	Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22239-22244.	7.1	81
23	Probing Side-Chain Dynamics of a Ribosome-Bound Nascent Chain Using Methyl NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 8366-8367.	13.7	37
24	Structure, Dynamics and Folding of an Immunoglobulin Domain of the Gelation Factor (ABP-120) from Dictyostelium discoideum. Journal of Molecular Biology, 2009, 388, 865-879.	4.2	32
25	Evolution and Classification of the Serpin Superfamily. , 2007, , 1-33.		4
26	Serpins in Prokaryotes. , 2007, , 131-162.		6
27	In Vitro and In Silico Design of α1-antitrypsin Mutants with Different Conformational Stabilities. Journal of Molecular Biology, 2003, 325, 581-589.	4.2	36