
Christopher P Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859646/publications.pdf Version: 2024-02-01

CHDISTODHED D HILL

#	Article	IF	CITATIONS
1	Somatostatin venom analogs evolved by fish-hunting cone snails: From prey capture behavior to identifying drug leads. Science Advances, 2022, 8, eabk1410.	10.3	12
2	Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nature Chemical Biology, 2022, 18, 511-519.	8.0	20
3	The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Nucleic Acids Research, 2022, 50, 784-802.	14.5	6
4	Active conformation of the p97-p47 unfoldase complex. Nature Communications, 2022, 13, 2640.	12.8	18
5	Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal. MBio, 2021, 12, e0109821.	4.1	2
6	Activation of the Anti-Oxidative Stress Response Reactivates Latent HIV-1 Through the Mitochondrial Antiviral Signaling Protein Isoform MiniMAVS. Frontiers in Immunology, 2021, 12, 682182.	4.8	3
7	Peptoid Residues Make Diverse, Hyperstable Collagen Triple-Helices. Journal of the American Chemical Society, 2021, 143, 10910-10919.	13.7	28
8	Structure-Based Optimization of Small Molecule Human Galactokinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 13551-13571.	6.4	2
9	Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions. ELife, 2021, 10, .	6.0	20
10	Novel four-disulfide insulin analog with high aggregation stability and potency. Chemical Science, 2020, 11, 195-200.	7.4	20
11	Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. Journal of Biological Chemistry, 2020, 295, 435-443.	3.4	38
12	Same structure, different mechanisms?. ELife, 2020, 9, .	6.0	12
13	Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science, 2019, 365, 502-505.	12.6	138
14	Characterization of resistance to a potent d-peptide HIV entry inhibitor. Retrovirology, 2019, 16, 28.	2.0	5
15	Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4. Biochemical Society Transactions, 2019, 47, 37-45.	3.4	25
16	Phosphorylation of Tyr-950 in the proteasome scaffolding protein RPN2 modulates its interaction with the ubiquitin receptor RPN13. Journal of Biological Chemistry, 2019, 294, 9659-9665.	3.4	13
17	Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker <i>In Vivo</i> . Molecular and Cellular Biology, 2019, 39, .	2.3	20
18	Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. ELife, 2019, 8, .	6.0	41

CHRISTOPHER P HILL

#	Article	IF	CITATIONS
19	Recruitment and Regulation of RPN13 in the 26S Proteasome. FASEB Journal, 2019, 33, 466.1.	0.5	0
20	Vms1p is a release factor for the ribosome-associated quality control complex. Nature Communications, 2018, 9, 2197.	12.8	80
21	Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. Journal of Biological Chemistry, 2017, 292, 9493-9504.	3.4	42
22	Sterol Oxidation Mediates Stress-Responsive Vms1 Translocation to Mitochondria. Molecular Cell, 2017, 68, 673-685.e6.	9.7	33
23	Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. ELife, 2017, 6, .	6.0	123
24	A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. ELife, 2017, 6, .	6.0	61
25	The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets. ELife, 2017, 6, .	6.0	80
26	Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. Journal of Molecular Biology, 2016, 428, 1897-1911.	4.2	56
27	Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Journal of Biological Chemistry, 2015, 290, 13490-13499.	3.4	35
28	FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Molecular Cell, 2015, 60, 294-306.	9.7	143
29	Structural Basis for the Activation and Inhibition of the UCH37 Deubiquitylase. Molecular Cell, 2015, 57, 901-911.	9.7	96
30	Editorial overview: Macromolecular machines and assemblies: Rise and fall at the molecular level. Current Opinion in Structural Biology, 2015, 31, vii-viii.	5.7	2
31	The Oligomeric State of the Active Vps4 AAA ATPase. Journal of Molecular Biology, 2014, 426, 510-525.	4.2	51
32	Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT. Journal of Biological Chemistry, 2013, 288, 10188-10194.	3.4	53
33	Building a super elongation complex for HIV. ELife, 2013, 2, e00577.	6.0	3
34	Structure and function of the membrane deformation AAA ATPase Vps4. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 172-181.	4.1	47
35	Crystal Structures of the S. cerevisiae Spt6 Core and C-Terminal Tandem SH2 Domain. Journal of Molecular Biology, 2011, 408, 697-713.	4.2	54
36	Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding. PLoS ONE, 2011, 6, e27466.	2.5	28

CHRISTOPHER P HILL

#	Article	IF	CITATIONS
37	Structure and Biological Importance of the Spn1-Spt6 Interaction, and Its Regulatory Role in Nucleosome Binding. Molecular Cell, 2010, 40, 725-735.	9.7	66
38	Structural basis for ESCRT-III protein autoinhibition. Nature Structural and Molecular Biology, 2009, 16, 754-762.	8.2	203
39	Cryo-EM Structure of Dodecameric Vps4p and Its 2:1 Complex with Vta1p. Journal of Molecular Biology, 2008, 377, 364-377.	4.2	68
40	Crystal Structure and RNA Binding of the Tex Protein from Pseudomonas aeruginosa. Journal of Molecular Biology, 2008, 377, 1460-1473.	4.2	39
41	Biochemical and Structural Studies of Yeast Vps4 Oligomerization. Journal of Molecular Biology, 2008, 384, 878-895.	4.2	58
42	Structural and Functional Analysis of the Spt16p N-terminal Domain Reveals Overlapping Roles of yFACT Subunits. Journal of Biological Chemistry, 2008, 283, 5058-5068.	3.4	78
43	Crystal Structure and RNA Binding of the Tex Protein from <i>Pseudomonas aeruginosa</i> . FASEB Journal, 2008, 22, 205-205.	0.5	0
44	Structural Basis for Proteasome Activation. FASEB Journal, 2007, 21, A208.	0.5	0
45	The Structure of the yFACT Pob3-M Domain, Its Interaction with the DNA Replication Factor RPA, and a Potential Role in Nucleosome Deposition. Molecular Cell, 2006, 22, 363-374.	9.7	128
46	Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 2005, 6, 610-621.	37.0	696
47	Structural and mechanistic studies of VPS4 proteins. EMBO Journal, 2005, 24, 3658-3669.	7.8	199
48	Crystal Structure of Coproporphyrinogen Oxidase (CPO) Blood, 2004, 104, 52-52.	1.4	0
49	Proteasome degradation: enter the substrate. Trends in Cell Biology, 2003, 13, 550-553.	7.9	56
50	Two-stepping with E1. Nature Structural and Molecular Biology, 2003, 10, 244-246.	8.2	9
51	Crystal Structure of a Biliverdin IXα Reductase Enzyme–Cofactor Complex. Journal of Molecular Biology, 2002, 319, 1199-1210.	4.2	56
52	Structural basis of ubiquitylation. Current Opinion in Structural Biology, 2002, 12, 822-830.	5.7	57
53	Defining polyubiquitin chain topology. , 2001, 8, 650-652.		20
54	Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature, 2000, 407, 409-413.	27.8	461

CHRISTOPHER P HILL

#	Article	IF	CITATIONS
55	Structural basis for the activation of 20S proteasomes by 11S regulators. Nature, 2000, 408, 115-120.	27.8	476
56	Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature, 1999, 400, 472-475.	27.8	105
57	Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO Journal, 1999, 18, 3877-3887.	7.8	280
58	Crystal Structure ofTritrichomonas foetusInosine-5â€~-monophosphate Dehydrogenase and the Enzymeâ^'Product Complexâ€. Biochemistry, 1997, 36, 10666-10674.	2.5	57
59	Structure of the Carboxyl-Terminal Dimerization Domain of the HIV-1 Capsid Protein. Science, 1997, 278, 849-853.	12.6	559
60	Structure of the proteasome activator REGα (PA28α). Nature, 1997, 390, 639-643.	27.8	179
61	Characterization and crystallization of human uroporphyrinogen decarboxylase. Protein Science, 1997, 6, 1343-1346.	7.6	37
62	Crystal structure of cyclophilin A complexed with a binding site peptide from the HIVâ€1 capsid protein. Protein Science, 1997, 6, 2297-2307.	7.6	84
63	The proteasome 11S regulator subunit REGα (PA28α) is a heptamer. Protein Science, 1997, 6, 2469-2473.	7.6	35
64	Comparison of the NMR and Xâ€ray structures of the HIVâ€1 matrix protein: Evidence for conformational changes during viral assembly. Protein Science, 1996, 5, 2391-2398.	7.6	67