Emy Basso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599648/publications.pdf

Version: 2024-02-01

		304743	454955	
30	3,760 citations	22	30	
papers	citations	h-index	g-index	
36	36	36	4236	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D. Journal of Biological Chemistry, 2005, 280, 18558-18561.	3.4	717
2	The mitochondrial permeability transition from in vitro artifact to disease target. FEBS Journal, 2006, 273, 2077-2099.	4.7	591
3	Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel. Journal of Biological Chemistry, 1996, 271, 2185-2192.	3.4	434
4	Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex. Journal of Biological Chemistry, 2009, 284, 33982-33988.	3.4	262
5	Neuromelanin of the Human Substantia Nigra: An Update. Neurotoxicity Research, 2014, 25, 13-23.	2.7	191
6	Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7558-7563.	7.1	182
7	Biochemical and Genetic Analysis of the Mitochondrial Response of Yeast to BAX and BCL-X _L . Molecular and Cellular Biology, 2000, 20, 3125-3136.	2.3	167
8	Cyclophilin D in mitochondrial pathophysiology. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1113-1118.	1.0	161
9	Phosphate Is Essential for Inhibition of the Mitochondrial Permeability Transition Pore by Cyclosporin A and by Cyclophilin D Ablation. Journal of Biological Chemistry, 2008, 283, 26307-26311.	3.4	146
10	Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Human Molecular Genetics, 2009, 18, 2024-2031.	2.9	116
11	The mitochondrial permeability transition from yeast to mammals. FEBS Letters, 2010, 584, 2504-2509.	2.8	114
12	Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury. Journal of Neuroscience, 2009, 29, 2588-2596.	3.6	113
13	Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Reports, 2020, 30, 2332-2348.e10.	6.4	67
14	Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin. Molecular and Cellular Biochemistry, 1997, 174, 181-184.	3.1	57
15	Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore. Molecular Membrane Biology, 2006, 23, 521-530.	2.0	53
16	Properties of Ca2+ Transport in Mitochondria of Drosophila melanogaster. Journal of Biological Chemistry, 2011, 286, 41163-41170.	3.4	53
17	Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience, 2008, 155, 585-596.	2.3	50
18	Systems biology identifies preserved integrity but impaired metabolism of mitochondria due to a glycolytic defect in Alzheimer's disease neurons. Aging Cell, 2019, 18, e12924.	6.7	46

#	Article	IF	CITATIONS
19	A Synthetic Fluorescent Mitochondriaâ€Targeted Sensor for Ratiometric Imaging of Calcium in Live Cells. Angewandte Chemie - International Edition, 2019, 58, 9917-9922.	13.8	39
20	Perspectives on the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 200-206.	1.0	34
21	Mitochondrial Ca2+ transport and permeability transition in zebrafish (Danio rerio). Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1775-1779.	1.0	30
22	Mitochondrial Dysfunctions: A Thread Sewing Together Alzheimer's Disease, Diabetes, and Obesity. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	25
23	Slow activation of fast mitochondrial Ca2+ uptake by cytosolic Ca2+. Journal of Biological Chemistry, 2018, 293, 17081-17094.	3.4	21
24	Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells, 2020, 9, 2166.	4.1	21
25	Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biology, 2021, 19, 57.	3.8	21
26	Effects of Mild Excitotoxic Stimulus on Mitochondria Ca2+ Handling in Hippocampal Cultures of a Mouse Model of Alzheimer's Disease. Cells, 2021, 10, 2046.	4.1	8
27	Familial Alzheimer's disease presenilin-2 mutants affect Ca2+ homeostasis and brain network excitability. Aging Clinical and Experimental Research, 2021, 33, 1705-1708.	2.9	7
28	New Linear Precursors of cIDPR Derivatives as Stable Analogs of cADPR: A Potent Second Messenger with Ca2+-Modulating Activity Isolated from Sea Urchin Eggs. Marine Drugs, 2019, 17, 476.	4.6	6
29	A Synthetic Fluorescent Mitochondriaâ€√argeted Sensor for Ratiometric Imaging of Calcium in Live Cells. Angewandte Chemie, 2019, 131, 10022-10027.	2.0	2
30	A Ca2+-regulated mitochondrial (permeability transition) pore in Drosophila melanogaster. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 131.	1.0	0