Willie Peijnenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597815/publications.pdf

Version: 2024-02-01

371 papers 16,802 citations

18482 62 h-index 25787 108 g-index

378 all docs

378 docs citations

times ranked

378

15710 citing authors

#	Article	lF	CITATIONS
1	Delineation of the exposure-response causality chain of chronic copper toxicity to the zebra mussel, Dreissena polymorpha, with a TK-TD model based on concepts of biotic ligand model and subcellular metal partitioning model. Chemosphere, 2022, 286, 131930.	8.2	4
2	Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. Environmental Pollution, 2022, 292, 118413.	7.5	15
3	Ordered weighted average based grouping of nanomaterials with Arsinh and dose response similarity models. NanoImpact, 2022, 25, 100370.	4.5	2
4	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact, 2022, 25, 100366.	4. 5	23
5	Improved science-based transformation pathways for the development of safe and sustainable plastics. Environment International, 2022, 160, 107055.	10.0	3
6	A universal free energy relationship for both hard and soft radical addition in water. Journal of Physical Organic Chemistry, 2022, 35, e4317.	1.9	1
7	Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & Eamp; Technology, 2022, 56, 2115-2123.	10.0	22
8	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NanoImpact, 2022, 25, 100375.	4. 5	6
9	Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 2022, 17, 424-431.	31.5	124
10	Copper accumulation and physiological markers of soybean (Glycine max) grown in agricultural soil amended with copper nanoparticles. Ecotoxicology and Environmental Safety, 2022, 229, 113088.	6.0	8
11	Bayesian based similarity assessment of nanomaterials to inform grouping. NanoImpact, 2022, 25, 100389.	4.5	7
12	Emerging investigator series: perspectives on toxicokinetics of nanoscale plastic debris in organisms. Environmental Science: Nano, 2022, 9, 1566-1577.	4.3	5
13	Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology, 2022, 16, 88-113.	3.0	11
14	Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation. Water Research, 2022, 217, 118333.	11.3	2
15	Can Current Regulations Account for Intentionally Produced Nanoplastics?. Environmental Science & Envi	10.0	15
16	Similarity assessment of metallic nanoparticles within a risk assessment framework: A case study on metallic nanoparticles and lettuce. NanoImpact, 2022, 26, 100397.	4.5	6
17	Development of a Quasi–Quantitative Structure–Activity Relationship Model for Prediction of the Immobilization Response of <i>Daphnia magna</i> Exposed to Metalâ€Based Nanomaterials. Environmental Toxicology and Chemistry, 2022, 41, 1439-1450.	4.3	6
18	Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence. Journal of Environmental Management, 2022, 310, 114770.	7.8	5

#	Article	IF	Citations
19	Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight. Regulatory Toxicology and Pharmacology, 2022, 131, 105156.	2.7	3
20	UV/ozone induced physicochemical transformations of polystyrene nanoparticles and their aggregation tendency and kinetics with natural organic matter in aqueous systems. Journal of Hazardous Materials, 2022, 433, 128790.	12.4	18
21	Commonwealth of Soil Health: How Do Earthworms Modify the Soil Microbial Responses to CeO ₂ Nanoparticles?. Environmental Science & Environm	10.0	17
22	Microbiota-dependent TLR2 signaling reduces silver nanoparticle toxicity to zebrafish larvae. Ecotoxicology and Environmental Safety, 2022, 237, 113522.	6.0	4
23	Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. Chemosphere, 2022, 302, 134879.	8.2	7
24	Machine learning predicts ecological risks of nanoparticles to soil microbial communities. Environmental Pollution, 2022, 307, 119528.	7.5	10
25	Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Science of the Total Environment, 2022, 842, 156812.	8.0	17
26	Correlation analysis of single- and multigenerational endpoints in Daphnia magna toxicity tests: A case-study using TiO2 nanoparticles. Ecotoxicology and Environmental Safety, 2022, 241, 113792.	6.0	3
27	An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices. Nature Protocols, 2022, 17, 1926-1952.	12.0	9
28	Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. Journal of Environmental Sciences, 2021, 99, 1-9.	6.1	49
29	Dynamic release and transformation of metallic copper colloids in flooded paddy soil: Role of soil reducible sulfate and temperature. Journal of Hazardous Materials, 2021, 402, 123462.	12.4	8
30	Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. Environmental Pollution, 2021, 269, 116066.	7.5	17
31	The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. Water Research, 2021, 190, 116742.	11.3	69
32	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Science of the Total Environment, 2021, 757, 143807.	8.0	26
33	Prediction of the Joint Toxicity of Multiple Engineered Nanoparticles: The Integration of Classic Mixture Models and <i>In Silico</i> Methods. Chemical Research in Toxicology, 2021, 34, 176-178.	3.3	6
34	Method for extraction of nanoscale plastic debris from soil. Analytical Methods, 2021, 13, 1576-1583.	2.7	9
35	Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nature Communications, 2021, 12, 899.	12.8	38
36	Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. Aquatic Toxicology, 2021, 232, 105744.	4.0	7

#	Article	IF	CITATIONS
37	Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter. Water Research, 2021, 192, 116857.	11.3	34
38	Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. Science of the Total Environment, 2021, 773, 144895.	8.0	10
39	The stochastic association of nanoparticles with algae at the cellular level: Effects of NOM, particle size and particle shape. Ecotoxicology and Environmental Safety, 2021, 218, 112280.	6.0	7
40	Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach. NanoImpact, 2021, 23, 100342.	4.5	6
41	Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicology and Environmental Safety, 2021, 219, 112357.	6.0	15
42	Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms. Science of the Total Environment, 2021, 781, 146583.	8.0	6
43	The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
44	Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere, 2021, 276, 130015.	8.2	26
45	Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. Environmental Pollution, 2021, 284, 117154.	7.5	2
46	Particleâ€Specific Toxicity of Copper Nanoparticles to Soybean (<i>Glycine max</i> L.): Effects of Nanoparticle Concentration and Natural Organic Matter. Environmental Toxicology and Chemistry, 2021, 40, 2825-2835.	4.3	3
47	Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L Chemosphere, 2021, 280, 130863.	8.2	13
48	The analytical quest for sub-micron plastics in biological matrices. Nano Today, 2021, 41, 101296.	11.9	14
49	The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. Journal of Agricultural and Food Chemistry, 2021, 69, 12527-12540.	5.2	25
50	Development of a toxicokinetic-toxicodynamic model simulating chronic copper toxicity to the Zebra mussel based on subcellular fractionation. Aquatic Toxicology, 2021, 241, 106015.	4.0	4
51	Life cycle assessment of emerging technologies at the lab scale: The case of nanowireâ€based solar cells. Journal of Industrial Ecology, 2020, 24, 193-204.	5.5	34
52	Disentanglement of the chemical, physical, and biological processes aids the development of quantitative structure-biodegradation relationships for aerobic wastewater treatment. Science of the Total Environment, 2020, 708, 133863.	8.0	19
53	Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere, 2020, 239, 124731.	8.2	27
54	A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. Journal of Hazardous Materials, 2020, 384, 121429.	12.4	61

#	Article	IF	Citations
55	Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio. Chemosphere, 2020, 242, 125246.	8.2	6
56	Are Technological Developments Improving the Environmental Sustainability of Photovoltaic Electricity?. Energy Technology, 2020, 8, 1901064.	3.8	12
57	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
58	Interactions of CeO2 nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. Journal of Hazardous Materials, 2020, 386, 121973.	12.4	33
59	Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. Journal of Hazardous Materials, 2020, 386, 121975.	12.4	52
60	The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. Chemosphere, 2020, 245, 125612.	8.2	20
61	Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. Environmental Pollution, 2020, 258, 113727.	7.5	36
62	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. Nanotoxicology, 2020, 14, 310-325.	3.0	18
63	An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. Science of the Total Environment, 2020, 708, 135134.	8.0	18
64	Bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios. Ecotoxicology and Environmental Safety, 2020, 205, 111346.	6.0	6
65	Impact of CeO2 nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: Importance of surface functionalization and solution chemistry. Water Research, 2020, 186, 116324.	11.3	59
66	Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. Water Research, 2020, 186, 116410.	11.3	42
67	Environmental impacts of Ill–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Energy and Environmental Science, 2020, 13, 4280-4290.	30.8	18
68	Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 2020, 3, 929-937.	23.7	646
69	Ex ante life cycle assessment of GaAs/Si nanowire–based tandem solar cells: a benchmark for industrialization. International Journal of Life Cycle Assessment, 2020, 25, 1767-1782.	4.7	5
70	Environmental Risk Assessment (ERA) of the application of nanoscience and nanotechnology in the food and feed chain. EFSA Supporting Publications, 2020, 17, 1948E.	0.7	9
71	Rethinking Nanoâ€TiO ₂ Safety: Overview of Toxic Effects in Humans and Aquatic Animals. Small, 2020, 16, e2002019.	10.0	97
72	Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter. Water Research, 2020, 185, 116241.	11.3	36

#	Article	IF	CITATIONS
73	Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology, 2020, 14, 1399-1414.	3.0	12
74	Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations. Environmental Science: Nano, 2020, 7, 3372-3384.	4.3	18
75	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology, 2020, 3, 737.	4.4	66
76	A Method to Assess the Relevance of Nanomaterial Dissolution during Reactivity Testing. Materials, 2020, 13, 2235.	2.9	20
77	Coupling mixture reference models with DGT-perceived metal flux for deciphering the nonadditive effects of rare earth mixtures to wheat in soils. Environmental Research, 2020, 188, 109736.	7.5	3
78	Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environmental Science: Nano, 2020, 7, 2325-2336.	4.3	12
79	Oxidative stress actuated by cellulose nanocrystals and nanofibrils in aquatic organisms of different trophic levels. NanoImpact, 2020, 17, 100211.	4.5	18
80	Development of a quantitative structure-activity relationship model for mechanistic interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic matter. Science of the Total Environment, 2020, 712, 136450.	8.0	16
81	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials, 2020, 393, 122390.	12.4	13
82	Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal lon Saturation in Lysosome. Nanomaterials, 2020, 10, 311.	4.1	33
83	Elucidating Toxicodynamic Differences at the Molecular Scale between ZnO Nanoparticles and ZnCl ₂ in <i>Enchytraeus crypticus</i> via Nontargeted Metabolomics. Environmental Science & Envi	10.0	43
84	Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. Environmental Science & Environmental Science & 2379-2388.	10.0	14
85	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 2020, 7, 351-367.	4.3	59
86	Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, 2020, 261, 114117.	7.5	49
87	Implementation of Bioavailability in Prospective and Retrospective Risk Assessment of Chemicals in Soils and Sediments. Handbook of Environmental Chemistry, 2020, , 391-422.	0.4	4
88	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	5.2	238
89	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology, 2020, 14, 725-739.	3.0	14
90	Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms. Environmental Research, 2020, 186, 109554.	7.5	76

#	Article	IF	CITATIONS
91	Transition-state rate theory sheds light on †black-box' biodegradation algorithms. Green Chemistry, 2020, 22, 3558-3571.	9.0	7
92	The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. Chemosphere, 2020, 249, 126564.	8.2	30
93	Thermochemical unification of molecular descriptors to predict radical hydrogen abstraction with low computational cost. Physical Chemistry Chemical Physics, 2020, 22, 23215-23225.	2.8	4
94	Interaction of zero valent copper nanoparticles with algal cells under simulated natural conditions: Particle dissolution kinetics, uptake and heteroaggregation. Science of the Total Environment, 2019, 689, 133-140.	8.0	15
95	The dispersion, stability, and resuspension of C60 in environmental water matrices. Environmental Science and Pollution Research, 2019, 26, 25538-25549.	5.3	2
96	Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. Chemosphere, 2019, 235, 900-907.	8.2	26
97	Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. Water Research, 2019, 166, 115083.	11.3	53
98	Compositional and predicted functional dynamics of soil bacterial community in response to single pulse and repeated dosing of titanium dioxide nanoparticles. NanoImpact, 2019, 16, 100187.	4.5	6
99	Compositional alterations in soil bacterial communities exposed to TiO2 nanoparticles are not reflected in functional impacts. Environmental Research, 2019, 178, 108713.	7.5	22
100	Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. Environmental Pollution, 2019, 255, 113304.	7.5	30
101	Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters. Environmental Sciences: Processes and Impacts, 2019, 21, 155-162.	3.5	20
102	Systematic selection of a dose metric for metal-based nanoparticles. NanoImpact, 2019, 13, 70-75.	4.5	4
103	The effect of capping agents on the toxicity of silver nanoparticles to <i>Danio rerio</i> embryos. Nanotoxicology, 2019, 13, 1-13.	3.0	32
104	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	4.3	24
105	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science &	10.0	109
106	A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environmental Science: Nano, 2019, 6, 2049-2060.	4.3	22
107	The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum. Environmental Pollution, 2019, 250, 456-463.	7.5	19
108	Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. International Journal of Environmental Research and Public Health, 2019, 16, 906.	2.6	34

#	Article	IF	Citations
109	Interactive effects of rice straw biochar and \hat{I}^3 -Al2O3 on immobilization of Zn. Journal of Hazardous Materials, 2019, 373, 250-257.	12.4	30
110	Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. Environment International, 2019, 126, 268-278.	10.0	64
111	Development of a nano-QSPR model to predict band gaps of spherical metal oxide nanoparticles. RSC Advances, 2019, 9, 8426-8434.	3.6	9
112	Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. Chemosphere, 2019, 226, 841-850.	8.2	38
113	Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. International Journal of Environmental Research and Public Health, 2019, 16, 360.	2.6	20
114	The biodistribution and immuno-responses of differently shaped non-modified gold particles in zebrafish embryos. Nanotoxicology, 2019, 13, 558-571.	3.0	25
115	A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. Environmental Science and Technology Letters, 2019, 6, 732-738.	8.7	15
116	A DFT/TDDFT study on the mechanisms of direct and indirect photodegradation of tetrabromobisphenol A in water. Chemosphere, 2019, 220, 40-46.	8.2	9
117	Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. Science of the Total Environment, 2019, 660, 1283-1293.	8.0	46
118	Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. Environmental Science & Environm	10.0	44
119	Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environmental Science: Nano, 2018, 5, 904-916.	4.3	86
120	Investigation of Rhizospheric Microbial Communities in Wheat, Barley, and Two Rice Varieties at the Seedling Stage. Journal of Agricultural and Food Chemistry, 2018, 66, 2645-2653.	5.2	60
121	Towards Nanowire Tandem Junction Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2018, 8, 733-740.	2.5	53
122	Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology, 2018, 12, 423-438.	3.0	64
123	Directions in QPPR development to complement the predictive models used in risk assessment of nanomaterials. NanoImpact, 2018, $11,58-66$.	4.5	18
124	Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. Journal of Cleaner Production, 2018, 178, 494-506.	9.3	23
125	Impact of water chemistry on the behavior and fate of copper nanoparticles. Environmental Pollution, 2018, 234, 684-691.	7. 5	36
126	Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Science of the Total Environment, 2018, 625, 1021-1029.	8.0	99

#	Article	IF	CITATIONS
127	Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. Environmental Toxicology and Chemistry, 2018, 37, 1024-1031.	4.3	6
128	Trophic transfer of Cd from duckweed (<i>Lemna minor</i> L.) to tilapia (<i>Oreochromis) Tj ETQq0 0 0 rgBT /O</i>	verlock 10 4.3) Tf ₁ 50 702 Td
129	Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution, 2018, 239, 689-697.	7.5	104
130	Impact of informal electronic waste recycling on metal concentrations in soils and dusts. Environmental Research, 2018, 164, 385-394.	7.5	42
131	Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. Injury Prevention, 2018, 24, 185-192.	2.4	33
132	Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Food and Chemical Toxicology, 2018, 112, 563-570.	3 . 6	30
133	The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environmental Pollution, 2018, 232, 212-219.	7.5	78
134	Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. Science of the Total Environment, 2018, 610-611, 1329-1335.	8.0	30
135	Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environmental Pollution, 2018, 233, 633-641.	7.5	57
136	Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food and Chemical Toxicology, 2018, 112, 507-517.	3.6	42
137	Silicon nanoparticles: characterization and toxicity studies. Environmental Science: Nano, 2018, 5, 2945-2951.	4.3	9
138	Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation. Ecotoxicology and Environmental Safety, 2018, 166, 63-70.	6.0	11
139	Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. Environmental Science: Nano, 2018, 5, 2473-2481.	4.3	19
140	Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O ^{•â^²} /HO ₂ ^{•/sup>). Free Radical Research, 2018, 52, 1118-1131.}	3.3	19
141	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 2955-2971.	4.3	62
142	DFT/TDDFT insights into effects of dissociation and metal complexation on photochemical behavior of enrofloxacin in water. Environmental Science and Pollution Research, 2018, 25, 30609-30616.	5. 3	10
143	Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Environmental Pollution, 2018, 243, 364-373.	7.5	17
144	Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metalsâ´contaminated soil after washing with biodegradable chelators. Journal of Cleaner Production, 2018, 197, 479-490.	9.3	44

#	Article	IF	CITATIONS
145	Multiscale Coupling Strategy for Nano Ecotoxicology Prediction. Environmental Science & Emp; Technology, 2018, 52, 7598-7600.	10.0	8
146	Best Paper Award. Environmental Toxicology and Chemistry, 2018, 37, 1783-1785.	4.3	0
147	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. Sustainability, 2018, 10, 689.	3.2	25
148	Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of the Total Environment, 2018, 644, 1070-1079.	8.0	80
149	Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. Journal of Hazardous Materials, 2018, 358, 216-221.	12.4	19
150	PW 0451 $\hat{a}\in$ Injuries and health risks awareness of electronic waste workers in the informal sector in nigeria. , 2018, , .		0
151	Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals. Environmental Sciences: Processes and Impacts, 2017, 19, 350-356.	3.5	38
152	Modelling toxicity of metal mixtures: A generalisation of new advanced methods, considering potential application to terrestrial ecosystems. Critical Reviews in Environmental Science and Technology, 2017, 47, 409-454.	12.8	11
153	Toxicity models of metal mixtures established on the basis of "additivity―and "interactions― Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	12
154	Quantitative structure-activity relationships for green algae growth inhibition by polymer particles. Chemosphere, 2017, 179, 49-56.	8.2	26
155	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (<i>Danio rerio</i>) embryogenesis. Nanotoxicology, 2017, 11, 87-97.	3.0	61
156	Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 30
157	Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. Water Research, 2017, 127, 59-67.	11.3	28
158	Considerations for Safe Innovation: The Case of Graphene. ACS Nano, 2017, 11, 9574-9593.	14.6	94
159	Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids. Chemosphere, 2017, 185, 681-689.	8.2	27
160	Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquatic Toxicology, 2017, 191, 105-112.	4.0	13
161	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nature Nanotechnology, 2017, 12, 727-733.	31.5	78
162	Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Ecotoxicology and Environmental Safety, 2017, 145, 349-358.	6.0	38

#	Article	IF	Citations
163	Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 2017, 190, 40-45.	4.0	173
164	Pathways of root uptake and membrane transport of Cd ²⁺ in the zinc/cadmium hyperaccumulating plant <i>Sedum plumbizincicola</i> 2017, 36, 1038-1046.	4.3	46
165	Determining the fluxes of ions (Pb2+, Cu2+ and Cd2+) at the root surface of wetland plants using the scanning ion-selective electrode technique. Plant and Soil, 2017, 414, 1-12.	3.7	32
166	Influence of bacterial extracellular polymeric substances on the sorption of Zn on \hat{I}^3 -alumina: A combination of FTIR and EXAFS studies. Environmental Pollution, 2017, 220, 997-1004.	7.5	10
167	A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. Materials, 2017, 10, 1013.	2.9	18
168	Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria. International Journal of Environmental Research and Public Health, 2017, 14, 911.	2.6	56
169	Environmental Risk Assessment Strategy for Nanomaterials. International Journal of Environmental Research and Public Health, 2017, 14, 1251.	2.6	33
170	A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. International Journal of Environmental Research and Public Health, 2017, 14, 1348.	2.6	12
171	Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. International Journal of Molecular Sciences, 2017, 18, 1504.	4.1	26
172	Aqueous-phase photooxygenation of enes, amines, sulfides and polycyclic aromatics by singlet (a1Δg) oxygen: prediction of rate constants using orbital energies, substituent factors and quantitative structure–property relationships. Environmental Chemistry, 2017, 14, 442.	1.5	13
173	Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro. Frontiers in Microbiology, 2016, 7, 1123.	3.5	58
174	383 Incidence and injury patterns among electronic waste workers in informal sector in Ibadan, Nigeria. Injury Prevention, 2016, 22, A140.2-A140.	2.4	0
175	Shape engineered TiO ₂ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	3.6	14
176	Development of nanostructure–activity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making. RSC Advances, 2016, 6, 52227-52235.	3.6	31
177	Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design. Environmental Science & Experimental Science & Scienc	10.0	46
178	Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Science of the Total Environment, 2016, 563-564, 81-88.	8.0	40
179	Prediction of joint algal toxicity of nano-CeO $_2$ /nano-TiO $_2$ and florfenicol: Independent action surpasses concentration addition. Chemosphere, 2016, 156, 8-13.	8.2	33
180	How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale, 2016, 8, 9919-9943.	5.6	86

#	Article	IF	CITATIONS
181	Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 2016, 95, 36-53.	10.0	97
182	Regulatory ecotoxicity testing of nanomaterials $\hat{a} \in \text{``}$ proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology, 2016, 10, 1442-1447.	3.0	103
183	Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry. Ecotoxicology, 2016, 25, 1170-1180.	2.4	8
184	Dose metrics assessment for differently shaped and sized metalâ€based nanoparticles. Environmental Toxicology and Chemistry, 2016, 35, 2466-2473.	4.3	10
185	TiO 2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio) Tj ETQq1	l 0.784314 4.5	4_rgBT /Ove
186	The way forward for risk assessment of nanomaterials in solid media. Environmental Pollution, 2016, 218, 1363-1364.	7.5	9
187	Simple <i>in vitro</i> models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology, 2016, 10, 770-779.	3.0	31
188	Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environmental Science: Nano, 2016, 3, 323-345.	4.3	98
189	Fate assessment of engineered nanoparticles in solids dominated media $\hat{a} \in \text{``Current insights and the way forward. Environmental Pollution, 2016, 218, 1365-1369.}$	7. 5	53
190	The effect of pesticides on the composition of aquatic macrofauna communities in field ditches. Basic and Applied Ecology, 2016, 17, 125-133.	2.7	17
191	Bioaccumulation of Polybrominated Diphenyl Ethers by Tubifex Tubifex. Acta Chimica Slovenica, 2016, 63, 678-687.	0.6	1
192	Summary and Analysis of the Currently Existing Literature Data on Metal-based Nanoparticles Published for Selected Aquatic Organisms: Applicability for Toxicity Prediction by (Q)SARs. ATLA Alternatives To Laboratory Animals, 2015, 43, 221-240.	1.0	27
193	Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health, 2015, 12, 13415-13434.	2.6	122
194	The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health, 2015, 12, 15007-15021.	2.6	46
195	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Critical Reviews in Environmental Science and Technology, 2015, 45, 2084-2134.	12.8	172
196	Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils. Environmental Science and Pollution Research, 2015, 22, 5283-5292.	5.3	7
197	Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone oated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry, 2015, 34, 1239-1245.	4.3	43
198	A practical approach to determine dose metrics for nanomaterials. Environmental Toxicology and Chemistry, 2015, 34, 1015-1022.	4.3	36

#	Article	IF	Citations
199	Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environmental Science and Pollution Research, 2015, 22, 7405-7421.	5.3	58
200	Silver sulfide nanoparticles (Ag ₂ S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 2015, 9, 1041-1049.	3.0	96
201	Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?. Ecotoxicology and Environmental Safety, 2015, 122, 37-44.	6.0	16
202	A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 2015, 139, 181-189.	8.2	78
203	Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica. Chemosphere, 2015, 135, 123-128.	8.2	23
204	A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicology and Environmental Safety, 2015, 119, 66-73.	6.0	48
205	Toxicity and Accumulation of Cu and ZnO Nanoparticles in <i>Daphnia magna</i> . Environmental Science &	10.0	148
206	Comparative toxicity of copper nanoparticles across three Lemnaceae species. Science of the Total Environment, 2015, 518-519, 217-224.	8.0	42
207	Assessing toxicity of copper nanoparticles across five cladoceran species. Environmental Toxicology and Chemistry, 2015, 34, 1863-1869.	4.3	25
208	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F tox approach. Environmental Science and Pollution Research, 2015, 22, 19213-19223.	5.3	20
209	From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science & Emp; Technology, 2015, 49, 10255-10264.	10.0	171
210	A tiered approach for environmental impact assessment of chemicals and their alternatives within the context of socio-economic analyses. Journal of Cleaner Production, 2015, 108, 955-964.	9.3	9
211	Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthwormEisenia fetida. Nanotoxicology, 2015, 9, 792-801.	3.0	46
212	The Application of QSAR Approaches to Nanoparticles. ATLA Alternatives To Laboratory Animals, 2014, 42, 43-50.	1.0	8
213	The QSPR-THESAURUS: The Online Platform of the CADASTER Project. ATLA Alternatives To Laboratory Animals, 2014, 42, 13-24.	1.0	10
214	Experimental and Theoretical Studies in the EU FP7 Marie Curie Initial Training Network Project, Environmental ChemOinformatics (ECO). ATLA Alternatives To Laboratory Animals, 2014, 42, 7-11.	1.0	3
215	Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagnetic Biology and Medicine, 2014, 33, 21-28.	1.4	23
216	44th IUPAC Congress: Environmental Chemistry. Pure and Applied Chemistry, 2014, 86, 1083-1084.	1.9	0

#	Article	IF	Citations
217	Delineating ionâ€ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce <i>Lactuca sativa</i> . Environmental Toxicology and Chemistry, 2014, 33, 1988-1995.	4.3	8
218	Theoretical investigations on C ₆₀ –ionic liquid interactions and their impacts on C ₆₀ dispersion behavior. Environmental Toxicology and Chemistry, 2014, 33, 1802-1808.	4.3	12
219	Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. Environmental Research, 2014, 133, 220-231.	7.5	16
220	Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression. Environmental Toxicology and Chemistry, 2014, 33, 2688-2693.	4.3	9
221	Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species?. Ecotoxicology, 2014, 23, 21-32.	2.4	21
222	Impacts of major cations (K+, Na+, Ca2+, Mg2+) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models. Ecotoxicology, 2014, 23, 385-395.	2.4	23
223	Modeling cadmium and nickel toxicity to earthworms with the free ion approach. Environmental Toxicology and Chemistry, 2014, 33, 438-446.	4.3	4
224	Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 2014, 188, 144-152.	7. 5	90
225	Toxicity of differentâ€sized copper nano―and submicron particles and their shed copper ions to zebrafish embryos. Environmental Toxicology and Chemistry, 2014, 33, 1774-1782.	4.3	69
226	Particleâ€specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (<i>Danio rerio</i>). Environmental Toxicology and Chemistry, 2014, 33, 2859-2868.	4.3	94
227	Passive sampling methods for contaminated sediments: State of the science for metals. Integrated Environmental Assessment and Management, 2014, 10, 179-196.	2.9	59
228	Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields. Environmental Pollution, 2014, 192, 196-203.	7.5	16
229	Impact of imidacloprid on <i>Daphnia magna</i> under different food quality regimes. Environmental Toxicology and Chemistry, 2014, 33, 621-631.	4.3	39
230	A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. Journal of Cleaner Production, 2014, 78, 152-163.	9.3	19
231	Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce (Lactuca sativa L.). Chemosphere, 2014, 112, 282-288.	8.2	26
232	Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 2014, 8, 383-393.	3.0	91
233	Substance-related environmental monitoring strategies regarding soil, groundwater and surface water $\hat{a} \in$ an overview. Environmental Science and Pollution Research, 2013, 20, 2810-2827.	5.3	10
234	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	2.7	139

#	Article	IF	CITATIONS
235	A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 2013, 51, 116-140.	10.0	121
236	Modeling toxicity of binary metal mixtures (Cu ²⁺ –Ag ⁺ ,) Tj ETQq0 0 0 rgBT /Overlock Environmental Toxicology and Chemistry, 2013, 32, 137-143.	10 Tf 50 7 4.3	707 Td (Cu< 38
237	Possibilities of implementation of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework. Journal of Hazardous Materials, 2013, 261, 833-839.	12.4	39
238	Modelling metal–metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+–Zn2+ and Cu2+–Ag+). Environmental Pollution, 2013, 176, 185-192.	7. 5	31
239	Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis. Science of the Total Environment, 2013, 456-457, 307-316.	8.0	37
240	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. Soil Biology and Biochemistry, 2013, 57, 720-730.	8.8	21
241	Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. Journal of Hazardous Materials, 2013, 261, 854-862.	12.4	40
242	Predicting Copper Toxicity to Different Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Earthworm Species Using Earthworm S	10.0	34
243	Physicochemical Properties and Aquatic Toxicity of Poly- and Perfluorinated Compounds. Critical Reviews in Environmental Science and Technology, 2013, 43, 598-678.	12.8	172
244	Modeling Toxicity of Mixtures of Perfluorooctanoic Acid and Triazoles (Triadimefon and) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf ! 10.0	50 387 Td (F 9
245	Predictive models for estimating the vapor pressure of poly- and perfluorinated compounds at different temperatures. Atmospheric Environment, 2013, 75, 147-152.	4.1	9
246	Arguments for considering Uncertainty in QSAR Predictions in Hazard and Risk Assessments. ATLA Alternatives To Laboratory Animals, 2013, 41, 91-110.	1.0	10
247	Read-across Estimates of Aquatic Toxicity for Selected Fragrances. ATLA Alternatives To Laboratory Animals, 2013, 41, 77-90.	1.0	11
248	Experimental Assessment of the Environmental Fate and Effects of Triazoles and Benzotriazole. ATLA Alternatives To Laboratory Animals, 2013, 41, 65-75.	1.0	32
249	Evaluation of CADASTER QSAR Models for the Aquatic Toxicity of (Benzo)triazoles and Prioritisation by Consensus Prediction. ATLA Alternatives To Laboratory Animals, 2013, 41, 49-64.	1.0	18
250	Exemplification of the Implementation of Alternatives to Experimental Testing in Chemical Risk Assessment â€" Case Studies from the CADASTER Project. ATLA Alternatives To Laboratory Animals, 2013, 41, 13-17.	1.0	2
251	Prioritisation of Polybrominated Diphenyl Ethers (PBDEs) by Using the QSPR-THESAURUS Web Tool. ATLA Alternatives To Laboratory Animals, 2013, 41, 127-135.	1.0	10
252	Development of an electrostatic model predicting copper toxicity to plants. Journal of Experimental Botany, 2012, 63, 659-668.	4.8	29

#	Article	IF	Citations
253	Evaluation of Exposure Metrics for Effect Assessment of Soil Invertebrates. Critical Reviews in Environmental Science and Technology, 2012, 42, 1862-1893.	12.8	50
254	Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and Environmental Safety, 2012, 75, 1-7.	6.0	78
255	Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotoxicology and Environmental Safety, 2012, 80, 273-279.	6.0	32
256	Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. Environmental Toxicology and Chemistry, 2012, 31, 2408-2413.	4.3	89
257	Extraction and Fractionation Methods for Exposure Assessment of Trace Metals, Metalloids, and Hazardous Organic Compounds in Terrestrial Environments. Critical Reviews in Environmental Science and Technology, 2012, 42, 1117-1171.	12.8	64
258	Facilitated Transport of Copper with Hydroxyapatite Nanoparticles in Saturated Sand. Soil Science Society of America Journal, 2012, 76, 375-388.	2.2	39
259	Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environmental Toxicology and Chemistry, 2012, 31, 1019-1022.	4.3	141
260	PBT assessment using the revised annex XIII of REACH: A comparison with other regulatory frameworks. Integrated Environmental Assessment and Management, 2012, 8, 359-371.	2.9	58
261	Acute toxicity of poly―and perfluorinated compounds to two cladocerans, <i>Daphnia magna</i> and <i>Chydorus sphaericus</i> . Environmental Toxicology and Chemistry, 2012, 31, 605-610.	4.3	35
262	Predicting effects of cations on copper toxicity to lettuce (<i>Lactuca sativa</i>) by the biotic ligand model. Environmental Toxicology and Chemistry, 2012, 31, 355-359.	4.3	45
263	Toxicity of Polyfluorinated and Perfluorinated Compounds to Lettuce (Lactuca sativa) and Green Algae (Pseudokirchneriella subcapitata). Archives of Environmental Contamination and Toxicology, 2012, 62, 49-55.	4.1	29
264	Smart Nanotoxicity Testing for Biodiversity Conservation. Environmental Science & Environmental Scienc	10.0	2
265	A QICAR approach for quantifying binding constants for metal–ligand complexes. Ecotoxicology and Environmental Safety, 2011, 74, 1036-1042.	6.0	27
266	Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environment International, 2011, 37, 1098-1104.	10.0	115
267	C60-DOM interactions and effects on C60 apparent solubility: A molecular mechanics and density functional theory study. Environment International, 2011, 37, 1078-1082.	10.0	38
268	Guest Editorial. Environment International, 2011, 37, 1043.	10.0	0
269	Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Research, 2011, 45, 5905-5915.	11.3	109
270	Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.	7.3	23

#	Article	IF	Citations
271	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere, 2011, 82, 268-277.	8.2	31
272	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. International Journal of Life Cycle Assessment, 2011, 16, 774.	4.7	48
273	Response predictions for organisms waterâ€exposed to metal mixtures: A metaâ€analysis. Environmental Toxicology and Chemistry, 2011, 30, 1482-1487.	4.3	103
274	Calcium and magnesium enhance arsenate rhizotoxicity and uptake in <i>Triticum aestivum</i> Environmental Toxicology and Chemistry, 2011, 30, 1642-1648.	4.3	9
275	Interactions of cadmium and zinc impact their toxicity to the earthworm <i>Aporrectodea caliginosa</i> . Environmental Toxicology and Chemistry, 2011, 30, 2084-2093.	4.3	33
276	Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. Journal of Colloid and Interface Science, 2011, 360, 398-407.	9.4	54
277	Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiology, 2011, 155, 808-820.	4.8	85
278	Bioavalibility in Soils. , 2011, , 721-746.		8
279	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
280	Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant and Soil, 2010, 334, 277-288.	3.7	30
281	Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 2010, 42, 1045-1050.	8.8	18
282	Toxicological Mixture Models are Based on Inadequate Assumptions. Environmental Science & Emp; Technology, 2010, 44, 4841-4842.	10.0	49
283	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Environmental Science & 2010, 44, 5195-5201.	10.0	71
284	Kinetics of Cadmium Uptake and Subcellular Partitioning in the Earthworm Eisenia fetida Exposed to Cadmium-Contaminated Soil. Archives of Environmental Contamination and Toxicology, 2009, 57, 718-724.	4.1	33
285	The reference-matrix concept applied to chemical testing of soils. TrAC - Trends in Analytical Chemistry, 2009, 28, 51-63.	11.4	8
286	Effect of cation competition on cadmium uptake from solution by the earthworm <i>Eisenia Fetida</i> Environmental Toxicology and Chemistry, 2009, 28, 1732-1738.	4.3	15
287	Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009, 3, 109-138.	3.0	1,100
288	Earthworms and Their Use in Eco(toxico)logical Modeling. Emerging Topics in Ecotoxicology, 2009, , 177-204.	1.5	10

#	Article	IF	Citations
289	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environmental Toxicology and Chemistry, 2008, 27, 1284-1292.	4.3	60
290	UNCERTAINTY OF WATER TYPE–SPECIFIC HAZARDOUS COPPER CONCENTRATIONS DERIVED WITH BIOTIC LIGAND MODELS. Environmental Toxicology and Chemistry, 2008, 27, 2311.	4.3	12
291	Comparison of Subcellular Partitioning, Distribution, and Internal Speciation of Cu between Cu-Tolerant and Nail`ve Populations of <i>Dendrodrilus rubidus</i> Savigny. Environmental Science & Environm	10.0	14
292	Metal-specific interactions at the interface of chemistry and biology. Pure and Applied Chemistry, 2007, 79, 2351-2366.	1.9	24
293	Transport, Accumulation and Transformation Processes. , 2007, , 73-158.		22
294	Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 2007, 67, 163-179.	6.0	277
295	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environmental Pollution, 2007, 146, 428-436.	7. 5	43
296	Impact of pH on Cu Accumulation Kinetics in Earthworm Cytosol. Environmental Science & Eamp; Technology, 2007, 41, 2255-2260.	10.0	22
297	Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicology and Environmental Safety, 2006, 63, 204-215.	6.0	287
298	Accumulation ofÂheavy metals byÂenchytraeids andÂearthworms inÂaÂfloodplain. European Journal of Soil Biology, 2006, 42, S117-S126.	3.2	13
299	BIOLOGICAL SIGNIFICANCE OF METALS PARTITIONED TO SUBCELLULAR FRACTIONS WITHIN EARTHWORMS (APORRECTODEA CALIGINOSA). Environmental Toxicology and Chemistry, 2006, 25, 807.	4.3	91
300	Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biology and Biochemistry, 2006, 38, 1788-1796.	8.8	29
301	Soil Type–Specific Environmental Quality Standards for Zinc in Dutch Soil. Integrated Environmental Assessment and Management, 2005, 1, 252.	2.9	6
302	External validation of EPIWIN biodegradation models. SAR and QSAR in Environmental Research, 2005, 16, 135-148.	2.2	24
303	Short-term ecological risks of depositing contaminated sediment on arable soil. Ecotoxicology and Environmental Safety, 2005, 60, 1-14.	6.0	10
304	Development of a Biotic Ligand Model and a Regression Model Predicting Acute Copper Toxicity to the EarthwormAporrectodea caliginosa. Environmental Science & EarthwormAporrectodea caliginosa. Environmental Science & EarthwormAporrectodea caliginosa.	10.0	114
305	An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere, 2005, 59, 511-524.	8.2	441
306	Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environmental Pollution, 2005, 133, 103-116.	7.5	53

#	Article	lF	Citations
307	Chapter 9 Fate of contaminants in soil. Developments in Soil Science, 2004, 29, 245-280.	0.5	1
308	Internal Metal Sequestration and Its Ecotoxicological Relevance:Â A Review. Environmental Science & Environmental & En	10.0	374
309	Availability of polycyclic aromatic hydrocarbons to earthworms (<i>Eisenia andrei</i> , Oligochaeta) in fieldâ€polluted soils and soilâ€sediment mixtures. Environmental Toxicology and Chemistry, 2003, 22, 767-775.	4.3	36
310	The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. Chemosphere, 2003, 52, 1153-1162.	8.2	19
311	Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 2003, 54, 277-289.	6.0	79
312	Underlying issues including approaches and information needs in risk assessment. Ecotoxicology and Environmental Safety, 2003, 56, 6-19.	6.0	31
313	Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety, 2003, 56, 63-77.	6.0	288
314	Feeding behaviour of Eisenia andrei in two different field contaminated soils. Pedobiologia, 2003, 47, 670-675.	1.2	2
315	Minimum requirements for reporting analytical data for environmental samples (IUPAC Technical) Tj ETQq $1\ 1\ 0.7$	84314 rgl	BT /Overlock
316	AVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS TO EARTHWORMS (EISENIA ANDREI,) Tj ETQq0 0 0 r Chemistry, 2003, 22, 767.	gBT /Over 4.3	lock 10 Tf 50
317	Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Environmental Toxicology and Chemistry, 2003, 22, 767-75.	4.3	27
318	Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 2002, 28, 401-410.	10.0	132
319	Implementation of bioavailability in standard setting and risk assessment?. Journal of Soils and Sediments, 2002, 2, 169-173.	3.0	22
320	Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 2001, 113, 385-393.	7.5	249
321	Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight?. Environmental Pollution, 2001, 114, 137-143.	7.5	53
322	Quantitative structure–property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere, 2001, 42, 263-270.	8.2	41
323	Quantitative structure–property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemosphere, 2001, 43, 235-241.	8.2	35
324	Quantitative structure–property relationship study on reductive dehalogenation of selected halogenated aliphatic hydrocarbons in sediment slurries. Chemosphere, 2001, 44, 1557-1563.	8.2	15

#	Article	IF	CITATIONS
325	Quantitative structure–property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Science of the Total Environment, 2001, 269, 163-170.	8.0	24
326	Novel Model Describing Trace Metal Concentrations in the Earthworm, Eisenia andrei. Environmental Science & Earthworm, Technology, 2001, 35, 4522-4529.	10.0	102
327	Editorial: JSS â€" J Soils & Sediments. Journal of Soils and Sediments, 2001, 1, 1-1.	3.0	35
328	Impact of metal pools and soil properties on metal accumulation in <i>Folsomia candida</i> (Collembola). Environmental Toxicology and Chemistry, 2001, 20, 712-720.	4.3	45
329	Structure–specificity relationships for haloalkane dehalogenases. Environmental Toxicology and Chemistry, 2001, 20, 2681-2689.	4.3	44
330	Modeling lifetime and degradability of organic compounds in air, soil, and water systems (IUPAC) Tj ETQq0 0 0 rgE	3T./Overloo	ck 10 Tf 50
331	IMPACT OF METAL POOLS AND SOIL PROPERTIES ON METAL ACCUMULATION IN FOLSOMIA CANDIDA (COLLEMBOLA). Environmental Toxicology and Chemistry, 2001, 20, 712.	4.3	31
332	STRUCTURE–SPECIFICITY RELATIONSHIPS FOR HALOALKANE DEHALOGENASES. Environmental Toxicology and Chemistry, 2001, 20, 2681.	4.3	5
333	Quantification of Metal Bioavailability for Lettuce (Lactuca sativa L.) in Field Soils. Archives of Environmental Contamination and Toxicology, 2000, 39, 420-430.	4.1	106
334	The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere, 2000, 40, 1319-1326.	8.2	14
335	Quantitative structure–property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science of the Total Environment, 2000, 246, 11-20.	8.0	34
336	Prediction of biodegradability from chemical structure: Modeling of ready biodegradation test data. Environmental Toxicology and Chemistry, 1999, 18, 1763-1768.	4.3	81
337	Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere, 1999, 38, 1409-1417.	8.2	41
338	The IUPAC symposium "degradation processes in the environment―24–28 May 1998, Dubrovnik (Cavtat), Croatia. Chemosphere, 1999, 38, xi-xii.	8.2	0
339	Photokinetics of Azaarenes and Toxicity of Phototransformation Products to the Marine DiatomPhaeodactylum tricornutum. Environmental Science & Environ	10.0	16
340	Prediction of Metal Bioavailability in Dutch Field Soils for the Oligochaete Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 1999, 43, 170-186.	6.0	105
341	Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 1999, 44, 294-310.	6.0	163
342	Structural requirements for anaerobic biodegradation of organic chemicals: A fragment model analysis. Environmental Toxicology and Chemistry, 1998, 17, 1943-1950.	4.3	17

#	Article	IF	Citations
343	The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. Environmental Science and Pollution Research, 1998, 5, 12-16.	5.3	17
344	Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 36, 2833-2853.	8.2	21
345	The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 37, 1169-1186.	8.2	34
346	Added Risk Approach to Derive Maximum Permissible Concentrations for Heavy Metals: How to Take Natural Background Levels into Account. Ecotoxicology and Environmental Safety, 1997, 37, 112-118.	6.0	59
347	A Conceptual Framework for Implementation of Bioavailability of Metals for Environmental Management Purposes. Ecotoxicology and Environmental Safety, 1997, 37, 163-172.	6.0	167
348	Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches. Environmental Science and Pollution Research, 1997, 4, 47-54.	5.3	6
349	Equilibrium partitioning of heavy metals in dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environmental Toxicology and Chemistry, 1997, 16, 2470-2478.	4.3	167
350	Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. Environmental Toxicology and Chemistry, 1997, 16, 2479-2488.	4.3	125
351	Predicting Soilâ^'Water Partition Coefficients for Cadmium. Environmental Science & Environmental Scie	10.0	147
352	On the Usefulness and Reliability of Existing QSBRs for Risk Assessment and Priority Setting. SAR and QSAR in Environmental Research, 1996, 5, 1-16.	2.2	25
353	QSARs for oxidation of phenols in the aqueous environment, suitable for risk assessment. Journal of Chemometrics, 1996, 10, 79-93.	1.3	21
354	Multivariate QSAR modelling of the rate of reductive dehalogenation of haloalkanes. Journal of Chemometrics, 1996, 10, 483-492.	1.3	11
355	Assessment of QSARS for Predicting Fate and Effects of Chemicals in the Environment: An International European Project. SAR and QSAR in Environmental Research, 1995, 3, 223-236.	2.2	40
356	On the Use of Backpropagation Neural Networks in Modeling Environmental Degradation. SAR and QSAR in Environmental Research, 1995, 4, 219-235.	2.2	8
357	Modeling Reductive Dehalogenation with Quantum Chemically Derived Descriptors. SAR and QSAR in Environmental Research, 1995, 4, 237-252.	2.2	14
358	Structure-activity relationships for biodegradation: A critical review. Pure and Applied Chemistry, 1994, 66, 1931-1941.	1.9	42
359	Kinetics, products, mechanisms and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. Environmental Toxicology and Chemistry, 1993, 12, 1149-1161.	4.3	14
360	A quantitative structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water. Chemosphere, 1993, 26, 837-849.	8.2	21

#	Article	IF	CITATIONS
361	The development of quantitative structure activity relationships for the direct photolysis of substituted haloaromatics in aqueous environments. Science of the Total Environment, 1993, 134, 1397-1408.	8.0	6
362	Initial assessment of the hazards and risks of new chemicals to man and the environment. Science of the Total Environment, 1993, 134, 1597-1615.	8.0	4
363	Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. Environmental Science & Environmental Scie	10.0	44
364	Reductive transformations of halogenated aromatic hydrocarbons in anaerobic waterâ€sediment systems: Kinetics, mechanisms and products. Environmental Toxicology and Chemistry, 1992, 11, 289-300.	4.3	29
365	QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems. Environmental Toxicology and Chemistry, 1992, 11, 301-314.	4.3	51
366	QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems. Science of the Total Environment, 1991, 109-110, 283-300.	8.0	12
367	The use of quantitative structure-activity relationships for predicting rates of environmental hydrolysis processes. Pure and Applied Chemistry, 1991, 63, 1667-1676.	1.9	14
368	Quantumchemical calculations on the photochemistry of germacrene and germacrol. The exclusive role of the exocyclic double bond isomerization. Tetrahedron, 1988, 44, 2339-2350.	1.9	6
369	An experimental study on the mechanism and stereochemistry of a photochemical [1,3]-oh shift. A non-woodward and hoffmann reaction path for photochemic. Tetrahedron, 1988, 44, 4821-4836.	1.9	3
370	The effects of substituents and solvent polarity on photochemical [1,3] sigmatropic shifts. Experimental evidence in favour of the occurrence of sudden. Tetrahedron, 1988, 44, 4927-4940.	1.9	8
371	A non-Woodward and Hoffmann reaction path for photochemical sigmatropic rearrangements. Computational and Theoretical Chemistry, 1985, 119, 367-378.	1.5	7