
Leonard Petrucelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron, 2013, 77, 639-646.	8.1	962
2	RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron, 2013, 80, 415-428.	8.1	785
3	GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature, 2015, 525, 129-133.	27.8	692
4	Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a <i>C9ORF72</i> Repeat Expansion. Science Translational Medicine, 2013, 5, 208ra149.	12.4	586
5	Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7607-7612.	7.1	523
6	Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathologica, 2013, 126, 829-844.	7.7	506
7	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
8	Lewy bodies and parkinsonism in families withparkin mutations. Annals of Neurology, 2001, 50, 293-300.	5.3	479
9	ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nature Communications, 2014, 5, 3996.	12.8	463
10	Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice. Journal of Neuroscience, 2010, 30, 10851-10859.	3.6	457
11	Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 2016, 90, 535-550.	8.1	437
12	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	14.8	404
13	Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genetics, 2008, 4, e1000193.	3.5	393
14	An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathologica Communications, 2016, 4, 58.	5.2	388
15	<i>C9ORF72</i> repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science, 2015, 348, 1151-1154.	12.6	332
16	Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nature Neuroscience, 2015, 18, 1175-1182.	14.8	330
17	Converging pathways in neurodegeneration, from genetics to mechanisms. Nature Neuroscience, 2018, 21, 1300-1309.	14.8	325
18	Poly(GR) in C9ORF72 -Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron, 2016, 92, 383-391.	8.1	323

#	Article	IF	CITATIONS
19	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	8.1	302
20	Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell, 2020, 180, 633-644.e12.	28.9	300
21	Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, 2014, 83, 1043-1050.	8.1	289
22	Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathologica, 2014, 128, 505-524.	7.7	284
23	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	14.8	268
24	Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathologica, 2013, 126, 895-905.	7.7	263
25	Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Reports, 2016, 15, 1455-1466.	6.4	260
26	C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron, 2015, 88, 892-901.	8.1	249
27	Updated TDP-43 in Alzheimer's disease staging scheme. Acta Neuropathologica, 2016, 131, 571-585.	7.7	244
28	Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nature Medicine, 2018, 24, 1136-1142.	30.7	241
29	Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurology, The, 2013, 12, 978-988.	10.2	232
30	Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice. Neuron, 2015, 88, 902-909.	8.1	219
31	Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathologica, 2015, 130, 845-861.	7.7	204
32	TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A. Nature, 2022, 603, 124-130.	27.8	193
33	Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity. Science, 2019, 363, .	12.6	181
34	Poly(GP) proteins are a useful pharmacodynamic marker for <i>C9ORF72</i> -associated amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	179
35	Differential Toxicity of Nuclear RNA Foci versus Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron, 2015, 87, 1207-1214.	8.1	176
36	Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. Journal of Experimental Medicine, 2018, 215, 2235-2245.	8.5	167

#	Article	IF	CITATIONS
37	Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nature Medicine, 2014, 20, 1444-1451.	30.7	165
38	Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience, 2020, 23, 615-624.	14.8	157
39	The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Human Molecular Genetics, 2013, 22, 3112-3122.	2.9	156
40	Timing and significance of pathological features in <i>C9orf72</i> expansion-associated frontotemporal dementia. Brain, 2016, 139, 3202-3216.	7.6	136
41	Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathologica, 2014, 127, 359-376.	7.7	134
42	Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathologica, 2013, 126, 401-409.	7.7	126
43	Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathologica, 2017, 133, 705-715.	7.7	125
44	CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications, 2018, 9, 152.	12.8	123
45	Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biology, 2019, 20, 97.	8.8	122
46	Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. Journal of Clinical Investigation, 2020, 130, 6080-6092.	8.2	117
47	Spt4 selectively regulates the expression of <i>C9orf72</i> sense and antisense mutant transcripts. Science, 2016, 353, 708-712.	12.6	116
48	<i>C9orf72</i> poly(GR) aggregation induces TDP-43 proteinopathy. Science Translational Medicine, 2020, 12, .	12.4	115
49	Long-read sequencing across the C9orf72 â€~GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Molecular Neurodegeneration, 2018, 13, 46.	10.8	111
50	Genetic Convergence Brings Clarity to the Enigmatic Red Line in ALS. Neuron, 2019, 101, 1057-1069.	8.1	111
51	Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Molecular Neurodegeneration, 2019, 14, 9.	10.8	111
52	Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathologica, 2015, 130, 863-876.	7.7	104
53	p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell, 2021, 184, 689-708.e20.	28.9	104
54	Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Human Molecular Genetics, 2017, 26, 3421-3431.	2.9	101

4

#	Article	IF	CITATIONS
55	An acetylation–phosphorylation switch that regulates tau aggregation propensity and function. Journal of Biological Chemistry, 2017, 292, 15277-15286.	3.4	100
56	APOE Îμ2 is associated with increased tau pathology in primary tauopathy. Nature Communications, 2018, 9, 4388.	12.8	100
57	Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathologica, 2017, 134, 241-254.	7.7	99
58	A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathologica, 2018, 135, 427-443.	7.7	98
59	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
60	Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6962-E6971.	7.1	96
61	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
62	Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathologica, 2015, 130, 559-573.	7.7	89
63	Phosphorylated neurofilament heavy chain: A biomarker of survival for <scp><i>C9ORF</i></scp> <i>72</i> â€associated amyotrophic lateral sclerosis. Annals of Neurology, 2017, 82, 139-146.	5.3	88
64	RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats. Nature Neuroscience, 2019, 22, 1383-1388.	14.8	87
65	Cellular and pathological heterogeneity of primary tauopathies. Molecular Neurodegeneration, 2021, 16, 57.	10.8	85
66	<i>C9ORF72</i> repeat expansions in cases with previously identified pathogenic mutations. Neurology, 2013, 81, 1332-1341.	1.1	84
67	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Molecular Cell, 2021, 81, 4209-4227.e12.	9.7	84
68	Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21510-21515.	7.1	82
69	Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nature Communications, 2016, 7, 13283.	12.8	82
70	The lysosomal protein cathepsin L is a progranulin protease. Molecular Neurodegeneration, 2017, 12, 55.	10.8	81
71	The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chemical Biology, 2019, 26, 179-190.e12.	5.2	80
72	Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathologica Communications, 2018, 6, 63.	5.2	79

#	Article	IF	CITATIONS
73	In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathologica, 2017, 134, 255-269.	7.7	76
74	Disease Mechanisms of <i>C9ORF72</i> Repeat Expansions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024224.	6.2	75
75	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
76	TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathologica, 2019, 137, 259-277.	7.7	74
77	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	72
78	Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Research, 2014, 1584, 15-21.	2.2	70
79	TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Human Molecular Genetics, 2016, 25, 534-545.	2.9	70
80	Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell, 2022, 185, 1346-1355.e15.	28.9	70
81	Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Science Translational Medicine, 2021, 13, .	12.4	67
82	Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nature Neuroscience, 2019, 22, 863-874.	14.8	65
83	Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathologica, 2019, 137, 227-238.	7.7	65
84	C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity. Human Molecular Genetics, 2017, 26, 4765-4777.	2.9	64
85	<scp>TDP</scp> â€1, the <i><scp>C</scp>aenorhabditis elegans</i> ortholog of <scp>TDP</scp> â€43, limits the accumulation of doubleâ€stranded <scp>RNA</scp> . EMBO Journal, 2014, 33, 2947-2966.	7.8	62
86	TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Human Molecular Genetics, 2017, 26, 1732-1746.	2.9	62
87	ALS and FTD: an epigenetic perspective. Acta Neuropathologica, 2016, 132, 487-502.	7.7	60
88	Association of Apolipoprotein E ε4 With Transactive Response DNA-Binding Protein 43. JAMA Neurology, 2018, 75, 1347.	9.0	60
89	Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. Journal of Neurochemistry, 2016, 138, 145-162.	3.9	59
90	Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Molecular Neurodegeneration, 2018, 13, 37.	10.8	54

#	Article	IF	CITATIONS
91	Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 350-358.	1.9	54
92	The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiology of Aging, 2019, 77, 26-36.	3.1	51
93	Plasma neurofilament light predicts mortality in patients with stroke. Science Translational Medicine, 2020, 12, .	12.4	51
94	Chimeric Peptide Species Contribute to Divergent Dipeptide Repeat Pathology in c9ALS/FTD and SCA36. Neuron, 2020, 107, 292-305.e6.	8.1	51
95	Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiology of Aging, 2014, 35, 1769-1777.	3.1	48
96	Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers. Annals of Clinical and Translational Neurology, 2018, 5, 583-597.	3.7	48
97	ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathologica, 2019, 138, 49-65.	7.7	48
98	Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathologica Communications, 2019, 7, 150.	5.2	40
99	Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G ₄ C ₂) Tj ETQ	q110.784 12.4	1314 rgBT (O
100	eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathologica Communications, 2019, 7, 62.	5.2	38
101	Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo. Molecular Neurodegeneration, 2017, 12, 37.	10.8	37
102	Hexanucleotide Repeat Expansions in c9FTD/ALS and SCA36 Confer Selective Patterns of Neurodegeneration InÂVivo. Cell Reports, 2020, 31, 107616.	6.4	37
103	Elevated methylation levels, reduced expression levels, and frequent contractions in a clinical cohort of C9orf72 expansion carriers. Molecular Neurodegeneration, 2020, 15, 7.	10.8	34
104	Mitophagy alterations in Alzheimer's disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimer's and Dementia, 2021, 17, 417-430.	0.8	34
105	Linking the VPS35 and EIF4G1 Pathways in Parkinson's Disease. Neuron, 2015, 85, 1-3.	8.1	33
106	Unaffected mosaic <i>C9orf72</i> case. Neurology, 2018, 90, e323-e331.	1.1	33
107	Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Reports, 2021, 36, 109581.	6.4	33
108	Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3. Science Translational Medicine, 2020, 12, .	12.4	32

#	Article	IF	CITATIONS
109	Identification and characterization of the human parkin gene promoter. Journal of Neurochemistry, 2001, 78, 1146-1152.	3.9	31
110	The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Reports, 2021, 34, 108843.	6.4	30
111	Expanded <i>C9ORF72</i> Hexanucleotide Repeat in Depressive Pseudodementia. JAMA Neurology, 2014, 71, 775.	9.0	28
112	Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathologica Communications, 2019, 7, 36.	5.2	28
113	Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nature Communications, 2022, 13, 2799.	12.8	28
114	Utility of FDG-PET in diagnosis of Alzheimer-related TDP-43 proteinopathy. Neurology, 2020, 95, e23-e34.	1.1	27
115	Astrocyte-derived clusterin suppresses amyloid formation in vivo. Molecular Neurodegeneration, 2020, 15, 71.	10.8	26
116	Tau and neurofilament light hain as fluid biomarkers in spinocerebellar ataxia type 3. European Journal of Neurology, 2022, 29, 2439-2452.	3.3	25
117	Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathologica Communications, 2018, 6, 55.	5.2	24
118	Clusterin ameliorates tau pathology in vivo by inhibiting fibril formation. Acta Neuropathologica Communications, 2020, 8, 210.	5.2	24
119	Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling. PLoS ONE, 2014, 9, e86513.	2.5	23
120	C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Experimental Neurology, 2016, 277, 171-177.	4.1	21
121	Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Reports Medicine, 2022, 3, 100607.	6.5	21
122	Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathologica Communications, 2018, 6, 42.	5.2	20
123	Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations. Annals of Clinical and Translational Neurology, 2019, 6, 1782-1796.	3.7	20
124	Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency. Molecular Neurodegeneration, 2020, 15, 21.	10.8	19
125	Deep vein thrombosis and pulmonary embolism among hospitalized coronavirus disease 2019–positive patients predicted for higher mortality and prolonged intensive care unit and hospital stays in a multisite healthcare system. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2021, 9, 1361-1370.e1.	1.6	17
126	Long-read targeted sequencing uncovers clinicopathological associations for <i>C9orf72</i> -linked diseases. Brain, 2021, 144, 1082-1088.	7.6	17

#	Article	IF	CITATIONS
127	Modelling amyotrophic lateral sclerosis in rodents. Nature Reviews Neuroscience, 2022, 23, 231-251.	10.2	17
128	Understanding Biomarkers of Neurodegeneration: Novel approaches to detecting tau pathology. Nature Medicine, 2015, 21, 219-220.	30.7	15
129	The <i>Caenorhabditis elegans</i> Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Molecular and Cellular Biology, 2018, 38, .	2.3	14
130	Abnormal expression of homeobox genes and transthyretin in <i>C9ORF72</i> expansion carriers. Neurology: Genetics, 2017, 3, e161.	1.9	12
131	OPTN p.Met468Arg and ATXN2 intermediate length polyQ extension in families with C9orf72 mediated amyotrophic lateral sclerosis and frontotemporal dementia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 75-85.	1.7	12
132	Structural Features of Small Molecules Targeting the RNA Repeat Expansion That Causes Genetically Defined ALS/FTD. ACS Chemical Biology, 2020, 15, 3112-3123.	3.4	12
133	FTDPâ€17 with Pick bodyâ€like inclusions associated with a novel tau mutation, p.E372G. Brain Pathology, 2017, 27, 612-626.	4.1	11
134	C-terminal and full length TDP-43 specie differ according to FTLD-TDP lesion type but not genetic mutation. Acta Neuropathologica Communications, 2019, 7, 100.	5.2	11
135	Cracking the cryptic code in amyotrophic lateral sclerosis and frontotemporal dementia: Towards therapeutic targets and biomarkers. Clinical and Translational Medicine, 2022, 12, e818.	4.0	11
136	Urine levels of the polyglutamine ataxin-3 protein are elevated in patients with spinocerebellar ataxia type 3. Parkinsonism and Related Disorders, 2021, 89, 151-154.	2.2	9
137	A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks. ACS Chemical Neuroscience, 2021, 12, 4076-4089.	3.5	8
138	ARHGEF28 p.Lys280Metfs40Ter in an amyotrophic lateral sclerosis family with a C9orf72 expansion. Neurology: Genetics, 2017, 3, e190.	1.9	6
139	NIH funding trends for neurosurgeon-scientists from 1993–2017: Biomedical workforce implications for neurooncology. Journal of Neuro-Oncology, 2021, 154, 51-62.	2.9	6
140	Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without <i>GRN</i> mutations. Brain, 2022, 145, 2472-2485.	7.6	6
141	TRIO gene segregation in a family with cerebellar ataxia. Neurologia I Neurochirurgia Polska, 2018, 52, 743-749.	1.2	5
142	Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Frontiers in Cell and Developmental Biology, 2022, 10, 863089.	3.7	5
143	Application of a bioinformatic pipeline to RNA-seq data identifies novel virus-like sequence in human blood. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
144	HDAC6 Interacts With Poly (GA) and Modulates its Accumulation in c9FTD/ALS. Frontiers in Cell and Developmental Biology, 2021, 9, 809942.	3.7	4

#	Article	IF	CITATIONS
145	CRISPR expands insight into the mechanisms of ALS and FTD. Nature Reviews Neurology, 2018, 14, 321-323.	10.1	3
146	Enhanced phosphorylation of T153 in soluble tau is a defining biochemical feature of the A152T tau risk variant. Acta Neuropathologica Communications, 2019, 7, 10.	5.2	3
147	TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. NeuroImage: Clinical, 2022, 34, 102954.	2.7	3
148	Aβ Puts the Alpha in Synuclein. Neuron, 2020, 105, 205-206.	8.1	2
149	Amyotrophic lateral sclerosis — insight into susceptibility. Nature Reviews Neurology, 2022, 18, 189-190.	10.1	1
150	O1-07-01: Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggests a role for progranulin in successful aging. , 2010, 6, S83-S83.		0
151	Epigenetic modifications of theC9ORF72gene: a potential biomarker of disease?. Future Neurology, 2014, 9, 123-126.	0.5	0
152	Cover Image, Volume 177B, Number 1, January 2018. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, i.	1.7	0
153	Comment on: <scp>Polyglutamineâ€Expanded</scp> Ataxinâ€3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood. Movement Disorders, 2022, 37, 1120-1121.	3.9	Ο