Brendan F Abrahams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597323/publications.pdf

Version: 2024-02-01

66343 74163 136 6,126 42 75 citations h-index g-index papers 139 139 139 5254 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inducing Structural Diversity in Anionic Metal–Tetraoxolene Coordination Polymers Using Templating Methyl Viologen Countercations. Crystal Growth and Design, 2022, 22, 1319-1332.	3.0	1
2	Synthesis, structure and properties of coordination polymers formed from bridging 4-hydroxybenzoic acid anions. CrystEngComm, 2022, 24, 1924-1933.	2.6	1
3	Mixed valency in a neutral 1D Fe-chloranilate coordination polymer. Dalton Transactions, 2022, 51, 9199-9205.	3.3	1
4	The elusive crystals of calcium acetate hemihydrate: chiral rods linked by parallel hydrophilic strips. CrystEngComm, 2021, 23, 707-713.	2.6	2
5	Multifunctional Coordination Polymer Exhibiting Reversible Mechanical Motion Allowing Selective Uptake of Guests and Leading to Enhanced Electrical Conductivity. Inorganic Chemistry, 2021, 60, 13658-13668.	4.0	5
6	A new fluorone-based bridging ligand for discrete and polymeric assemblies including Mo and W based [4+4] metallocycles. New Journal of Chemistry, 2020, 44, 11437-11440.	2.8	1
7	Tuning Charge-State Localization in a Semiconductive Iron(III)–Chloranilate Framework Magnet Using a Redox-Active Cation. Chemistry of Materials, 2020, 32, 7551-7563.	6.7	16
8	Semi-conducting mixed-valent X $<$ sub>4 $<$ /sub>TCNQ $<$ sup>lâ^'/llâ^' $<$ /sup> (X = H, F) charge-transfer complexes with C $<$ sub>6 $<$ /sub>H $<$ sub>2 $<$ /sub>(NH $<$ sub>2 $<$ /sub>) $<$ sub>4 $<$ /sub>. Journal of Materials Chemistry C, 2020, 8, 9422-9426.	5.5	4
9	The Effect of Sterically Active Ligand Substituents on Gas Adsorption within a Family of 3D Zn-Based Coordination Polymers. Inorganic Chemistry, 2020, 59, 8871-8881.	4.0	7
10	Effects of Mixed Valency in an Fe-Based Framework: Coexistence of Slow Magnetic Relaxation, Semiconductivity, and Redox Activity. Inorganic Chemistry, 2020, 59, 3619-3630.	4.0	15
11	Clamâ€like Cyclotricatechyleneâ€based Capsules: Identifying the Roles of Protonation State and Guests as well as the Drivers for Stability and (Antiâ€)Cooperativity. Chemistry - an Asian Journal, 2020, 15, 1301-1314.	3.3	4
12	A Semiconducting Cationic Squareâ€Grid Network with Fe III Centers Displaying Unusual Dynamic Behavior. European Journal of Inorganic Chemistry, 2020, 2020, 1255-1259.	2.0	1
13	A Multifunctional, Chargeâ€Neutral, Chiral Octahedral M ₁₂ L ₁₂ Cage. Chemistry - A European Journal, 2019, 25, 8489-8493.	3.3	21
14	A 3D [WS ₄ Cu ₄] ²⁺ cluster-based material with high iodine uptake capability. Dalton Transactions, 2019, 48, 6695-6699.	3.3	9
15	Square Grid Metal–Chloranilate Networks as Robust Host Systems for Guest Sorption. Chemistry - A European Journal, 2019, 25, 5222-5234.	3.3	31
16	Reversible and Vapochromic Chemisorption of Ammonia by a Copper(II) Coordination Polymer. Australian Journal of Chemistry, 2019, 72, 817.	0.9	1
17	X4TCNQ2â° dianions: versatile building blocks for supramolecular systems. CrystEngComm, 2018, 20, 3131-3152.	2.6	17
18	Interligand Charge-Transfer Interactions in Electroactive Coordination Frameworks Based on <i>N</i> , <i>N</i> ,62-Dicyanoquinonediimine (DCNQI). Inorganic Chemistry, 2018, 57, 9766-9774.	4.0	9

#	Article	IF	Citations
19	Solventâ€; Cation―and Anionâ€Induced Structure Variations in Manganeseâ€Based TCNQF 4 Complexes: Synthesis, Crystal Structures, Electrochemistry and Their Catalytic Properties. ChemPlusChem, 2018, 83, 24-34.	2.8	6
20	Self-assembly of a Si-based cage by the formation of 24 equivalent covalent bonds. Chemical Communications, 2018, 54, 11877-11880.	4.1	11
21	Covalent switching, involving divinylbenzene ligands within 3D coordination polymers, indicated by changes in fluorescence. Chemical Communications, 2018, 54, 5831-5834.	4.1	57
22	Stereoselective Solidâ€State Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxaneâ€like MOFs. Angewandte Chemie, 2018, 130, 12878-12883.	2.0	17
23	Stereoselective Solidâ€State Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxaneâ€like MOFs. Angewandte Chemie - International Edition, 2018, 57, 12696-12701.	13.8	103
24	In Situ Spectroelectrochemical Investigations of Rull Complexes with Bispyrazolyl Methane Triarylamine Ligands. Australian Journal of Chemistry, 2017, 70, 546.	0.9	1
25	Tunable Porous Coordination Polymers for the Capture, Recovery and Storage of Inhalation Anesthetics. Chemistry - A European Journal, 2017, 23, 7871-7875.	3.3	19
26	Solidâ€State Gas Adsorption Studies with Discrete Palladium(II) [Pd ₂ (L) ₄] ⁴⁺ Cages. Chemistry - A European Journal, 2017, 23, 10559-10567.	3.3	53
27	Guestâ€induced Assembly of Bis(thiosemicarbazonato) Zinc(II) Coordination Nanotubes. Angewandte Chemie - International Edition, 2017, 56, 8370-8374.	13.8	20
28	Role of NEt ₄ ⁺ in Orienting and Locking Together [M ₂ lig ₃] ^{2â€"} (6,3) Sheets (H ₂ lig = Chloranilic or) Tj ETQq0 Design, 2017, 17, 1465-1470.	0	Overlock 10
29	Mixed Valency in a 3D Semiconducting Iron–Fluoranilate Coordination Polymer. Inorganic Chemistry, 2017, 56, 9025-9035.	4.0	64
30	Lattice response of the porous coordination framework Zn(hba) to guest adsorption. Powder Diffraction, 2017, 32, S49-S53.	0.2	1
31	Structural, Spectroscopic, and Electrochemical Characterization of Semi-Conducting, Solvated [Pt(NH3)4](TCNQ)2·(DMF)2 and Non-Solvated [Pt(NH3)4](TCNQ)2. Australian Journal of Chemistry, 2017, 70, 997.	0.9	2
32	Porous Polyrotaxane Coordination Networks Containing Two Distinct Conformers of a Discontinuously Flexible Ligand. Inorganic Chemistry, 2016, 55, 10467-10474.	4.0	11
33	Lightweight Ionic Networks Composed of Li + or Mg 2+ Centres Linked Together by Dicarboxylate Ligands. ChemPlusChem, 2016, 81, 877-884.	2.8	1
34	Structural and optical investigations of charge transfer complexes involving the radical anions of TCNQ and F ₄ TCNQ. CrystEngComm, 2016, 18, 8906-8914.	2.6	34
35	Controlling Interpenetration in Electroactive Co(II) Frameworks Based on the Tris(4-(pyridin-4-yl)phenyl)amine Ligand. Crystal Growth and Design, 2016, 16, 1149-1155.	3.0	15
36	A New Structural Family of Gasâ€Sorbing Coordination Polymers Derived from Phenolic Carboxylic Acids. Chemistry - A European Journal, 2015, 21, 18057-18061.	3.3	21

#	Article	IF	CITATIONS
37	Structural chemistry and selective CO ₂ uptake of a piperazine-derived porous coordination polymer. CrystEngComm, 2015, 17, 2196-2203.	2.6	9
38	Observance of a large conformational change associated with the rotation of the naphthyl groups during the photodimerization of criss-cross aligned C bonds within a 2D coordination polymer. CrystEngComm, 2015, 17, 4903-4911.	2.6	26
39	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of Materials, 2015, 27, 5825-5832.	6.7	177
40	Heterometallic 3d–4f Single-Molecule Magnets: Ligand and Metal Ion Influences on the Magnetic Relaxation. Inorganic Chemistry, 2015, 54, 3631-3642.	4.0	92
41	New Cul2(TCNQ–II) and Cul2(F4TCNQ–II) Coordination Polymers. Crystal Growth and Design, 2015, 15, 2437-2444.	3.0	14
42	Coordination Polymers Constructed from TCNQ2– Anions and Chelating Ligands. Australian Journal of Chemistry, 2014, 67, 1871.	0.9	13
43	Isomeric Ionic Lithium Isonicotinate Three-Dimensional Networks and Single-Crystal-to-Single-Crystal Rearrangements Generating Microporous Materials. Inorganic Chemistry, 2014, 53, 4956-4969.	4.0	22
44	Magnetic Exchange Effects in {Crlll2Dylll2} Single Molecule Magnets Containing Alcoholamine Ligands. Australian Journal of Chemistry, 2014, 67, 1581.	0.9	14
45	Superâ€Efficient Platinum Catalyst Derived from a Semiconducting, DMF Solvate: Structural, Spectroscopic, Electrochemical, and Catalytic Characterization. ChemCatChem, 2014, 6, 2345-2353.	3.7	16
46	Li+ and Ca2+ Derivatives of the Isonicotinate-N-oxide Ion Including Single Crystal-to-Single Crystal Transformations. Crystal Growth and Design, 2014, 14, 4602-4609.	3.0	8
47	Synthesis, Structure and Cation-Binding Properties of Some [4 + 4] Metallocyclic MO ₂ ²⁺ (M = Mo or W) Derivatives of 9-Phenyl-2,3,7-trihydroxyfluor-6-one. Incompanic Chemistry, 2014,53nthesis of the control of	4.0	5
48	Cu ₂ cub>1(TCNQF ₄ csup>Ilâe*c/sup>)(MeCN) ₂ (TCNQF ₄ = 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane): Voltammetry, Simulations, Bulk Electrolysis, Spectroscopy, Photoactivity, and X-ray Crystal Structure of the Cu ₂ csup>Icrystalscore Analogue.	4.0	22
49	Inorganic Chemistry, 2014, 53, 3230-3242. Structural and optical investigations of charge transfer complexes involving the F4TCNQ dianion. CrystEngComm, 2014, 16, 5234.	2.6	22
50	Magnetic Coupling between Metal Spins through the 7,7,8,8â€Tetracyanoquinodimethane (TCNQ) Dianion. Chemistry - A European Journal, 2014, 20, 7593-7597.	3.3	17
51	Water-soluble scorpionate ligands and their reactions with molybdenum complexes. Crystal structures of lithium tris(3-isopropylpyrazol-1-yl)methanesulfonate and MoVOCl3(OPPh3)2·MoVlO2Cl2(OPPh3)2. Journal of Coordination Chemistry, 2013, 66, 1252-1263.	2.2	5
52	A {Cr ^{III} ₂ Dy ^{III} ₂ } Singleâ€Molecule Magnet: Enhancing the Blocking Temperature through 3d Magnetic Exchange. Angewandte Chemie - International Edition, 2013, 52, 12014-12019.	13.8	338
53	Copper(ii) coordination polymers of imdcâ^' (H2imdc+ = the 1,3-bis(carboxymethyl)imidazolium cation): unusual sheet interpenetration and an unexpected single crystal-to-single crystal transformation. CrystEngComm, 2013, 15, 9729.	2.6	16
54	PtS-Related {[Cu ^I (F ₄ TCNQ ^{II–})] ^Ⱂ } _Ⱎ Networks. Crystal Growth and Design, 2013, 13, 3018-3027.	3.0	20

#	Article	IF	CITATIONS
55	Redox Activity and Two-Step Valence Tautomerism in a Family of Dinuclear Cobalt Complexes with a Spiroconjugated Bis(dioxolene) Ligand. Journal of the American Chemical Society, 2013, 135, 8304-8323.	13.7	102
56	Fluorite Topology in Lanthanoid Coordination Polymers with Di- and Trimetallic Building Blocks. Crystal Growth and Design, 2012, 12, 4425-4430.	3.0	37
57	Voltammetric reduction and re-oxidation of solid coordination polymers of dihydroxybenzoquinone. Chemical Communications, 2012, 48, 11422.	4.1	27
58	A new type of 3D [(MII)2(TCNQâ^'II)3]2â^'coordination network with spacious channels of hexagonal cross-section generated from TCNQH2. CrystEngComm, 2012, 14, 351-354.	2.6	29
59	A Two-Step Valence Tautomeric Transition in a Dinuclear Cobalt Complex. Inorganic Chemistry, 2012, 51, 3944-3946.	4.0	53
60	3d-Metal derivatives of the [Cul(SO3)4]7â° ion: structure and magnetism. Dalton Transactions, 2012, 41, 4091.	3.3	5
61	A highly symmetric diamond-like assembly of cyclotricatechylene-based tetrahedral cages. Chemical Communications, 2011, 47, 7404.	4.1	31
62	Synthesis, structure and host-guest properties of (Et4N)2[SnivCaii(chloranilate)4], a new type of robust microporous coordination polymer with a 2D square grid structure. Dalton Transactions, 2011, 40, 12242.	3.3	34
63	Highly Efficient Separation of a Solid Mixture of Naphthalene and Anthracene by a Reusable Porous Metalâ \in "Organic Framework through a Single-Crystal-to-Single-Crystal Transformation. Journal of the American Chemical Society, 2011, 133, 11042-11045.	13.7	263
64	Coordination Polymers of 2,5-Dihydroxybenzoquinone and Chloranilic Acid with the (10,3)- <i>a</i> Topology. Crystal Growth and Design, 2011, 11, 2717-2720.	3.0	100
65	Two Cu ₂₁ Clusters with Pseudoâ€ <i>D</i> ₃ Symmetry Derived from the <scp>D</scp> â€6accharate Pentaanion, C ₆ H ₅ O ₈ ^{5â^'} . Chemistry - A European Journal, 2011, 17, 7454-7459.	3.3	6
66	A Simple Lithium(I) Salt with a Microporous Structure and Its Gas Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 1087-1089.	13.8	101
67	Cages with Tetrahedronâ€Like Topology Formed from the Combination of Cyclotricatechylene Ligands with Metal Cations. Angewandte Chemie - International Edition, 2010, 49, 2896-2899.	13.8	55
68	Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations of Two Threeâ€Dimensional Coordination Polymers through Regioselective [2+2] Photodimerization Reactions. Angewandte Chemie - International Edition, 2010, 49, 4767-4770.	13.8	329
69	A 2D hydrogen-bonded network constructed from large organic dications. Journal of Molecular Structure, 2010, 975, 186-189.	3 . 6	2
70	A New Class of Easily Generated TCNQ2â^'-Based Coordination Polymers. Crystal Growth and Design, 2010, 10, 2860-2862.	3.0	30
71	A New Approach to DCNQI-Based Coordination Polymers via DCNQIH ₂ . Crystal Growth and Design, 2010, 10, 1468-1470.	3.0	6
72	Chiral and achiral linear coordination polymers from aldaric acids. CrystEngComm, 2010, 12, 2885.	2.6	8

#	Article	IF	CITATIONS
73	A Doughnut-Like (Mn ^{III}) ₁₂ Metallocycle Formed by a Rigid Angular Bis-Catecholate with a Nanometer-Sized Central Hole. Inorganic Chemistry, 2010, 49, 5953-5956.	4.0	14
74	Closed and Open Clamlike Structures Formed by Hydrogenâ€Bonded Pairs of Cyclotricatechylene Anions that Contain Cationic "Meatâ€. Angewandte Chemie - International Edition, 2009, 48, 3129-3132.	13.8	47
75	Crystallographic studies on a series of salts of 2,3,7-trihydroxy-9-phenyl-fluorone. Journal of Molecular Structure, 2009, 920, 466-471.	3.6	4
76	New Family of Ferric Spin Clusters Incorporating Redox-Active <i>ortho</i> lnorganic Chemistry, 2009, 48, 7765-7781.	4.0	19
77	A Mixedâ€Valence, Hexadecamolybdenum Cluster With an Mo ^{VI} Cubane "Jewel―in a "Settir of Five Molybdate ^{VI} ‣inked Dinuclear Mo ^V Units. Chemistry - A European Journal, 2008, 14, 2805-2810.	ıg― 3.3	12
78	A neutral chiral diamond-like 3D zinc(II) coordination network with sulfasalazine. Journal of Molecular Structure, 2008, 882, 134-139.	3.6	8
79	Coordination polymers constructed by linking metal ions with azodibenzoate anions. CrystEngComm, 2008, 10, 217-231.	2.6	58
80	Trianionic Organoborate Triangles. Inorganic Chemistry, 2008, 47, 9797-9803.	4.0	14
81	Cu(SO ₃) ₄ ⁷⁻ : A Readily Accessible Building Block for New Coordination Polymers. Crystal Growth and Design, 2008, 8, 1288-1293.	3.0	12
82	A New Approach to TCNQ-Based Coordination Polymers via TCNQH2. Crystal Growth and Design, 2008, 8, 1123-1125.	3.0	28
83	Stepwise Guest Exchange in a Cluster-Supported Three-Dimensional Host. Crystal Growth and Design, 2008, 8, 399-401.	3.0	48
84	Construction of Symmetric and Asymmetric Mo/S/Cu Clusters from a Cluster Precursor [Et ₄ N] ₂ [(edt) ₂ Mo ₂ S ₂ ($\hat{1}/4$ -S) ₂] (edt = Ethanedithiolate). Inorganic Chemistry, 2008, 47, 10461-10468.	4.0	6
85	Structural Influence of Cations on the Topology of Ferrocenemonosulfonate Salts. Crystal Growth and Design, 2008, 8, 3193-3199.	3.0	6
86	A Pillared Discrete Bilayer Formed from Guanidinium and Ferrocenedisulfonate Ions:  Synthesis, Crystal Structure, and Initial Electrochemical Properties. Inorganic Chemistry, 2007, 46, 9027-9029.	4.0	8
87	Ferrocene Mono- and Di-Sulfonates as Building Blocks in Hydrogen-Bonded Networks. Australian Journal of Chemistry, 2007, 60, 578.	0.9	6
88	Synthesis and Voltammetry of [bmim]4[î±-S2W18O62] and Related Compounds:Â Rapid Precipitation and Dissolution of Reduced Surface Films. Inorganic Chemistry, 2007, 46, 2530-2540.	4.0	26
89	Ni2(R*COO)4(H2O)(4,4′-bipy)2—a robust homochiral quartz-like network with large chiral channels. CrystEngComm, 2007, 9, 27-29.	2.6	52
90	An Extensive Class of Solids Full of Holes Large Enough To Enclose over 200â€Molecules of H ₂ O. Angewandte Chemie - International Edition, 2007, 46, 8640-8643.	13.8	8

#	Article	IF	CITATIONS
91	Synthesis, structure and luminescent properties of a unique [WS4Cu4]-based supramolecular compound [WS4Cu4(dmpzm)2(dca)2]â^ž. Inorganic Chemistry Communication, 2007, 10, 623-626.	3.9	13
92	The structure-directing influence of guanidinium cations in the crystal structures of [C(NH2)3]2[MII(H2O)4(VO3)4]·4H2O (M=Mn, Co, Ni). Polyhedron, 2007, 26, 300-304.	2.2	5
93	Incorporation of a tripodal ligand with a (N,O,O)-donor set into a new family of nickel and cobalt spin clusters. Polyhedron, 2007, 26, 369-377.	2.2	23
94	Synthesis and structural characterisation of a series of cobalt complexes of N-appended anthracenyl cyclam. Polyhedron, 2007, 26, 1669-1676.	2.2	4
95	Synthesis, structure and magnetic properties of a novel Tb4 spin cluster and synthesis of a Tb chain. Polyhedron, 2007, 26, 3023-3028.	2.2	19
96	Metal Exchange within a Body-Centred Cubic Hydrogen-Bonded Network. Australian Journal of Chemistry, 2007, 60, 68.	0.9	3
97	Mixed-Valent Cobalt Spin Clusters:Â a Hexanuclear Complex and a One-Dimensional Coordination Polymer Comprised of Alternating Hepta- and Mononuclear Fragments. Inorganic Chemistry, 2006, 45, 8950-8957.	4.0	73
98	Coordination networks incorporating the in situ generated ligands [OC(CO2)3]4â^' and [OCH(CO2)2]3â^'. Journal of Molecular Structure, 2006, 796, 2-8.	3.6	9
99	Syntheses and structural studies of platinum(II) complexes of O-methylselenomethionine and related ligands. Inorganica Chimica Acta, 2006, 359, 3252-3256.	2.4	14
100	In Situ Synthesis of Trisubstituted Methanol Ligands and Their Potential as One-Pot Generators of Cubane-like Metal Complexes. Chemistry - A European Journal, 2006, 12, 7095-7102.	3.3	64
101	Guanidinium Ion as a Symmetrical Template in the Formation of Cubic Hydrogen-Bonded Borate Networks with the Boracite Topology. Journal of the American Chemical Society, 2005, 127, 816-817.	13.7	48
102	An unexpected network in guanidinium rhodizonate. CrystEngComm, 2005, 7, 629.	2.6	18
103	Acetic Acid Induced Self-Assembly of Supramolecular Compounds [Et4N]3[(WS4Cu2)2($\hat{1}$ /4-CN)3] \hat{A} -2MeCN and [PPh4][WS4Cu3($\hat{1}$ /4-CN)2] \hat{A} -MeCN from Preformed Clusters [A]2[WS4(CuCN)2] (A = Et4N, PPh4). Inorganic Chemistry, 2005, 44, 3664-3668.	4.0	52
104	Hydrogen-bonded networks from novel platinum(ii) dimers. CrystEngComm, 2005, 7, 701.	2.6	3
105	{[WS4Cu4(4,4′-bpy)4][WS4Cu4l4(4,4′-bpy)2]}â^žâ€"An Unusual 3D Porous Coordination Polymer Formed from the Preformed Cluster[Et4N]4[WS4Cu4l6]. Angewandte Chemie - International Edition, 2004, 43, 4741-4745.	13.8	212
106	Cubic, Hydrogen-Bonded (10,3)-a Networks in the Family [C(NH2)3][N(CH3)4][XO4] (X=S, Cr, and Mo). Angewandte Chemie - International Edition, 2004, 43, 6157-6160.	13.8	36
107	Synthesis of Novel Chiral and Acentric Coordination Polymers by the Reaction of Zinc or Cadmium Salts with Racemic 3-Pyridyl-3-aminopropionic Acid. Chemistry - A European Journal, 2004, 10, 53-60.	3 . 3	101
108	Noncentrosymmetric Organic Solids with Very Strong Harmonic Generation Response. Chemistry - A European Journal, 2004, 10, 2386-2390.	3.3	55

#	Article	IF	Citations
109	Highly Symmetric Networks Derived from Cubane-Related Octametallic Complexes of a New Oxyanion of Carbon, C4O74-, Each Molecule Attached to Eight Neighbors by 24 Equivalent Hydrogen Bonds. Journal of the American Chemical Society, 2004, 126, 8624-8625.	13.7	39
110	Serendipity and Design in the Generation of New Coordination Polymers:Â An Extensive Series of Highly Symmetrical Guanidinium-Templated, Carbonate-Based Networks with the Sodalite Topology. Journal of the American Chemical Society, 2004, 126, 2894-2904.	13.7	91
111	Homochiral Zn and Cd Coordination Polymers Containing Amino Acidâ^Tetrazole Ligands. Inorganic Chemistry, 2003, 42, 7710-7712.	4.0	123
112	Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic. Angewandte Chemie - International Edition, 2003, 42, 1848-1851.	13.8	164
113	New Tricks for an Old Dog: The Carbonate Ion as a Building Block for Networks Including Examples of Composition [Cu6(CO3)12{C(NH2)3}8]4 with the Sodalite Topology. Angewandte Chemie - International Edition, 2003, 42, $1112-1115$.	13.8	57
114	Assembly of a Supramolecular Cube, [(Cp*WS3Cu3)8Cl8(CN)12Li4] from a Preformed Incomplete Cubane-like Compound [PPh4][Cp*WS3(CuCN)3]. Journal of the American Chemical Society, 2003, 125, 12682-12683.	13.7	133
115	Ferroelectric Copper Quinine Complexes. Chemistry of Materials, 2003, 15, 4166-4168.	6.7	69
116	AgC(CN)3-Based Coordination Polymers. Inorganic Chemistry, 2003, 42, 2654-2664.	4.0	108
117	The First Highly Stable Homochiral Olefinâ^'Copper(I) 2D Coordination Polymer Grid Based on Quinine as a Building Block. Organometallics, 2003, 22, 2814-2816.	2.3	47
118	Channel-containing lanthanide mucate structures. CrystEngComm, 2003, 5, 313-317.	2.6	17
119	An Unexpected Zinc Coordination Polymer formed during the Preparation of 5-Substituted 1H-Tetrazoles from a Nitrile in Water. Australian Journal of Chemistry, 2002, 55, 495.	0.9	51
120	Hydrothermal Preparation of Novel Cd(II) Coordination Polymers Employing 5-(4-Pyridyl)tetrazolate as a Bridging Ligand. Inorganic Chemistry, 2002, 41, 6544-6546.	4.0	220
121	α-Polonium coordination networks constructed from bis(imidazole) ligands. CrystEngComm, 2002, 4, 478-482.	2.6	72
122	A Reexamination of the Structure of "Honeycomb Cadmium Cyanide― Journal of Solid State Chemistry, 2001, 156, 51-56.	2.9	13
123	Ni(tpt)(NO3)2—A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. Angewandte Chemie - International Edition, 1999, 38, 1475-1477.	13.8	271
124	A Robust (10,3)-a Network Containing Chiral Micropores in the Agl Coordination Polymer of a Bridging Ligand that Provides Three Bidentate Metal-Binding Sites. Angewandte Chemie - International Edition, 1998, 37, 2656-2659.	13.8	275
125	Topological rearrangement within a single crystal from a honeycomb cadmium cyanide [Cd(CN)2]n 3D net to a diamond net. Journal of the American Chemical Society, 1992, 114, 10641-10643.	13.7	83
126	The Crystal and Molecular-Structure of fac, fac-Mo2(CO)6(Ph2AsCH2CH2PPh2)3 a Case of Chemically Imposed Disorder in the Crystal Structure. Australian Journal of Chemistry, 1992, 45, 941.	0.9	5

#	Article	IF	CITATIONS
127	NMR studies of mercury 1,1-dithiolate tricyclohexylphosphine complexes. The crystal and molecular structure of [Hg(S2CNEt2)(P(C6H11)3)(ClO4)]2·â^1/40.6CH2Cl2. Inorganica Chimica Acta, 1992, 201, 95-100.	2.4	1
128	The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and x-ray crystal structures of $Cd(CN)5/3(OH)1/3.1/3(C6H12N4)$, $Cd(CN)2.1/3(C6H12N4)$, and $Cd(Cn)2.2/3H2O.tBuOH$ (C6H12N4 = hexamethylenetetramine) revealing two topologically equivalent but geometrically different frameworks. Journal of the American Chemical Society, 1991, 113, 3045-3051.	13.7	128
129	A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks. Journal of the American Chemical Society, 1991, 113, 3606-3607.	13.7	247
130	Properties and structure of the cobalt(III) chromate cation, Co(NH3)5CrO4+, as its perchlorate salt. Inorganica Chimica Acta, 1991, 182, 135-138.	2.4	5
131	The Structure of Cadmium Bis(isopropylxanthate)-4,4'-Bipyridine. Australian Journal of Chemistry, 1990, 43, 1759.	0.9	30
132	NMR studies of anionic cadmium and mercury 1,1-dithiolate complexes. Inorganica Chimica Acta, 1989, 162, 211-216.	2.4	8
133	The structure of the cadmium tris(methoxyethylxanthato)anion, Cd(CH3OCH2CH2OCS2)3â^, as its tetraethylammonium salt. Inorganica Chimica Acta, 1988, 150, 147-148.	2.4	10
134	Investigation of a New Xanthate Ligand. The Crystal and Molecular Structures of Nickel and Cadmium (Methoxyethyl)xanthates. Australian Journal of Chemistry, 1988, 41, 1117.	0.9	25
135	Syntheses and NMR-Studies of Cationic Mercury Xanthate, Dithiophosphate and Dithiocarbamate Tricyclohexylphosphine Adducts - the Crystal and Molecular-Structures of [Hg(S2cnet2)(P(C-C6h11)3)2]+ (Cf3so3)- [Hg(S2copri)(P(C-C6h11)3)2]+ (Clo4)ch2cl2 And [Hg(S2p(Opri)2)(P(C-C6h11)3)2]+ (Cf3so3)-, Australian Journal of Chemistry, 1988, 41, 757.	0.9	8
136	N.M.R. Studies of Phosphine Adducts of Mercury and Cadmium Xanthates and Halo Xanthates: Crystal and Molecular Structures of Cd(S2COPri)2PPh3, Hg(S2COPrI)2PPh3 and Hg(S2COPrI)2p(c-C6H11)3. Australian Journal of Chemistry, 1986, 39, 1993.	0.9	8