
Clay C C Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596339/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station. Journal of Fungi (Basel, Switzerland), 2022, 8, 165.	3.5	5
2	Characterization of a silent azaphilone biosynthesis gene cluster in Aspergillus terreus NIH 2624. Fungal Genetics and Biology, 2022, 160, 103694.	2.1	2
3	Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Frontiers in Microbiology, 2021, 12, 639396.	3.5	46

4 Looking Ahead to 2030: Survey of Evolving Needs in Pharmacy Education. Pharmacy (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 T

5	Advances in space microbiology. IScience, 2021, 24, 102395.	4.1	42
6	Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genetics and Biology, 2021, 152, 103567.	2.1	13
7	The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in <i>Aspergillus nidulans</i> . Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	2
8	An <i>Aspergillus nidulans</i> Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synthetic Biology, 2021, 10, 173-182.	3.8	14
9	Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers, 2020, 12, 2221.	3.7	17
10	Natural products development under epigenetic modulation in fungi. Phytochemistry Reviews, 2020, 19, 1323-1340.	6.5	14
11	Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains. MBio, 2020, 11, .	4.1	32
12	Metabolomic Analysis of Aspergillus niger Isolated From the International Space Station Reveals Enhanced Production Levels of the Antioxidant Pyranonigrin A. Frontiers in Microbiology, 2020, 11, 931.	3.5	16
13	Epigenetic Manipulation Induces the Production of Coumarinâ€Type Secondary Metabolite from <i>Arthrobotrys foliicola</i> . Israel Journal of Chemistry, 2019, 59, 432-438.	2.3	6
14	Overexpression of an LaeA-like Methyltransferase Upregulates Secondary Metabolite Production in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2019, 14, 1643-1651.	3.4	21
15	Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Frontiers in Microbiology, 2019, 10, 1013.	3.5	36
16	Recent advances in the genome mining of <i>Aspergillus</i> secondary metabolites (covering) Tj ETQq0 0 0 r	gBT /Oyerlock	10 Tf 50 1

17	Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genetics and Biology, 2019, 124, 39-46.	2.1	28
18	International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2019, 103, 1363-1377.	3.6	32

CLAY C C WANG

#	Article	IF	CITATIONS
19	Discovery and Elucidation of the Biosynthesis of Aspernidgulenes: Novel Polyenes from <i>Aspergillus Nidulans</i> by Using Serial Promoter Replacement. ChemBioChem, 2019, 20, 329-334.	2.6	12
20	Matingâ€ŧype factorâ€specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2018, 110, 1045-1065.	2.5	15
21	Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2018, 13, 3193-3205.	3.4	35
22	Characterization of Aspergillus niger Isolated from the International Space Station. MSystems, 2018, 3,	3.8	42
23	Genome-based deletion analysis in Aspergillus terreus reveals the acetylaranotin bis-thiomethyltransferase gene. Fungal Genetics and Biology, 2018, 119, 1-6.	2.1	5
24	Expanding the Chemical Space of Nonribosomal Peptide Synthetase-like Enzymes by Domain and Tailoring Enzyme Recombination. Organic Letters, 2018, 20, 5082-5085.	4.6	7
25	Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan. Fungal Genetics and Biology, 2017, 101, 1-6.	2.1	21
26	Draft Genome Sequences of Several Fungal Strains Selected for Exposure to Microgravity at the International Space Station. Genome Announcements, 2017, 5, .	0.8	17
27	Discovery of McrA, a master regulator of <i>Aspergillus</i> secondary metabolism. Molecular Microbiology, 2017, 103, 347-365.	2.5	73
28	The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS ONE, 2017, 12, e0175471.	2.5	45
29	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie, 2016, 128, 1694-1697.	2.0	8
30	Development of Genetic Dereplication Strains in <i>Aspergillus nidulans</i> Results in the Discovery of Aspercryptin. Angewandte Chemie - International Edition, 2016, 55, 1662-1665.	13.8	139
31	Engineering Fungal Nonribosomal Peptide Synthetase-like Enzymes by Heterologous Expression and Domain Swapping. Organic Letters, 2016, 18, 6236-6239.	4.6	27
32	Draft Genome Sequences of Two Aspergillus fumigatus Strains, Isolated from the International Space Station. Genome Announcements, 2016, 4, .	0.8	16
33	Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station. MSphere, 2016, 1, .	2.9	108
34	Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in <i>Aspergillus nidulans</i> Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chemical Biology, 2016, 11, 2275-2284.	3.4	105
35	Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus. Fungal Genetics and Biology, 2016, 89, 84-88.	2.1	24
36	Microbial metabolomics in open microscale platforms. Nature Communications, 2016, 7, 10610.	12.8	86

CLAY C C WANG

#	Article	IF	CITATIONS
37	Biosynthetic Pathway of the Reduced Polyketide Product Citreoviridin in <i>Aspergillus terreus</i> var. <i>aureus</i> Revealed by Heterologous Expression in <i>Aspergillus nidulans</i> . Organic Letters, 2016, 18, 1366-1369.	4.6	57
38	Spatial regulation of a common precursor from two distinct genes generates metabolite diversity. Chemical Science, 2015, 6, 5913-5921.	7.4	31
39	Azaphilones Inhibit Tau Aggregation and Dissolve Tau Aggregates <i>in Vitro</i> . ACS Chemical Neuroscience, 2015, 6, 751-760.	3.5	42
40	Genome mining and molecular characterization of the biosynthetic gene cluster of a diterpenic meroterpenoid, 15-deoxyoxalicine B, in Penicillium canescens. Chemical Science, 2015, 6, 6537-6544.	7.4	33
41	Inhibition of Tau Aggregation by Three Aspergillus nidulans Secondary Metabolites: 2,ï‰-Dihydroxyemodin, Asperthecin, and Asperbenzaldehyde. Planta Medica, 2014, 80, 77-85.	1.3	38
42	Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Frontiers in Microbiology, 2014, 5, 717.	3.5	51
43	Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in <i>Aspergillus nidulans</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 433-442.	3.0	115
44	An Efficient System for Heterologous Expression of Secondary Metabolite Genes in Aspergillus nidulans. Journal of the American Chemical Society, 2013, 135, 7720-7731.	13.7	180
45	bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology (United Kingdom), 2013, 159, 77-88.	1.8	89
46	Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi. Methods in Enzymology, 2012, 517, 303-324.	1.0	116
47	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	2.5	116
48	Advances in Aspergillus secondary metabolite research in the post-genomic era. Natural Product Reports, 2012, 29, 351.	10.3	233
49	Identification and molecular genetic analysis of the cichorine gene cluster in Aspergillus nidulans. MedChemComm, 2012, 3, 997.	3.4	48
50	Reengineering an Azaphilone Biosynthesis Pathway in <i>Aspergillus nidulans</i> To Create Lipoxygenase Inhibitors. Organic Letters, 2012, 14, 972-975.	4.6	38
51	Two Separate Gene Clusters Encode the Biosynthetic Pathway for the Meroterpenoids Austinol and Dehydroaustinol in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 4709-4720.	13.7	223
52	llluminating the Diversity of Aromatic Polyketide Synthases in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2012, 134, 8212-8221.	13.7	168
53	Prevention of chronic HBV infection induced hepatocellular carcinoma development by using antiplatelet drugs. Hepatobiliary Surgery and Nutrition, 2012, 1, 57-8.	1.5	3
54	Genome-Based Deletion Analysis Reveals the Prenyl Xanthone Biosynthesis Pathway in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2011, 133, 4010-4017.	13.7	154

CLAY C C WANG

#	Article	IF	CITATIONS
55	Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, 2011, 15, 137-143.	6.1	181
56	Asperfuranone from <i>Aspergillus nidulans</i> Inhibits Proliferation of Human Nonâ€Small Cell Lung Cancer A549 Cells via Blocking Cell Cycle Progression and Inducing Apoptosis. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 583-589.	2.5	22
57	Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology (United Kingdom), 2010, 156, 3522-3531.	1.8	29
58	Characterization of the <i>Aspergillus nidulans</i> Monodictyphenone Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 2067-2074.	3.1	159
59	Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464.	8.0	358
60	A Gene Cluster Containing Two Fungal Polyketide Synthases Encodes the Biosynthetic Pathway for a Polyketide, Asperfuranone, in <i>Aspergillus nidulans</i> . Journal of the American Chemical Society, 2009, 131, 2965-2970.	13.7	292
61	Molecular Genetic Mining of the Aspergillus Secondary Metabolome: Discovery of the Emericellamide Biosynthetic Pathway. Chemistry and Biology, 2008, 15, 527-532.	6.0	193
62	Norsolorinic Acid from <i>Aspergillus nidulans</i> Inhibits the Proliferation of Human Breast Adenocarcinoma MCFâ€7 Cells via Fasâ€Mediated Pathway. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 491-497.	2.5	18
63	NORSOLORINIC ACID INHIBITS PROLIFERATION OF T24 HUMAN BLADDER CANCER CELLS BY ARRESTING THE CELL CYCLE AT THE G _O /G ₁ PHASE AND INDUCING A FAS/MEMBRANEâ€BOUND FAS LIGANDâ€MEDIATED APOPTOTIC PATHWAY. Clinical and Experimental Pharmacology and Physiology, 2008, 35. 1301-1308.	1.9	13
64	Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Letters, 2008, 259, 82-98.	7.2	189
65	Identification and Characterization of the Asperthecin Gene Cluster of <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2008, 74, 7607-7612.	3.1	149
66	The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. Frontiers in Microbiology, 0, 13, .	3.5	7