Willie Peijnenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597815/publications.pdf Version: 2024-02-01

WILLIE DELINENBLIDG

#	Article	IF	CITATIONS
1	Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009, 3, 109-138.	3.0	1,100
2	Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 2020, 3, 929-937.	23.7	646
3	An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere, 2005, 59, 511-524.	8.2	441
4	Internal Metal Sequestration and Its Ecotoxicological Relevance:Â A Review. Environmental Science & Technology, 2004, 38, 4705-4712.	10.0	374
5	Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety, 2003, 56, 63-77.	6.0	288
6	Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicology and Environmental Safety, 2006, 63, 204-215.	6.0	287
7	Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 2007, 67, 163-179.	6.0	277
8	Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 2001, 113, 385-393.	7.5	249
9	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	5.2	238
10	Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 2017, 190, 40-45.	4.0	173
11	Physicochemical Properties and Aquatic Toxicity of Poly- and Perfluorinated Compounds. Critical Reviews in Environmental Science and Technology, 2013, 43, 598-678.	12.8	172
12	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Critical Reviews in Environmental Science and Technology, 2015, 45, 2084-2134.	12.8	172
13	From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science & Technology, 2015, 49, 10255-10264.	10.0	171
14	A Conceptual Framework for Implementation of Bioavailability of Metals for Environmental Management Purposes. Ecotoxicology and Environmental Safety, 1997, 37, 163-172.	6.0	167
15	Equilibrium partitioning of heavy metals in dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environmental Toxicology and Chemistry, 1997, 16, 2470-2478.	4.3	167
16	Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 1999, 44, 294-310.	6.0	163
17	Toxicity and Accumulation of Cu and ZnO Nanoparticles in <i>Daphnia magna</i> . Environmental Science & Technology, 2015, 49, 4657-4664.	10.0	148
18	Predicting Soilâ `Water Partition Coefficients for Cadmium. Environmental Science & Technology, 1996, 30, 3418-3424.	10.0	147

#	Article	IF	CITATIONS
19	Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environmental Toxicology and Chemistry, 2012, 31, 1019-1022.	4.3	141
20	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	2.7	139
21	Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International, 2002, 28, 401-410.	10.0	132
22	Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. Environmental Toxicology and Chemistry, 1997, 16, 2479-2488.	4.3	125
23	Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 2022, 17, 424-431.	31.5	124
24	Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health, 2015, 12, 13415-13434.	2.6	122
25	A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 2013, 51, 116-140.	10.0	121
26	Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environment International, 2011, 37, 1098-1104.	10.0	115
27	Development of a Biotic Ligand Model and a Regression Model Predicting Acute Copper Toxicity to the EarthwormAporrectodea caliginosa. Environmental Science & Technology, 2005, 39, 5694-5702.	10.0	114
28	Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Research, 2011, 45, 5905-5915.	11.3	109
29	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science & Technology, 2019, 53, 7265-7287.	10.0	109
30	Quantification of Metal Bioavailability for Lettuce (Lactuca sativa L.) in Field Soils. Archives of Environmental Contamination and Toxicology, 2000, 39, 420-430.	4.1	106
31	Prediction of Metal Bioavailability in Dutch Field Soils for the Oligochaete Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 1999, 43, 170-186.	6.0	105
32	Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution, 2018, 239, 689-697.	7.5	104
33	Response predictions for organisms waterâ€exposed to metal mixtures: A metaâ€enalysis. Environmental Toxicology and Chemistry, 2011, 30, 1482-1487.	4.3	103
34	Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology, 2016, 10, 1442-1447.	3.0	103
35	Novel Model Describing Trace Metal Concentrations in the Earthworm,Eisenia andrei. Environmental Science & amp; Technology, 2001, 35, 4522-4529.	10.0	102
36	Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Science of the Total Environment, 2018, 625, 1021-1029.	8.0	99

#	Article	IF	CITATIONS
37	Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environmental Science: Nano, 2016, 3, 323-345.	4.3	98
38	Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 2016, 95, 36-53.	10.0	97
39	Rethinking Nanoâ€TiO ₂ Safety: Overview of Toxic Effects in Humans and Aquatic Animals. Small, 2020, 16, e2002019.	10.0	97
40	Silver sulfide nanoparticles (Ag ₂ S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 2015, 9, 1041-1049.	3.0	96
41	Particleâ€specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (<i>Danio rerio</i>). Environmental Toxicology and Chemistry, 2014, 33, 2859-2868.	4.3	94
42	Considerations for Safe Innovation: The Case of Graphene. ACS Nano, 2017, 11, 9574-9593.	14.6	94
43	BIOLOGICAL SIGNIFICANCE OF METALS PARTITIONED TO SUBCELLULAR FRACTIONS WITHIN EARTHWORMS (APORRECTODEA CALIGINOSA). Environmental Toxicology and Chemistry, 2006, 25, 807.	4.3	91
44	Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 2014, 8, 383-393.	3.0	91
45	Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 2014, 188, 144-152.	7.5	90
46	Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. Environmental Toxicology and Chemistry, 2012, 31, 2408-2413.	4.3	89
47	How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale, 2016, 8, 9919-9943.	5.6	86
48	Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environmental Science: Nano, 2018, 5, 904-916.	4.3	86
49	Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiology, 2011, 155, 808-820.	4.8	85
50	Prediction of biodegradability from chemical structure: Modeling of ready biodegradation test data. Environmental Toxicology and Chemistry, 1999, 18, 1763-1768.	4.3	81
51	Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of the Total Environment, 2018, 644, 1070-1079.	8.0	80
52	Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 2003, 54, 277-289.	6.0	79
53	Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and Environmental Safety, 2012, 75, 1-7.	6.0	78
54	A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 2015, 139, 181-189.	8.2	78

#	Article	IF	CITATIONS
55	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nature Nanotechnology, 2017, 12, 727-733.	31.5	78
56	The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environmental Pollution, 2018, 232, 212-219.	7.5	78
57	Modeling lifetime and degradability of organic compounds in air, soil, and water systems (IUPAC) Tj ETQq1 1 0.78	4314 rgB1 1.9	r /Qverlock
58	Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms. Environmental Research, 2020, 186, 109554.	7.5	76
59	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Technology, 2010, 44, 5195-5201.	10.0	71
60	Toxicity of differentâ€sized copper nano―and submicron particles and their shed copper ions to zebrafish embryos. Environmental Toxicology and Chemistry, 2014, 33, 1774-1782.	4.3	69
61	The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. Water Research, 2021, 190, 116742.	11.3	69
62	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology, 2020, 3, 737.	4.4	66
63	Extraction and Fractionation Methods for Exposure Assessment of Trace Metals, Metalloids, and Hazardous Organic Compounds in Terrestrial Environments. Critical Reviews in Environmental Science and Technology, 2012, 42, 1117-1171.	12.8	64
64	Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology, 2018, 12, 423-438.	3.0	64
65	Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. Environment International, 2019, 126, 268-278.	10.0	64
66	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 2955-2971.	4.3	62
67	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (<i>Danio rerio</i>) embryogenesis. Nanotoxicology, 2017, 11, 87-97.	3.0	61
68	A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. Journal of Hazardous Materials, 2020, 384, 121429.	12.4	61
69	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environmental Toxicology and Chemistry, 2008, 27, 1284-1292.	4.3	60
70	Investigation of Rhizospheric Microbial Communities in Wheat, Barley, and Two Rice Varieties at the Seedling Stage. Journal of Agricultural and Food Chemistry, 2018, 66, 2645-2653.	5.2	60
71	Added Risk Approach to Derive Maximum Permissible Concentrations for Heavy Metals: How to Take Natural Background Levels into Account. Ecotoxicology and Environmental Safety, 1997, 37, 112-118.	6.0	59
72	Passive sampling methods for contaminated sediments: State of the science for metals. Integrated Environmental Assessment and Management, 2014, 10, 179-196.	2.9	59

#	Article	IF	CITATIONS
73	Impact of CeO2 nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: Importance of surface functionalization and solution chemistry. Water Research, 2020, 186, 116324.	11.3	59
74	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 2020, 7, 351-367.	4.3	59
75	PBT assessment using the revised annex XIII of REACH: A comparison with other regulatory frameworks. Integrated Environmental Assessment and Management, 2012, 8, 359-371.	2.9	58
76	Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environmental Science and Pollution Research, 2015, 22, 7405-7421.	5.3	58
77	Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro. Frontiers in Microbiology, 2016, 7, 1123.	3.5	58
78	Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environmental Pollution, 2018, 233, 633-641.	7.5	57
79	Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria. International Journal of Environmental Research and Public Health, 2017, 14, 911.	2.6	56
80	Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. Journal of Colloid and Interface Science, 2011, 360, 398-407.	9.4	54
81	Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight?. Environmental Pollution, 2001, 114, 137-143.	7.5	53
82	Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environmental Pollution, 2005, 133, 103-116.	7.5	53
83	Fate assessment of engineered nanoparticles in solids dominated media – Current insights and the way forward. Environmental Pollution, 2016, 218, 1365-1369.	7.5	53
84	Towards Nanowire Tandem Junction Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2018, 8, 733-740.	2.5	53
85	Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. Water Research, 2019, 166, 115083.	11.3	53
86	Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. Journal of Hazardous Materials, 2020, 386, 121975.	12.4	52
87	QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems. Environmental Toxicology and Chemistry, 1992, 11, 301-314.	4.3	51
88	Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 14
89	Evaluation of Exposure Metrics for Effect Assessment of Soil Invertebrates. Critical Reviews in Environmental Science and Technology, 2012, 42, 1862-1893.	12.8	50

90Toxicological Mixture Models are Based on Inadequate Assumptions. Environmental Science & amp;
Technology, 2010, 44, 4841-4842.10.049

#	Article	IF	CITATIONS
91	Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, 2020, 261, 114117.	7.5	49
92	Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. Journal of Environmental Sciences, 2021, 99, 1-9.	6.1	49
93	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
94	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. International Journal of Life Cycle Assessment, 2011, 16, 774.	4.7	48
95	A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicology and Environmental Safety, 2015, 119, 66-73.	6.0	48
96	The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. International Journal of Environmental Research and Public Health, 2015, 12, 15007-15021.	2.6	46
97	Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthwormEisenia fetida. Nanotoxicology, 2015, 9, 792-801.	3.0	46
98	Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design. Environmental Science & amp; Technology, 2016, 50, 5328-5337.	10.0	46
99	Pathways of root uptake and membrane transport of Cd ²⁺ in the zinc/cadmium hyperaccumulating plant <i>Sedum plumbizincicola</i> . Environmental Toxicology and Chemistry, 2017, 36, 1038-1046.	4.3	46
100	Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. Science of the Total Environment, 2019, 660, 1283-1293.	8.0	46
101	Impact of metal pools and soil properties on metal accumulation in <i>Folsomia candida</i> (Collembola). Environmental Toxicology and Chemistry, 2001, 20, 712-720.	4.3	45
102	Predicting effects of cations on copper toxicity to lettuce (<i>Lactuca sativa</i>) by the biotic ligand model. Environmental Toxicology and Chemistry, 2012, 31, 355-359.	4.3	45
103	Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. Environmental Science & amp; Technology, 1992, 26, 2116-2121.	10.0	44
104	Structure–specificity relationships for haloalkane dehalogenases. Environmental Toxicology and Chemistry, 2001, 20, 2681-2689.	4.3	44
105	Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metalsâ^'contaminated soil after washing with biodegradable chelators. Journal of Cleaner Production, 2018, 197, 479-490.	9.3	44
106	Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. Environmental Science & Technology, 2019, 53, 946-953.	10.0	44
107	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environmental Pollution, 2007, 146, 428-436.	7.5	43
108	Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidoneâ€coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry, 2015, 34, 1239-1245.	4.3	43

#	Article	IF	CITATIONS
109	Elucidating Toxicodynamic Differences at the Molecular Scale between ZnO Nanoparticles and ZnCl ₂ in <i>Enchytraeus crypticus</i> via Nontargeted Metabolomics. Environmental Science & Technology, 2020, 54, 3487-3498.	10.0	43
110	Structure-activity relationships for biodegradation: A critical review. Pure and Applied Chemistry, 1994, 66, 1931-1941.	1.9	42
111	Comparative toxicity of copper nanoparticles across three Lemnaceae species. Science of the Total Environment, 2015, 518-519, 217-224.	8.0	42
112	Impact of informal electronic waste recycling on metal concentrations in soils and dusts. Environmental Research, 2018, 164, 385-394.	7.5	42
113	Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food and Chemical Toxicology, 2018, 112, 507-517.	3.6	42
114	Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. Water Research, 2020, 186, 116410.	11.3	42
115	Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere, 1999, 38, 1409-1417.	8.2	41
116	Quantitative structure–property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere, 2001, 42, 263-270.	8.2	41
117	Assessment of QSARS for Predicting Fate and Effects of Chemicals in the Environment: An International European Project. SAR and QSAR in Environmental Research, 1995, 3, 223-236.	2.2	40
118	Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. Journal of Hazardous Materials, 2013, 261, 854-862.	12.4	40
119	Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Science of the Total Environment, 2016, 563-564, 81-88.	8.0	40
120	Facilitated Transport of Copper with Hydroxyapatite Nanoparticles in Saturated Sand. Soil Science Society of America Journal, 2012, 76, 375-388.	2.2	39
121	Possibilities of implementation of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework. Journal of Hazardous Materials, 2013, 261, 833-839.	12.4	39
122	Impact of imidacloprid on <i>Daphnia magna</i> under different food quality regimes. Environmental Toxicology and Chemistry, 2014, 33, 621-631.	4.3	39
123	C60-DOM interactions and effects on C60 apparent solubility: A molecular mechanics and density functional theory study. Environment International, 2011, 37, 1078-1082.	10.0	38
124	Modeling toxicity of binary metal mixtures (Cu ²⁺ –Ag ⁺ ,) Tj ETQq0 0 0 rgBT /Overlock Environmental Toxicology and Chemistry, 2013, 32, 137-143.	10 Tf 50 1 4.3	.47 Td (Cu<: 38
125	Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals. Environmental Sciences: Processes and Impacts, 2017, 19, 350-356.	3.5	38
126	Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Ecotoxicology and Environmental Safety, 2017, 145, 349-358.	6.0	38

#	Article	IF	CITATIONS
127	Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. Chemosphere, 2019, 226, 841-850.	8.2	38
128	Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nature Communications, 2021, 12, 899.	12.8	38
129	Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis. Science of the Total Environment, 2013, 456-457, 307-316.	8.0	37
130	Availability of polycyclic aromatic hydrocarbons to earthworms (<i>Eisenia andrei</i> , Oligochaeta) in fieldâ€polluted soils and soilâ€sediment mixtures. Environmental Toxicology and Chemistry, 2003, 22, 767-775.	4.3	36
131	A practical approach to determine dose metrics for nanomaterials. Environmental Toxicology and Chemistry, 2015, 34, 1015-1022.	4.3	36
132	Impact of water chemistry on the behavior and fate of copper nanoparticles. Environmental Pollution, 2018, 234, 684-691.	7.5	36
133	Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. Environmental Pollution, 2020, 258, 113727.	7.5	36
134	Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter. Water Research, 2020, 185, 116241.	11.3	36
135	Quantitative structure–property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemosphere, 2001, 43, 235-241.	8.2	35
136	Editorial: JSS $\hat{a} \in \mathbb{C}$ J Soils & Sediments. Journal of Soils and Sediments, 2001, 1, 1-1.	3.0	35
137	Acute toxicity of poly―and perfluorinated compounds to two cladocerans, <i>Daphnia magna</i> and <i>Chydorus sphaericus</i> . Environmental Toxicology and Chemistry, 2012, 31, 605-610.	4.3	35
138	The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 37, 1169-1186.	8.2	34
139	Quantitative structure–property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science of the Total Environment, 2000, 246, 11-20.	8.0	34
140	Predicting Copper Toxicity to Different Earthworm Species Using a Multicomponent Freundlich Model. Environmental Science & Technology, 2013, 47, 4796-4803.	10.0	34
141	Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. International Journal of Environmental Research and Public Health, 2019, 16, 906.	2.6	34
142	Life cycle assessment of emerging technologies at the lab scale: The case of nanowireâ€based solar cells. Journal of Industrial Ecology, 2020, 24, 193-204.	5.5	34
143	Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter. Water Research, 2021, 192, 116857.	11.3	34
144	Kinetics of Cadmium Uptake and Subcellular Partitioning in the Earthworm Eisenia fetida Exposed to Cadmium-Contaminated Soil. Archives of Environmental Contamination and Toxicology, 2009, 57, 718-724.	4.1	33

#	Article	IF	CITATIONS
145	Interactions of cadmium and zinc impact their toxicity to the earthworm <i>Aporrectodea caliginosa</i> . Environmental Toxicology and Chemistry, 2011, 30, 2084-2093.	4.3	33
146	Prediction of joint algal toxicity of nano-CeO 2 /nano-TiO 2 and florfenicol: Independent action surpasses concentration addition. Chemosphere, 2016, 156, 8-13.	8.2	33
147	Environmental Risk Assessment Strategy for Nanomaterials. International Journal of Environmental Research and Public Health, 2017, 14, 1251.	2.6	33
148	Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. Injury Prevention, 2018, 24, 185-192.	2.4	33
149	Interactions of CeO2 nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. Journal of Hazardous Materials, 2020, 386, 121973.	12.4	33
150	Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials, 2020, 10, 311.	4.1	33
151	Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotoxicology and Environmental Safety, 2012, 80, 273-279.	6.0	32
152	Experimental Assessment of the Environmental Fate and Effects of Triazoles and Benzotriazole. ATLA Alternatives To Laboratory Animals, 2013, 41, 65-75.	1.0	32
153	Determining the fluxes of ions (Pb2+, Cu2+ and Cd2+) at the root surface of wetland plants using the scanning ion-selective electrode technique. Plant and Soil, 2017, 414, 1-12.	3.7	32
154	The effect of capping agents on the toxicity of silver nanoparticles to <i>Danio rerio</i> embryos. Nanotoxicology, 2019, 13, 1-13.	3.0	32
155	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
156	Underlying issues including approaches and information needs in risk assessment. Ecotoxicology and Environmental Safety, 2003, 56, 6-19.	6.0	31
157	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere, 2011, 82, 268-277.	8.2	31
158	Modelling metal–metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+–Zn2+ and Cu2+–Ag+). Environmental Pollution, 2013, 176, 185-192.	7.5	31
159	Development of nanostructure–activity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making. RSC Advances, 2016, 6, 52227-52235.	3.6	31
160	Simple <i>in vitro</i> models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology, 2016, 10, 770-779.	3.0	31
161	IMPACT OF METAL POOLS AND SOIL PROPERTIES ON METAL ACCUMULATION IN FOLSOMIA CANDIDA (COLLEMBOLA). Environmental Toxicology and Chemistry, 2001, 20, 712.	4.3	31
162	Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant and Soil, 2010, 334, 277-288.	3.7	30

#	Article	IF	CITATIONS
163	Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Food and Chemical Toxicology, 2018, 112, 563-570.	3.6	30
164	Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. Science of the Total Environment, 2018, 610-611, 1329-1335.	8.0	30
165	Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. Environmental Pollution, 2019, 255, 113304.	7.5	30
166	Interactive effects of rice straw biochar and γ-Al2O3 on immobilization of Zn. Journal of Hazardous Materials, 2019, 373, 250-257.	12.4	30
167	The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. Chemosphere, 2020, 249, 126564.	8.2	30
168	Reductive transformations of halogenated aromatic hydrocarbons in anaerobic waterâ€sediment systems: Kinetics, mechanisms and products. Environmental Toxicology and Chemistry, 1992, 11, 289-300.	4.3	29
169	Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biology and Biochemistry, 2006, 38, 1788-1796.	8.8	29
170	Development of an electrostatic model predicting copper toxicity to plants. Journal of Experimental Botany, 2012, 63, 659-668.	4.8	29
171	Toxicity of Polyfluorinated and Perfluorinated Compounds to Lettuce (Lactuca sativa) and Green Algae (Pseudokirchneriella subcapitata). Archives of Environmental Contamination and Toxicology, 2012, 62, 49-55.	4.1	29
172	Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. Water Research, 2017, 127, 59-67.	11.3	28
173	A QICAR approach for quantifying binding constants for metal–ligand complexes. Ecotoxicology and Environmental Safety, 2011, 74, 1036-1042.	6.0	27
174	Summary and Analysis of the Currently Existing Literature Data on Metal-based Nanoparticles Published for Selected Aquatic Organisms: Applicability for Toxicity Prediction by (Q)SARs. ATLA Alternatives To Laboratory Animals, 2015, 43, 221-240.	1.0	27
175	Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids. Chemosphere, 2017, 185, 681-689.	8.2	27
176	Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere, 2020, 239, 124731.	8.2	27
177	Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Environmental Toxicology and Chemistry, 2003, 22, 767-75.	4.3	27
178	Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce (Lactuca sativa L.). Chemosphere, 2014, 112, 282-288.	8.2	26
179	TiO 2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio) Tj ETQq1	1 0.78431 4.5	4 rgBT /Ove
180	Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.	8.2	26

Chemosphere, 2017, 179, 49-56.

#	Article	IF	CITATIONS
181	Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. International Journal of Molecular Sciences, 2017, 18, 1504.	4.1	26
182	Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. Chemosphere, 2019, 235, 900-907.	8.2	26
183	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Science of the Total Environment, 2021, 757, 143807.	8.0	26
184	Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere, 2021, 276, 130015.	8.2	26
185	On the Usefulness and Reliability of Existing QSBRs for Risk Assessment and Priority Setting. SAR and QSAR in Environmental Research, 1996, 5, 1-16.	2.2	25
186	Assessing toxicity of copper nanoparticles across five cladoceran species. Environmental Toxicology and Chemistry, 2015, 34, 1863-1869.	4.3	25
187	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. Sustainability, 2018, 10, 689.	3.2	25
188	The biodistribution and immuno-responses of differently shaped non-modified gold particles in zebrafish embryos. Nanotoxicology, 2019, 13, 558-571.	3.0	25
189	The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. Journal of Agricultural and Food Chemistry, 2021, 69, 12527-12540.	5.2	25
190	Quantitative structure–property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Science of the Total Environment, 2001, 269, 163-170.	8.0	24
191	External validation of EPIWIN biodegradation models. SAR and QSAR in Environmental Research, 2005, 16, 135-148.	2.2	24
192	Metal-specific interactions at the interface of chemistry and biology. Pure and Applied Chemistry, 2007, 79, 2351-2366.	1.9	24
193	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	4.3	24
194	Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.	7.3	23
195	Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagnetic Biology and Medicine, 2014, 33, 21-28.	1.4	23
196	Impacts of major cations (K+, Na+, Ca2+, Mg2+) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models. Ecotoxicology, 2014, 23, 385-395.	2.4	23
197	Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica. Chemosphere, 2015, 135, 123-128.	8.2	23
198	Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. Journal of Cleaner Production, 2018, 178, 494-506.	9.3	23

#	Article	IF	CITATIONS
199	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact, 2022, 25, 100366.	4.5	23
200	Implementation of bioavailability in standard setting and risk assessment?. Journal of Soils and Sediments, 2002, 2, 169-173.	3.0	22
201	Transport, Accumulation and Transformation Processes. , 2007, , 73-158.		22
202	Impact of pH on Cu Accumulation Kinetics in Earthworm Cytosol. Environmental Science & Technology, 2007, 41, 2255-2260.	10.0	22
203	Compositional alterations in soil bacterial communities exposed to TiO2 nanoparticles are not reflected in functional impacts. Environmental Research, 2019, 178, 108713.	7.5	22
204	A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environmental Science: Nano, 2019, 6, 2049-2060.	4.3	22
205	Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & amp; Technology, 2022, 56, 2115-2123.	10.0	22
206	A quantitative structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water. Chemosphere, 1993, 26, 837-849.	8.2	21
207	QSARs for oxidation of phenols in the aqueous environment, suitable for risk assessment. Journal of Chemometrics, 1996, 10, 79-93.	1.3	21
208	Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 36, 2833-2853.	8.2	21
209	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. Soil Biology and Biochemistry, 2013, 57, 720-730.	8.8	21
210	Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species?. Ecotoxicology, 2014, 23, 21-32.	2.4	21
211	Minimum requirements for reporting analytical data for environmental samples (IUPAC Technical) Tj ETQq1 1 0.7	84314 rgE 1.9	3T/Overlock 20
212	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F tox approach. Environmental Science and Pollution Research, 2015, 22, 19213-19223.	5.3	20
213	Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters. Environmental Sciences: Processes and Impacts, 2019, 21, 155-162.	3.5	20
214	Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. International Journal of Environmental Research and Public Health, 2019, 16, 360.	2.6	20
215	The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. Chemosphere, 2020, 245, 125612.	8.2	20
216	A Method to Assess the Relevance of Nanomaterial Dissolution during Reactivity Testing. Materials, 2020, 13, 2235.	2.9	20

#	Article	IF	CITATIONS
217	The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. Chemosphere, 2003, 52, 1153-1162.	8.2	19
218	A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. Journal of Cleaner Production, 2014, 78, 152-163.	9.3	19
219	Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. Environmental Science: Nano, 2018, 5, 2473-2481.	4.3	19
220	Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O ₂ ^{•â^} /HO ₂ [•]). Free Radical Research, 2018, 52, 1118-1131.	3.3	19
221	Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. Journal of Hazardous Materials, 2018, 358, 216-221.	12.4	19
222	The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum. Environmental Pollution, 2019, 250, 456-463.	7.5	19
223	Disentanglement of the chemical, physical, and biological processes aids the development of quantitative structure-biodegradation relationships for aerobic wastewater treatment. Science of the Total Environment, 2020, 708, 133863.	8.0	19
224	Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 2010, 42, 1045-1050.	8.8	18
225	Evaluation of CADASTER QSAR Models for the Aquatic Toxicity of (Benzo)triazoles and Prioritisation by Consensus Prediction. ATLA Alternatives To Laboratory Animals, 2013, 41, 49-64.	1.0	18
226	A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. Materials, 2017, 10, 1013.	2.9	18
227	Directions in QPPR development to complement the predictive models used in risk assessment of nanomaterials. NanoImpact, 2018, 11, 58-66.	4.5	18
228	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. Nanotoxicology, 2020, 14, 310-325.	3.0	18
229	An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. Science of the Total Environment, 2020, 708, 135134.	8.0	18
230	Environmental impacts of III–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Energy and Environmental Science, 2020, 13, 4280-4290.	30.8	18
231	Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations. Environmental Science: Nano, 2020, 7, 3372-3384.	4.3	18
232	Oxidative stress actuated by cellulose nanocrystals and nanofibrils in aquatic organisms of different trophic levels. NanoImpact, 2020, 17, 100211.	4.5	18
233	UV/ozone induced physicochemical transformations of polystyrene nanoparticles and their aggregation tendency and kinetics with natural organic matter in aqueous systems. Journal of Hazardous Materials, 2022, 433, 128790.	12.4	18
234	Structural requirements for anaerobic biodegradation of organic chemicals: A fragment model analysis. Environmental Toxicology and Chemistry, 1998, 17, 1943-1950.	4.3	17

#	Article	IF	CITATIONS
235	The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. Environmental Science and Pollution Research, 1998, 5, 12-16.	5.3	17
236	The effect of pesticides on the composition of aquatic macrofauna communities in field ditches. Basic and Applied Ecology, 2016, 17, 125-133.	2.7	17
237	Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Environmental Pollution, 2018, 243, 364-373.	7.5	17
238	Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. Environmental Pollution, 2021, 269, 116066.	7.5	17
239	Commonwealth of Soil Health: How Do Earthworms Modify the Soil Microbial Responses to CeO ₂ Nanoparticles?. Environmental Science & Technology, 2022, 56, 1138-1148.	10.0	17
240	Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Science of the Total Environment, 2022, 842, 156812.	8.0	17
241	Photokinetics of Azaarenes and Toxicity of Phototransformation Products to the Marine DiatomPhaeodactylum tricornutum. Environmental Science & Technology, 1999, 33, 4256-4262.	10.0	16
242	Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. Environmental Research, 2014, 133, 220-231.	7.5	16
243	Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields. Environmental Pollution, 2014, 192, 196-203.	7.5	16
244	Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?. Ecotoxicology and Environmental Safety, 2015, 122, 37-44.	6.0	16
245	Development of a quantitative structure-activity relationship model for mechanistic interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic matter. Science of the Total Environment, 2020, 712, 136450.	8.0	16
246	Quantitative structure–property relationship study on reductive dehalogenation of selected halogenated aliphatic hydrocarbons in sediment slurries. Chemosphere, 2001, 44, 1557-1563.	8.2	15
247	Effect of cation competition on cadmium uptake from solution by the earthworm <i>Eisenia Fetida</i> . Environmental Toxicology and Chemistry, 2009, 28, 1732-1738.	4.3	15
248	Interaction of zero valent copper nanoparticles with algal cells under simulated natural conditions: Particle dissolution kinetics, uptake and heteroaggregation. Science of the Total Environment, 2019, 689, 133-140.	8.0	15
249	A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. Environmental Science and Technology Letters, 2019, 6, 732-738.	8.7	15
250	Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicology and Environmental Safety, 2021, 219, 112357.	6.0	15
251	Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. Environmental Pollution, 2022, 292, 118413.	7.5	15
252	Can Current Regulations Account for Intentionally Produced Nanoplastics?. Environmental Science & Technology, 2022, 56, 3836-3839.	10.0	15

#	Article	IF	CITATIONS
253	The use of quantitative structure-activity relationships for predicting rates of environmental hydrolysis processes. Pure and Applied Chemistry, 1991, 63, 1667-1676.	1.9	14
254	Kinetics, products, mechanisms and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. Environmental Toxicology and Chemistry, 1993, 12, 1149-1161.	4.3	14
255	Modeling Reductive Dehalogenation with Quantum Chemically Derived Descriptors. SAR and QSAR in Environmental Research, 1995, 4, 237-252.	2.2	14
256	The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere, 2000, 40, 1319-1326.	8.2	14
257	Comparison of Subcellular Partitioning, Distribution, and Internal Speciation of Cu between Cu-Tolerant and Nail^ve Populations of <i>Dendrodrilus rubidus</i> Savigny. Environmental Science & Technology, 2008, 42, 3900-3905.	10.0	14
258	Shape engineered TiO ₂ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	3.6	14
259	Trophic transfer of Cd from duckweed (<i>Lemna minor</i> L.) to tilapia (<i>Oreochromis) Tj ETQq1 1 0.784314</i>	rgBT /Ove 4.3	erlock 10 Tf 5 14
260	Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. Environmental Science & Technology, 2020, 54, 2379-2388.	10.0	14
261	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology, 2020, 14, 725-739.	3.0	14
262	The analytical quest for sub-micron plastics in biological matrices. Nano Today, 2021, 41, 101296.	11.9	14
263	Accumulation ofÂheavy metals byÂenchytraeids andÂearthworms inÂaÂfloodplain. European Journal of Soil Biology, 2006, 42, S117-S126.	3.2	13
264	Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquatic Toxicology, 2017, 191, 105-112.	4.0	13
265	Aqueous-phase photooxygenation of enes, amines, sulfides and polycyclic aromatics by singlet (a1î"g) oxygen: prediction of rate constants using orbital energies, substituent factors and quantitative structure–property relationships. Environmental Chemistry, 2017, 14, 442.	1.5	13
266	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials, 2020, 393, 122390.	12.4	13
267	Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L Chemosphere, 2021, 280, 130863.	8.2	13
268	QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems. Science of the Total Environment, 1991, 109-110, 283-300.	8.0	12
269	UNCERTAINTY OF WATER TYPE–SPECIFIC HAZARDOUS COPPER CONCENTRATIONS DERIVED WITH BIOTIC LIGAND MODELS. Environmental Toxicology and Chemistry, 2008, 27, 2311.	4.3	12
270	Theoretical investigations on C ₆₀ –ionic liquid interactions and their impacts on C ₆₀ dispersion behavior. Environmental Toxicology and Chemistry, 2014, 33, 1802-1808.	4.3	12

#	Article	IF	CITATIONS
271	Toxicity models of metal mixtures established on the basis of "additivity―and "interactions― Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	12
272	A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. International Journal of Environmental Research and Public Health, 2017, 14, 1348.	2.6	12
273	Are Technological Developments Improving the Environmental Sustainability of Photovoltaic Electricity?. Energy Technology, 2020, 8, 1901064.	3.8	12
274	Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology, 2020, 14, 1399-1414.	3.0	12
275	Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environmental Science: Nano, 2020, 7, 2325-2336.	4.3	12
276	Multivariate QSAR modelling of the rate of reductive dehalogenation of haloalkanes. Journal of Chemometrics, 1996, 10, 483-492.	1.3	11
277	Read-across Estimates of Aquatic Toxicity for Selected Fragrances. ATLA Alternatives To Laboratory Animals, 2013, 41, 77-90.	1.0	11
278	Modelling toxicity of metal mixtures: A generalisation of new advanced methods, considering potential application to terrestrial ecosystems. Critical Reviews in Environmental Science and Technology, 2017, 47, 409-454.	12.8	11
279	Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation. Ecotoxicology and Environmental Safety, 2018, 166, 63-70.	6.0	11
280	Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology, 2022, 16, 88-113.	3.0	11
281	Short-term ecological risks of depositing contaminated sediment on arable soil. Ecotoxicology and Environmental Safety, 2005, 60, 1-14.	6.0	10
282	Substance-related environmental monitoring strategies regarding soil, groundwater and surface water — an overview. Environmental Science and Pollution Research, 2013, 20, 2810-2827.	5.3	10
283	Arguments for considering Uncertainty in QSAR Predictions in Hazard and Risk Assessments. ATLA Alternatives To Laboratory Animals, 2013, 41, 91-110.	1.0	10
284	Prioritisation of Polybrominated Diphenyl Ethers (PBDEs) by Using the QSPR-THESAURUS Web Tool. ATLA Alternatives To Laboratory Animals, 2013, 41, 127-135.	1.0	10
285	The QSPR-THESAURUS: The Online Platform of the CADASTER Project. ATLA Alternatives To Laboratory Animals, 2014, 42, 13-24.	1.0	10
286	Dose metrics assessment for differently shaped and sized metalâ€based nanoparticles. Environmental Toxicology and Chemistry, 2016, 35, 2466-2473.	4.3	10
287	Influence of bacterial extracellular polymeric substances on the sorption of Zn on γ-alumina: A combination of FTIR and EXAFS studies. Environmental Pollution, 2017, 220, 997-1004.	7.5	10
288	DFT/TDDFT insights into effects of dissociation and metal complexation on photochemical behavior of enrofloxacin in water. Environmental Science and Pollution Research, 2018, 25, 30609-30616.	5.3	10

#	Article	IF	CITATIONS
289	Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. Science of the Total Environment, 2021, 773, 144895.	8.0	10
290	Earthworms and Their Use in Eco(toxico)logical Modeling. Emerging Topics in Ecotoxicology, 2009, , 177-204.	1.5	10
291	Machine learning predicts ecological risks of nanoparticles to soil microbial communities. Environmental Pollution, 2022, 307, 119528.	7.5	10
292	Calcium and magnesium enhance arsenate rhizotoxicity and uptake in <i>Triticum aestivum</i> . Environmental Toxicology and Chemistry, 2011, 30, 1642-1648.	4.3	9
293	Modeling Toxicity of Mixtures of Perfluorooctanoic Acid and Triazoles (Triadimefon and) Tj ETQq1 1 0.784314 rgf Technology, 2013, 47, 6621-6629.	3T /Overlo 10.0	ck 10 Tf 50 5 9
294	Predictive models for estimating the vapor pressure of poly- and perfluorinated compounds at different temperatures. Atmospheric Environment, 2013, 75, 147-152.	4.1	9
295	Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression. Environmental Toxicology and Chemistry, 2014, 33, 2688-2693.	4.3	9
296	A tiered approach for environmental impact assessment of chemicals and their alternatives within the context of socio-economic analyses. Journal of Cleaner Production, 2015, 108, 955-964.	9.3	9
297	The way forward for risk assessment of nanomaterials in solid media. Environmental Pollution, 2016, 218, 1363-1364.	7.5	9
298	Silicon nanoparticles: characterization and toxicity studies. Environmental Science: Nano, 2018, 5, 2945-2951.	4.3	9
299	Development of a nano-QSPR model to predict band gaps of spherical metal oxide nanoparticles. RSC Advances, 2019, 9, 8426-8434.	3.6	9
300	A DFT/TDDFT study on the mechanisms of direct and indirect photodegradation of tetrabromobisphenol A in water. Chemosphere, 2019, 220, 40-46.	8.2	9
301	Environmental Risk Assessment (ERA) of the application of nanoscience and nanotechnology in the food and feed chain. EFSA Supporting Publications, 2020, 17, 1948E.	0.7	9
302	Method for extraction of nanoscale plastic debris from soil. Analytical Methods, 2021, 13, 1576-1583.	2.7	9
303	An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices. Nature Protocols, 2022, 17, 1926-1952.	12.0	9
304	The effects of substituents and solvent polarity oh photochemical [1,3] sigmatropic shifts. Experimental evidence in favour of the occurrence of sudden. Tetrahedron, 1988, 44, 4927-4940.	1.9	8
305	On the Use of Backpropagation Neural Networks in Modeling Environmental Degradation. SAR and QSAR in Environmental Research, 1995, 4, 219-235.	2.2	8
306	The reference-matrix concept applied to chemical testing of soils. TrAC - Trends in Analytical Chemistry, 2009, 28, 51-63.	11.4	8

#	Article	IF	CITATIONS
307	The Application of QSAR Approaches to Nanoparticles. ATLA Alternatives To Laboratory Animals, 2014, 42, 43-50.	1.0	8
308	Delineating ionâ€ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce <i>Lactuca sativa</i> . Environmental Toxicology and Chemistry, 2014, 33, 1988-1995.	4.3	8
309	Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry. Ecotoxicology, 2016, 25, 1170-1180.	2.4	8
310	Multiscale Coupling Strategy for Nano Ecotoxicology Prediction. Environmental Science & Technology, 2018, 52, 7598-7600.	10.0	8
311	Dynamic release and transformation of metallic copper colloids in flooded paddy soil: Role of soil reducible sulfate and temperature. Journal of Hazardous Materials, 2021, 402, 123462.	12.4	8
312	Bioavalibility in Soils. , 2011, , 721-746.		8
313	Copper accumulation and physiological markers of soybean (Glycine max) grown in agricultural soil amended with copper nanoparticles. Ecotoxicology and Environmental Safety, 2022, 229, 113088.	6.0	8
314	A non-Woodward and Hoffmann reaction path for photochemical sigmatropic rearrangements. Computational and Theoretical Chemistry, 1985, 119, 367-378.	1.5	7
315	Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils. Environmental Science and Pollution Research, 2015, 22, 5283-5292.	5.3	7
316	Transition-state rate theory sheds light on â€~black-box' biodegradation algorithms. Green Chemistry, 2020, 22, 3558-3571.	9.0	7
317	Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. Aquatic Toxicology, 2021, 232, 105744.	4.0	7
318	The stochastic association of nanoparticles with algae at the cellular level: Effects of NOM, particle size and particle shape. Ecotoxicology and Environmental Safety, 2021, 218, 112280.	6.0	7
319	Bayesian based similarity assessment of nanomaterials to inform grouping. NanoImpact, 2022, 25, 100389.	4.5	7
320	Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. Chemosphere, 2022, 302, 134879.	8.2	7
321	Quantumchemical calculations on the photochemistry of germacrene and germacrol. The exclusive role of the exocyclic double bond isomerization. Tetrahedron, 1988, 44, 2339-2350.	1.9	6
322	The development of quantitative structure activity relationships for the direct photolysis of substituted haloaromatics in aqueous environments. Science of the Total Environment, 1993, 134, 1397-1408.	8.0	6
323	Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches. Environmental Science and Pollution Research, 1997, 4, 47-54.	5.3	6
324	Soil Type–Specific Environmental Quality Standards for Zinc in Dutch Soil. Integrated Environmental Assessment and Management, 2005, 1, 252.	2.9	6

#	Article	IF	CITATIONS
325	Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. Environmental Toxicology and Chemistry, 2018, 37, 1024-1031.	4.3	6
326	Compositional and predicted functional dynamics of soil bacterial community in response to single pulse and repeated dosing of titanium dioxide nanoparticles. NanoImpact, 2019, 16, 100187.	4.5	6
327	Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio. Chemosphere, 2020, 242, 125246.	8.2	6
328	Bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios. Ecotoxicology and Environmental Safety, 2020, 205, 111346.	6.0	6
329	Prediction of the Joint Toxicity of Multiple Engineered Nanoparticles: The Integration of Classic Mixture Models and <i>In Silico</i> Methods. Chemical Research in Toxicology, 2021, 34, 176-178.	3.3	6
330	Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach. NanoImpact, 2021, 23, 100342.	4.5	6
331	Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms. Science of the Total Environment, 2021, 781, 146583.	8.0	6
332	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NanoImpact, 2022, 25, 100375.	4.5	6
333	Similarity assessment of metallic nanoparticles within a risk assessment framework: A case study on metallic nanoparticles and lettuce. NanoImpact, 2022, 26, 100397.	4.5	6
334	Development of a Quasi–Quantitative Structure–Activity Relationship Model for Prediction of the Immobilization Response of <i>Daphnia magna</i> Exposed to Metalâ€Based Nanomaterials. Environmental Toxicology and Chemistry, 2022, 41, 1439-1450.	4.3	6
335	Ex ante life cycle assessment of GaAs/Si nanowire–based tandem solar cells: a benchmark for industrialization. International Journal of Life Cycle Assessment, 2020, 25, 1767-1782.	4.7	5
336	STRUCTURE–SPECIFICITY RELATIONSHIPS FOR HALOALKANE DEHALOGENASES. Environmental Toxicology and Chemistry, 2001, 20, 2681.	4.3	5
337	Emerging investigator series: perspectives on toxicokinetics of nanoscale plastic debris in organisms. Environmental Science: Nano, 2022, 9, 1566-1577.	4.3	5
338	Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence. Journal of Environmental Management, 2022, 310, 114770.	7.8	5
339	Initial assessment of the hazards and risks of new chemicals to man and the environment. Science of the Total Environment, 1993, 134, 1597-1615.	8.0	4
340	Modeling cadmium and nickel toxicity to earthworms with the free ion approach. Environmental Toxicology and Chemistry, 2014, 33, 438-446.	4.3	4
341	Systematic selection of a dose metric for metal-based nanoparticles. NanoImpact, 2019, 13, 70-75.	4.5	4
342	Implementation of Bioavailability in Prospective and Retrospective Risk Assessment of Chemicals in Soils and Sediments. Handbook of Environmental Chemistry, 2020, , 391-422.	0.4	4

#	ARTICLE	IF	CITATIONS
343	Delineation of the exposure-response causality chain of chronic copper toxicity to the zebra mussel, Dreissena polymorpha, with a TK-TD model based on concepts of biotic ligand model and subcellular metal partitioning model. Chemosphere, 2022, 286, 131930.	8.2	4
344	Development of a toxicokinetic-toxicodynamic model simulating chronic copper toxicity to the Zebra mussel based on subcellular fractionation. Aquatic Toxicology, 2021, 241, 106015.	4.0	4
345	Thermochemical unification of molecular descriptors to predict radical hydrogen abstraction with low computational cost. Physical Chemistry Chemical Physics, 2020, 22, 23215-23225.	2.8	4
346	Microbiota-dependent TLR2 signaling reduces silver nanoparticle toxicity to zebrafish larvae. Ecotoxicology and Environmental Safety, 2022, 237, 113522.	6.0	4
347	An experimental study on the mechanism and stereochemistry of a photochemical [1,3]-oh shift. A non-woodward and hoffmann reaction path for photochemic. Tetrahedron, 1988, 44, 4821-4836.	1.9	3
348	Experimental and Theoretical Studies in the EU FP7 Marie Curie Initial Training Network Project, Environmental ChemOinformatics (ECO). ATLA Alternatives To Laboratory Animals, 2014, 42, 7-11.	1.0	3
349	Coupling mixture reference models with DGT-perceived metal flux for deciphering the nonadditive effects of rare earth mixtures to wheat in soils. Environmental Research, 2020, 188, 109736.	7.5	3
350	Particleâ€5pecific Toxicity of Copper Nanoparticles to Soybean (<i>Glycine max</i> L.): Effects of Nanoparticle Concentration and Natural Organic Matter. Environmental Toxicology and Chemistry, 2021, 40, 2825-2835.	4.3	3
351	AVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS TO EARTHWORMS (EISENIA ANDREI,) TJ ETQq1 Chemistry, 2003, 22, 767.	1 0.784314 rg 4.3	gBT /Overlo <mark>ck</mark> 3
352	Improved science-based transformation pathways for the development of safe and sustainable plastics. Environment International, 2022, 160, 107055.	10.0	3
353	Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight. Regulatory Toxicology and Pharmacology, 2022, 131, 105156.	2.7	3
354	Correlation analysis of single- and multigenerational endpoints in Daphnia magna toxicity tests: A case-study using TiO2 nanoparticles. Ecotoxicology and Environmental Safety, 2022, 241, 113792.	6.0	3
355	Feeding behaviour of Eisenia andrei in two different field contaminated soils. Pedobiologia, 2003, 47, 670-675.	1.2	2
356	Smart Nanotoxicity Testing for Biodiversity Conservation. Environmental Science & Technology, 2011, 45, 6229-6230.	10.0	2
357	Exemplification of the Implementation of Alternatives to Experimental Testing in Chemical Risk Assessment — Case Studies from the CADASTER Project. ATLA Alternatives To Laboratory Animals, 2013, 41, 13-17.	1.0	2
358	The dispersion, stability, and resuspension of C60 in environmental water matrices. Environmental Science and Pollution Research, 2019, 26, 25538-25549.	5.3	2
359	The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
360	Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. Environmental Pollution, 2021, 284, 117154.	7.5	2

#	Article	IF	CITATIONS
361	Ordered weighted average based grouping of nanomaterials with Arsinh and dose response similarity models. NanoImpact, 2022, 25, 100370.	4.5	2
362	Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation. Water Research, 2022, 217, 118333.	11.3	2
363	Chapter 9 Fate of contaminants in soil. Developments in Soil Science, 2004, 29, 245-280.	0.5	1
364	Bioaccumulation of Polybrominated Diphenyl Ethers by Tubifex Tubifex. Acta Chimica Slovenica, 2016, 63, 678-687.	0.6	1
365	A universal free energy relationship for both hard and soft radical addition in water. Journal of Physical Organic Chemistry, 2022, 35, e4317.	1.9	1
366	The IUPAC symposium "degradation processes in the environment―24–28 May 1998, Dubrovnik (Cavtat), Croatia. Chemosphere, 1999, 38, xi-xii.	8.2	0
367	Guest Editorial. Environment International, 2011, 37, 1043.	10.0	0
368	44th IUPAC Congress: Environmental Chemistry. Pure and Applied Chemistry, 2014, 86, 1083-1084.	1.9	0
369	383â€Incidence and injury patterns among electronic waste workers in informal sector in Ibadan, Nigeria. Injury Prevention, 2016, 22, A140.2-A140.	2.4	0
370	Best Paper Award. Environmental Toxicology and Chemistry, 2018, 37, 1783-1785.	4.3	0
371	PW 0451â€Injuries and health risks awareness of electronic waste workers in the informal sector in nigeria. , 2018, , .		0