Anthony Bishopp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599756/publications.pdf Version: 2024-02-01

ANTHONY RISHODD

#	Article	lF	CITATIONS
1	Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy. Plant Physiology, 2022, 188, 56-69.	4.8	3
2	Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell, 2022, 34, 2309-2327.	6.6	19
3	A network of transcriptional repressors modulates auxin responses. Nature, 2021, 589, 116-119.	27.8	56
4	Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. Plant Journal, 2021, 106, 159-173.	5.7	7
5	Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nature Plants, 2021, 7, 1485-1494.	9.3	42
6	The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development (Cambridge), 2020, 147, .	2.5	24
7	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	3.8	35
8	Early developmental plasticity of lateral roots in response to asymmetric water availability. Nature Plants, 2020, 6, 73-77.	9.3	23
9	Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nature Plants, 2020, 6, 699-707.	9.3	33
10	A core mechanism for specifying root vascular pattern can replicate the anatomical variation seen in diverse plant species. Development (Cambridge), 2019, 146, .	2.5	8
11	Turning lateral roots into nodules. Science, 2019, 366, 953-954.	12.6	4
12	Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature, 2019, 565, 490-494.	27.8	195
13	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	12.8	146
14	North, East, South, West: mapping vascular tissues onto the Arabidopsis root. Current Opinion in Plant Biology, 2018, 41, 16-22.	7.1	15
15	Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362, 1407-1410.	12.6	179
16	Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions. Frontiers in Plant Science, 2018, 9, 735.	3.6	19
17	A Comparison of Growth on Mercuric Chloride for Three Lemnaceae Species Reveals Differences in Growth Dynamics That Effect Their Suitability for Use in Either Monitoring or Remediating Ecosystems Contaminated With Mercury. Frontiers in Chemistry, 2018, 6, 112.	3.6	31
18	Development of Efficient Protocols for Stable and Transient Gene Transformation for Wolffia Globosa Using Agrobacterium. Frontiers in Chemistry, 2018, 6, 227.	3.6	20

ANTHONY BISHOPP

#	Article	IF	CITATIONS
19	Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of Experimental Botany, 2017, 68, 5-16.	4.8	35
20	Dioxygenase-encoding <i>AtDAO1</i> gene controls IAA oxidation and homeostasis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11016-11021.	7.1	162
21	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	2.5	111
22	Dynamic regulation of auxin oxidase and conjugating enzymes <i>AtDAO1</i> and <i>GH3</i> modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11022-11027.	7.1	119
23	The hidden half of crop yields. Nature Plants, 2015, 1, 15117.	9.3	89
24	Plant Grafting: Making the Right Connections. Current Biology, 2015, 25, R411-R413.	3.9	19
25	The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell, 2015, 27, 44-63.	6.6	441
26	Seeing the wood and the trees. Nature, 2015, 517, 558-559.	27.8	5
27	The innermost secrets of root development. Science, 2014, 345, 622-623.	12.6	1
28	Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 857-862.	7.1	98
29	Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science, 2014, 5, 709.	3.6	35
30	Modelling hormonal response and development. Trends in Plant Science, 2014, 19, 311-319.	8.8	100
31	Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature, 2014, 505, 417-421.	27.8	236
32	Systems biology approaches to understand the role of auxin in root growth and development. Physiologia Plantarum, 2014, 151, 73-82.	5.2	15
33	Hormone Crosstalk: Directing the Flow. Current Biology, 2014, 24, R366-R368.	3.9	7
34	SnapShot: Root Development. Cell, 2013, 155, 1190-1190.e1.	28.9	4
35	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	7.2	104
36	AHP6 Inhibits Cytokinin Signaling to Regulate the Orientation of Pericycle Cell Division during Lateral Root Initiation. PLoS ONE, 2013, 8, e56370.	2.5	84

ANTHONY BISHOPP

#	Article	IF	CITATIONS
37	Plant Development: How Long Is a Root?. Current Biology, 2012, 22, R919-R921.	3.9	4
38	Sending mixed messages: auxin-cytokinin crosstalk in roots. Current Opinion in Plant Biology, 2011, 14, 10-16.	7.1	103
39	A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots. Current Biology, 2011, 21, 917-926.	3.9	359
40	Phloem-Transported Cytokinin Regulates Polar Auxin Transport and Maintains Vascular Pattern in the Root Meristem. Current Biology, 2011, 21, 927-932.	3.9	231
41	Bisymmetry in the embryonic root is dependent on cotyledon number and position. Plant Signaling and Behavior, 2011, 6, 1837-1840.	2.4	12
42	Plant Development: Early Events in Lateral Root Initiation. Current Biology, 2010, 20, R843-R845.	3.9	13
43	Chapter 1 Cytokinin Signaling During Root Development. International Review of Cell and Molecular Biology, 2009, 276, 1-48.	3.2	26
44	Signs of change: hormone receptors that regulate plant development. Development (Cambridge), 2006, 133, 1857-1869.	2.5	85
45	Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate During Vascular Development. Science, 2006, 311, 94-98.	12.6	530
46	Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO Journal, 2006, 25, 4638-4649.	7.8	396
47	Interaction of Polycomb-group proteins controlling flowering in <i>Arabidopsis</i> . Development (Cambridge), 2004, 131, 5263-5276.	2.5	491
48	Phloem research in full flow. Nature Plants, 0, , .	9.3	0