Shuqun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8598148/publications.pdf

Version: 2024-02-01

57758 128289 12,845 61 44 60 citations h-index g-index papers 63 63 63 9250 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitogenâ€activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64, 301-341.	8.5	149
2	WRKY33â€mediated indolic glucosinolate metabolic pathway confers resistance against <i>Alternaria brassicicola</i> in <i>Arabidopsis</i> and <i>Brassica</i> crops. Journal of Integrative Plant Biology, 2022, 64, 1007-1019.	8.5	21
3	Regulation of Arabidopsis Matrix Metalloproteinases by Mitogen-Activated Protein Kinases and Their Function in Leaf Senescence. Frontiers in Plant Science, 2022, 13, 864986.	3.6	3
4	Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. Journal of Integrative Plant Biology, 2022, 64, 1531-1542.	8.5	13
5	Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice. Journal of Genetics and Genomics, 2021, 48, 695-705.	3.9	13
6	Expression of a plastid-localized sugar transporter in the suspensor is critical to embryogenesis. Plant Physiology, 2021, 185, 1021-1038.	4.8	10
7	Protein phosphatase 2A alleviates cadmium toxicity by modulating ethylene production in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 1008-1022.	5.7	13
8	Induction of γâ€aminobutyric acid plays a positive role to <i>Arabidopsis</i> resistance against <i>Pseudomonas syringae</i> . Journal of Integrative Plant Biology, 2020, 62, 1797-1812.	8.5	25
9	Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis. Plant Cell, 2020, 32, 2621-2638.	6.6	110
10	CASEIN KINASE2-Dependent Phosphorylation of PHOSPHATE2 Fine-tunes Phosphate Homeostasis in Rice. Plant Physiology, 2020, 183, 250-262.	4.8	22
11	WRKY15 Suppresses Tracheary Element Differentiation Upstream of VND7 During Xylem Formation. Plant Cell, 2020, 32, 2307-2324.	6.6	36
12	The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand–Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem. Molecular Plant, 2020, 13, 1608-1623.	8.3	49
13	Coâ€regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of Integrative Plant Biology, 2020, 62, 1780-1796.	8.5	48
14	SCREAM in the making of stomata. Nature Plants, 2019, 5, 648-649.	9.3	5
15	The Arabidopsis Pleiotropic Drug Resistance Transporters PEN3 and PDR12 Mediate Camalexin Secretion for Resistance to <i>Botrytis cinerea</i>). Plant Cell, 2019, 31, 2206-2222.	6.6	84
16	A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nature Plants, 2019, 5, 414-423.	9.3	90
17	Regulation of GDSL Lipase Gene Expression by the MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factors in <i>Arabidopsis</i> Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 673-684.	2.6	23
18	A Förster resonance energy transfer sensor for liveâ€cell imaging of mitogenâ€activated protein kinase activity in <scp>A</scp> rabidopsis. Plant Journal, 2019, 97, 970-983.	5.7	21

#	Article	IF	CITATIONS
19	Mitogenâ€activated protein kinases and calciumâ€dependent protein kinases are involved in woundingâ€induced ethylene biosynthesis in ⟨scp⟩⟨i⟩Arabidopsis thaliana⟨ i⟩⟨ scp⟩⟩. Plant, Cell and Environment, 2018, 41, 134-147.	5.7	71
20	Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genetics, 2018, 14, e1007880.	3 . 5	38
21	Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Current Opinion in Plant Biology, 2018, 45, 1-10.	7.1	221
22	Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 2018, 16, e2004122.	5 . 6	161
23	Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid. Plant Cell, 2017, 29, 526-542.	6.6	146
24	Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo. Methods in Molecular Biology, 2017, 1573, 59-71.	0.9	1
25	Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant Journal, 2017, 92, 1005-1019.	5.7	66
26	MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell, 2017, 43, 630-642.e4.	7.0	322
27	Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity. Plant Cell, 2016, 28, 1144-1162.	6.6	135
28	MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Frontiers in Plant Science, 2015, 6, 953.	3.6	80
29	RACK1, scaffolding a heterotrimeric G protein and a MAPK cascade. Trends in Plant Science, 2015, 20, 405-407.	8.8	36
30	The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. Plant Cell, 2015, 27, 711-723.	6.6	120
31	Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against <i>Pseudomonas syringae</i> . Plant Physiology, 2015, 169, 299-312.	4.8	87
32	Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 2015, 20, 56-64.	8.8	428
33	Two Mitogen-Activated Protein Kinases, MPK3 and MPK6, Are Required for Funicular Guidance of Pollen Tubes in Arabidopsis Â. Plant Physiology, 2014, 165, 528-533.	4.8	79
34	EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity. PLoS Genetics, 2014, 10, e1004389.	3.5	136
35	Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in Arabidopsis. PLoS Genetics, 2014, 10, e1004384.	3 . 5	149
36	A chemical genetic approach demonstrates that <scp>MPK</scp> 3/ <scp>MPK</scp> 6 activation and <scp>NADPH</scp> oxidaseâ€mediated oxidative burst are two independent signaling events in plant immunity. Plant Journal, 2014, 77, 222-234.	5.7	166

#	Article	IF	Citations
37	Regulation of Ethylene Biosynthesis and Signaling by Protein Kinases and Phosphatases. Molecular Plant, 2014, 7, 939-942.	8.3	49
38	MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 2013, 51, 245-266.	7.8	1,009
39	A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates <i>Arabidopsis</i> Inflorescence Architecture by Promoting Localized Cell Proliferation Â. Plant Cell, 2013, 24, 4948-4960.	6.6	191
40	Phosphorylation of an ERF Transcription Factor by <i>Arabidopsis</i> MPK3/MPK6 Regulates Plant Defense Gene Induction and Fungal Resistance Â. Plant Cell, 2013, 25, 1126-1142.	6.6	362
41	Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 2012, 8, e1002767.	3.5	380
42	Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2011, 23, 1639-1653.	6.6	674
43	Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal, 2010, 64, no-no.	5.7	211
44	Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$ Â Â. Plant Cell, 2009, 21, 944-953.	6.6	458
45	MAPK phosphorylationâ€induced stabilization of ACS6 protein is mediated by the nonâ€catalytic Câ€terminal domain, which also contains the <i>cis</i>)i>â€determinant for rapid degradation by the 26S proteasome pathway. Plant Journal, 2008, 54, 129-140.	5.7	212
46	Haplo-Insufficiency of <i>MPK3 </i> i>in <i>MPK6 </i> i>Mutant Background Uncovers a Novel Function of These Two MAPKs in <i>Arabidopsis </i> i>Ovule Development. Plant Cell, 2008, 20, 602-613.	6.6	148
47	A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5638-5643.	7.1	317
48	Regulation of floral organ abscission in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15629-15634.	7.1	296
49	MEKK1 Is Required for flg22-Induced MPK4 Activation in Arabidopsis Plants. Plant Physiology, 2007, 143, 661-669.	4.8	306
50	Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. Plant Cell, 2007, 19, 63-73.	6.6	727
51	Chloroplastâ€generated reactive oxygen species are involved in hypersensitive responseâ€ike cell death mediated by a mitogenâ€activated protein kinase cascade. Plant Journal, 2007, 51, 941-954.	5.7	281
52	Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 2006, 11, 192-198.	8.8	481
53	Phosphorylation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase by MPK6, a Stress-Responsive Mitogen-Activated Protein Kinase, Induces Ethylene Biosynthesis in Arabidopsis[W]. Plant Cell, 2004, 16, 3386-3399.	6.6	756
54	Activation of a Stress-Responsive Mitogen-Activated Protein Kinase Cascade Induces the Biosynthesis of Ethylene in Plants. Plant Cell, 2003, 15, 2707-2718.	6.6	200

Shuqun Zhang

#	Article	IF	CITATION
55	Cell Death Mediated by MAPK Is Associated with Hydrogen Peroxide Production in Arabidopsis. Journal of Biological Chemistry, 2002, 277, 559-565.	3.4	411
56	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	8.8	1,080
57	MAPK cascades in plant defense signaling. Trends in Plant Science, 2001, 6, 520-527.	8.8	676
58	Activation of Salicylic Acid–Induced Protein Kinase, a Mitogen-Activated Protein Kinase, Induces Multiple Defense Responses in Tobacco. Plant Cell, 2001, 13, 1877-1889.	6.6	149
59	Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant Journal, 2000, 23, 339-347.	5.7	149
60	Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress. Plant Physiology, 2000, 122, 1355-1364.	4.8	138
61	Mitogen-Activated Protein Kinase Cascades in Plant Intracellular Signaling. , 0, , 100-136.		3