
Jan A Delcour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science and Technology, 2005, 16, 12-30.	7.8	739
2	Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. Journal of Cereal Science, 2002, 35, 225-243.	1.8	573
3	Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science, 2010, 51, 238-247.	1.8	565
4	Hydrothermal Modifications of Granular Starch, with Retention of the Granular Structure:Â A Review. Journal of Agricultural and Food Chemistry, 1998, 46, 2895-2905.	2.4	496
5	Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Critical Reviews in Food Science and Nutrition, 2011, 51, 178-194.	5.4	458
6	Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. Critical Reviews in Food Science and Nutrition, 2002, 42, 179-208.	5.4	395
7	Wheat Gluten Functionality as a Quality Determinant in Cereal-Based Food Products. Annual Review of Food Science and Technology, 2012, 3, 469-492.	5.1	391
8	Principles of Cereal Science and Technology. , 2010, , .		332
9	Non-digestible Oligosaccharides with Prebiotic Properties. Critical Reviews in Food Science and Nutrition, 2006, 46, 459-471.	5.4	276
10	Systemic availability and metabolism of colonicâ€derived shortâ€chain fatty acids in healthy subjects: a stable isotope study. Journal of Physiology, 2017, 595, 541-555.	1.3	254
11	The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Critical Reviews in Food Science and Nutrition, 2008, 48, 824-839.	5.4	249
12	Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke, 2015, 67, 14-29.	1.1	245
13	From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers, 2004, 58, 245-266.	5.1	244
14	Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. Journal of Cereal Science, 2005, 41, 221-237.	1.8	237
15	Lipids in bread making: Sources, interactions, and impact on bread quality. Journal of Cereal Science, 2011, 54, 266-279.	1.8	233
16	Amylases and bread firming – an integrated view. Journal of Cereal Science, 2009, 50, 345-352.	1.8	226
17	Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science, 1995, 22, 129-138.	1.8	224
18	Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critical Reviews in Biotechnology, 2010, 30, 176-191.	5.1	216

#	Article	IF	CITATIONS
19	Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 786-800.	5.9	214
20	Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9740-9749.	2.4	211
21	Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. Journal of Cereal Science, 2003, 38, 43-52.	1.8	210
22	An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers, 2006, 64, 364-375.	5.1	207
23	Ingredient functionality in batter type cake making. Trends in Food Science and Technology, 2013, 30, 6-15.	7.8	202
24	The role of sugar and fat in sugar-snap cookies: Structural and textural properties. Journal of Food Engineering, 2009, 90, 400-408.	2.7	198
25	Effect of milling on colour and nutritional properties of rice. Food Chemistry, 2007, 100, 1496-1503.	4.2	196
26	Wheat (<i>Triticum aestivum L</i> .) Bran in Bread Making: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 28-42.	5.9	190
27	Rye (Secale cerealeL.) Arabinoxylans: A Critical Review. Journal of Cereal Science, 1996, 24, 1-14.	1.8	189
28	Structural Characterisation of Water-extractable and Water-unextractable Arabinoxylans in Wheat Bran. Journal of Cereal Science, 2002, 35, 315-326.	1.8	187
29	Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science and Technology, 2007, 18, 64-71.	7.8	187
30	Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9767-9776.	2.4	185
31	Assignments of Proton Populations in Dough and Bread Using NMR Relaxometry of Starch, Gluten, and Flour Model Systems. Journal of Agricultural and Food Chemistry, 2012, 60, 5461-5470.	2.4	182
32	Rice starches. II. Structural aspects provide insight into swelling and pasting properties. Journal of Cereal Science, 2003, 38, 53-59.	1.8	181
33	The effects of malting and mashing on barley protein extractability. Journal of Cereal Science, 2006, 44, 203-211.	1.8	176
34	Structurally Different Wheat-Derived Arabinoxylooligosaccharides Have Different Prebiotic and Fermentation Properties in Rats1,. Journal of Nutrition, 2008, 138, 2348-2355.	1.3	176
35	Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 2009, 69, 231-242.	1.3	166
36	Mechanism of gliadin–glutenin cross-linking during hydrothermal treatment. Food Chemistry, 2008, 107, 753-760.	4.2	164

#	Article	IF	CITATIONS
37	Molecular Basis of Processing Wheat Gluten toward Biobased Materials. Biomacromolecules, 2010, 11, 533-541.	2.6	163
38	Amylose–lipid complexation: a new fractionation method. Carbohydrate Polymers, 2004, 56, 447-458.	5.1	158
39	Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 305-328.	5.9	155
40	The role of gluten in a pound cake system: A model approach based on gluten–starch blends. Food Chemistry, 2008, 110, 909-915.	4.2	152
41	Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9777-9784.	2.4	152
42	Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9758-9766.	2.4	150
43	A Critical Look at Prebiotics Within the Dietary Fiber Concept. Annual Review of Food Science and Technology, 2016, 7, 167-190.	5.1	149
44	The impact of the protein network on the pasting and cooking properties of dry pasta products. Food Chemistry, 2010, 120, 371-378.	4.2	147
45	Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking $\hat{a} \in A$ review. Journal of Cereal Science, 2009, 50, 11-21.	1.8	146
46	Fractionationâ^'Reconstitution Experiments Provide Insight into the Role of Endoxylanases in Bread-Making. Journal of Agricultural and Food Chemistry, 1999, 47, 1870-1877.	2.4	145
47	Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (AcipenserÂbaerii). Fish and Shellfish Immunology, 2013, 35, 766-775.	1.6	145
48	Impact of Proteins on Pasting and Cooking Properties of Nonparboiled and Parboiled Rice. Cereal Chemistry, 2005, 82, 468-474.	1.1	144
49	Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination, 2006, 191, 245-253.	4.0	144
50	Arabinoxylanâ€oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microbial Biotechnology, 2009, 2, 101-113.	2.0	144
51	Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. Journal of Cereal Science, 2003, 38, 61-68.	1.8	143
52	Enzymatic Hydrolysis of Brewers' Spent Grain Proteins and Technofunctional Properties of the Resulting Hydrolysates. Journal of Agricultural and Food Chemistry, 2007, 55, 8703-8710.	2.4	138
53	Starch gelatinization and amylose–lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. Journal of Cereal Science, 2005, 42, 334-343.	1.8	136
54	Use of Two Endoxylanases with Different Substrate Selectivity for Understanding Arabinoxylan Functionality in Wheat Flour Breadmaking. Cereal Chemistry, 2001, 78, 564-571.	1.1	135

#	Article	IF	CITATIONS
55	Triticum aestivum Xylanase Inhibitor (TAXI), a New Class of Enzyme Inhibitor Affecting Breadmaking Performance. Journal of Cereal Science, 1999, 30, 39-43.	1.8	129
56	Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chemistry, 2009, 112, 831-837.	4.2	129
57	The impact of heating and cooling on the physico-chemical properties of wheat gluten–water suspensions. Journal of Cereal Science, 2005, 42, 327-333.	1.8	128
58	The breakage susceptibility of raw and parboiled rice: A review. Journal of Food Engineering, 2013, 117, 304-315.	2.7	127
59	Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients, 2015, 7, 8916-8929.	1.7	127
60	TLXI, a novel typeÂof xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochemical Journal, 2007, 403, 583-591.	1.7	125
61	Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. British Journal of Nutrition, 2010, 103, 703-713.	1.2	125
62	Acid hydrolysis of native and annealed wheat, potato and pea starches—DSC melting features and chain length distributions of lintnerised starches. Carbohydrate Research, 1998, 308, 359-371.	1.1	124
63	From Field Barley to Malt: Detection and Specification of Microbial Activity for Quality Aspects. Critical Reviews in Microbiology, 1999, 25, 121-153.	2.7	122
64	Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. Journal of the Science of Food and Agriculture, 2006, 86, 1722-1731.	1.7	122
65	Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. Journal of Chromatography A, 2009, 1216, 5557-5562.	1.8	122
66	Alkaline Hydrogen Peroxide Extraction of Wheat Bran Non-starch Polysaccharides. Journal of Cereal Science, 2001, 34, 29-35.	1.8	119
67	Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition and Food Research, 2011, 55, 1862-1874.	1.5	119
68	Proteins of Amaranth (<i>Amaranthus</i> spp.), Buckwheat (<i>Fagopyrum</i> spp.), and Quinoa (<i>Chenopodium</i> spp.): A Food Science and Technology Perspective. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 39-58.	5.9	119
69	Study of hydration properties of wheat bran as a function of particle size. Food Chemistry, 2015, 179, 296-304.	4.2	118
70	Determination of reducing end sugar residues in oligo- and polysaccharides by gas–liquid chromatography. Journal of Chromatography A, 2000, 866, 97-104.	1.8	117
71	Relative Activity of Endoxylanases Towards Water-extractable and Water-unextractable Arabinoxylan. Journal of Cereal Science, 2001, 33, 301-312.	1.8	117
72	The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. Journal of Cereal Science, 2014, 60, 507-513.	1.8	114

#	Article	IF	CITATIONS
73	Structural Basis for Inhibition of Aspergillus niger Xylanase by Triticum aestivum Xylanase Inhibitor-I. Journal of Biological Chemistry, 2004, 279, 36022-36028.	1.6	113
74	Current and forward looking experimental approaches in gluten-free bread making research. Journal of Cereal Science, 2016, 67, 92-111.	1.8	113
75	Contents and Structural Features of Water-Extractable Arabinogalactan in Wheat Flour Fractions. Journal of Agricultural and Food Chemistry, 1997, 45, 1998-2002.	2.4	112
76	Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochemical Journal, 2001, 353, 239-244.	1.7	111
77	Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydrate Polymers, 2005, 62, 283-292.	5.1	111
78	Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: Rheological, biochemical and microstructural background. Food Chemistry, 2010, 119, 1465-1473.	4.2	110
79	Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. Journal of the Chemical Society Perkin Transactions 1, 1983, , 1711.	0.9	109
80	Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydrate Polymers, 2005, 60, 379-389.	5.1	108
81	Dietary Inclusion of Wheat Bran Arabinoxylooligosaccharides Induces Beneficial Nutritional Effects in Chickens. Cereal Chemistry, 2008, 85, 607-613.	1.1	108
82	Biopolymer Interactions, Water Dynamics, and Bread Crumb Firming. Journal of Agricultural and Food Chemistry, 2013, 61, 4646-4654.	2.4	108
83	Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. British Journal of Nutrition, 2012, 108, 2229-2242.	1.2	106
84	The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-β-D-glucan levels. Journal of Cereal Science, 2004, 40, 257-267.	1.8	104
85	Properties of TAXI-type endoxylanase inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 213-221.	1.1	104
86	Amylopectin Molecular Structure Reflected in Macromolecular Organization of Granular Starch. Biomacromolecules, 2004, 5, 1775-1786.	2.6	104
87	Antifirming Effects of Starch Degrading Enzymes in Bread Crumb. Journal of Agricultural and Food Chemistry, 2009, 57, 2346-2355.	2.4	104
88	Fate of Starch in Food Processing: From Raw Materials to Final Food Products. Annual Review of Food Science and Technology, 2010, 1, 87-111.	5.1	104
89	Physico-Chemical Properties of Cassava Starch. Starch/Staerke, 1998, 50, 58-64.	1.1	103
90	Impact of Browning Reactions and Bran Pigments on Color of Parboiled Rice. Journal of Agricultural and Food Chemistry, 2006, 54, 9924-9929.	2.4	103

6

#	Article	IF	CITATIONS
91	Gelatinization of Starch in Excess Water:Â Beyond the Melting of Lamellar Crystallites. A Combined Wide- and Small-Angle X-ray Scattering Study. Biomacromolecules, 2006, 7, 2624-2630.	2.6	103
92	Rational Design of Amyloid‣ike Fibrillary Structures for Tailoring Food Protein Technoâ€Functionality and Their Potential Health Implications. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 84-105.	5.9	101
93	Arabinoxylan Solubilization and Inhibition of the Barley Malt Xylanolytic System by Wheat During Mashing with Wheat Wholemeal Adjunct: Evidence for a New Class of Enzyme Inhibitors in Wheat. Journal of the American Society of Brewing Chemists, 1997, 55, 153-156.	0.8	100
94	Distribution and Structural Variation of Arabinoxylans in Common Wheat Mill Streams. Journal of Agricultural and Food Chemistry, 1999, 47, 271-275.	2.4	100
95	Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 2013, 136, 1243-1248.	4.2	99
96	Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydrate Research, 1997, 297, 347-356.	1.1	95
97	Physicochemical and Bread-Making Properties of Low Molecular Weight Wheat-Derived Arabinoxylans. Journal of Agricultural and Food Chemistry, 1998, 46, 4066-4073.	2.4	95
98	Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chemistry, 2013, 136, 301-308.	4.2	95
99	Cereal grain fructans: Structure, variability and potential health effects. Trends in Food Science and Technology, 2015, 43, 32-42.	7.8	95
100	Impact of Redox Agents on the Extractability of Gluten Proteins during Bread Making. Journal of Agricultural and Food Chemistry, 2007, 55, 5320-5325.	2.4	91
101	Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohydrate Research, 1998, 306, 1-10.	1.1	90
102	The role of gluten in a sugar-snap cookie system: A model approach based on gluten–starch blends. Journal of Cereal Science, 2008, 48, 863-869.	1.8	90
103	A NEW COLOURIMETRIC ASSAY FOR FLAVANOIDS IN PILSNER BEERS. Journal of the Institute of Brewing, 1985, 91, 37-40.	0.8	89
104	Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish and Shellfish Immunology, 2012, 33, 718-724.	1.6	89
105	Amyloseâ^'Lipid Complexes as Controlled Lipid Release Agents during Starch Gelatinization and Pasting. Journal of Agricultural and Food Chemistry, 2006, 54, 1493-1499.	2.4	88
106	Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof. Food Hydrocolloids, 2010, 24, 307-317.	5.6	88
107	Starch blends and their physicochemical properties. Starch/Staerke, 2015, 67, 1-13.	1.1	88
108	Arabinoxylooligosaccharides from Wheat Bran Inhibit Salmonella Colonization in Broiler Chickens. Poultry Science, 2008, 87, 2329-2334.	1.5	87

#	Article	IF	CITATIONS
109	A model approach to starch and protein functionality in a pound cake system. Food Chemistry, 2010, 120, 44-51.	4.2	87
110	Designing New Materials from Wheat Protein. Biomacromolecules, 2004, 5, 1262-1269.	2.6	86
111	How to impact gluten protein network formation during wheat flour dough making. Current Opinion in Food Science, 2019, 25, 88-97.	4.1	86
112	Extensive Dry Ball Milling of Wheat and Rye Bran Leads to <i>in Situ</i> Production of Arabinoxylan Oligosaccharides through Nanoscale Fragmentation. Journal of Agricultural and Food Chemistry, 2009, 57, 8467-8473.	2.4	85
113	A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls. Australian Journal of Chemistry, 2009, 62, 533.	0.5	84
114	Gelatinisation related structural aspects of small and large wheat starch granules. Carbohydrate Polymers, 2005, 62, 170-181.	5.1	82
115	Functionality of Short Chain Amyloseâ ``Lipid Complexes in Starchâ ``Water Systems and Their Impact on in Vitro Starch Degradation. Journal of Agricultural and Food Chemistry, 2010, 58, 1939-1945.	2.4	81
116	A Simple and Accurate Method for Determining Wheat Grain Fructan Content and Average Degree of Polymerization. Journal of Agricultural and Food Chemistry, 2012, 60, 2102-2107.	2.4	81
117	Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Critical Reviews in Biotechnology, 2012, 32, 93-107.	5.1	80
118	Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (<i>Acipenser) Tj ETQq0 0 0 rgf Microbiology Ecology, 2013, 86, 357-371.</i>	3T /Overloc 1.3	ck 10 Tf 50 38 80
119	Endogenous redox agents and enzymes that affect protein network formation during breadmaking – A review. Journal of Cereal Science, 2009, 50, 1-10.	1.8	79
120	Reaction Kinetics of Gliadinâ ``Glutenin Cross-Linking in Model Systems and in Bread Making. Journal of Agricultural and Food Chemistry, 2008, 56, 10660-10666.	2.4	78
121	Lipases and Their Functionality in the Production of Wheatâ€Based Food Systems. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 978-989.	5.9	78
122	Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocolloids, 2010, 24, 424-433.	5.6	77
123	Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9353-9361.	2.4	76
124	Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11, 71-83.	1.4	76
125	Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chemistry, 2014, 151, 421-428.	4.2	76
126	Carotenoids in Raw and Parboiled Brown and Milled Rice. Journal of Agricultural and Food Chemistry, 2008, 56, 11914-11919.	2.4	75

#	Article	IF	CITATIONS
127	Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochemical Journal, 2001, 353, 239.	1.7	74
128	Potential role of glycosidase inhibitors in industrial biotechnological applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 275-287.	1.1	74
129	The Influence of Prebiotic Arabinoxylan Oligosaccharides on Microbiota Derived Uremic Retention Solutes in Patients with Chronic Kidney Disease: A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0153893.	1.1	74
130	Occurrence of proteinaceous endoxylanase inhibitors in cereals. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 193-202.	1.1	73
131	Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9372-9383.	2.4	73
132	Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 2014, 10, 1-12.	1.6	73
133	Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochemical Journal, 2009, 418, 39-47.	1.7	72
134	Technologies for enhanced exploitation of the health-promoting potential of cereals. Trends in Food Science and Technology, 2012, 25, 78-86.	7.8	72
135	Element distribution and iron speciation in mature wheat grains (<i>Triticum aestivum</i> L.) using synchrotron Xâ€ray fluorescence microscopy mapping and Xâ€ray absorption nearâ€edge structure (XANES) imaging. Plant, Cell and Environment, 2016, 39, 1835-1847.	2.8	72
136	Effects of dietary inclusion of xylooligo―saccharides, arabinoxylooligosaccha―rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. Journal of the Science of Food and Agriculture, 2008, 88, 2517-2522.	1.7	71
137	Impact of parboiling conditions on Maillard precursors and indicators in long-grain rice cultivars. Food Chemistry, 2008, 110, 916-922.	4.2	71
138	Amylase action pattern on starch polymers. Biologia (Poland), 2008, 63, 989-999.	0.8	71
139	Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47, 180-189.	1.8	71
140	In Vitro Fermentation of Arabinoxylan Oligosaccharides and Low Molecular Mass Arabinoxylans with Different Structural Properties from Wheat (Triticum aestivum L.) Bran and Psyllium (Plantago ovata) Tj ETQq0 () 0 æg8T /C)ve r bock 10 Tf
141	Solubilisation and Changes in Molecular Weight Distribution of Arabinoxylans and Protein in Wheat Flours During Bread-Making, and the Effects of Endogenous Arabinoxylan Hydrolysing Enzymes. Journal of Cereal Science, 1997, 26, 55-66.	1.8	70
142	Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends in Food Science and Technology, 2009, 20, 495-510.	7.8	70
143	β-Elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. Journal of Cereal Science, 2010, 52, 362-367.	1.8	70
144	Foaming Properties of Wheat Gliadin. Journal of Agricultural and Food Chemistry, 2011, 59, 1370-1375.	2.4	70

#	Article	IF	CITATIONS
145	Extractability and chromatographic separation of rice endosperm proteins. Journal of Cereal Science, 2006, 44, 68-74.	1.8	69
146	Relative contribution of wheat flour constituents to Solvent Retention Capacity profiles of European wheats. Journal of Cereal Science, 2011, 53, 312-318.	1.8	68
147	Arabinoxylan and Arabinoxylan Hydrolysing Activities in Barley Malts and Worts Derived from Them. Journal of Cereal Science, 1997, 26, 67-74.	1.8	67
148	Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chemistry, 2012, 135, 713-721.	4.2	67
149	Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 2014, 41, 298-308.	5.6	67
150	Purification and Characterization of a β-D-Xylosidase and an Endo-Xylanase from Wheat Flour. Plant Physiology, 1997, 113, 377-386.	2.3	66
151	Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochemical and Biophysical Research Communications, 2010, 402, 644-650.	1.0	66
152	Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Scientific Reports, 2015, 5, 12210.	1.6	66
153	Effect of Processing Conditions on Color Change of Brown and Milled Parboiled Rice. Cereal Chemistry, 2006, 83, 80-85.	1.1	65
154	Wheat (<i>Triticum aestivum</i> L. and <i>T. turgidum</i> L. ssp. <i>durum</i>) Kernel Hardness: II. Implications for Endâ€Product Quality and Role of Puroindolines Therein. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 427-438.	5.9	65
155	Variation in the degree of D-Xylose substitution in arabinoxylans extracted from a European wheat flour. Journal of Cereal Science, 1995, 22, 73-84.	1.8	64
156	Potential physiological role of plant glycosidase inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 265-274.	1.1	64
157	Crystallographic analysis shows substrate binding at the â^'3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases. Biochemical Journal, 2008, 410, 71-79.	1.7	64
158	Isolation of cereal arabinogalactan-peptides and structural comparison of their carbohydrate and peptide moieties. Journal of Cereal Science, 2005, 41, 59-67.	1.8	63
159	Extractability and chemical and enzymic degradation of psyllium (Plantago ovata Forsk) seed husk arabinoxylans. Food Chemistry, 2009, 112, 812-819.	4.2	63
160	Study of grain cell wall structures by microscopic analysis with four different staining techniques. Journal of Cereal Science, 2011, 54, 363-373.	1.8	63
161	Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on overnight glucose tolerance and markers of gut fermentation in healthy young adults. European Journal of Nutrition, 2016, 55, 1661-1670.	1.8	63
162	Use of Psychrophilic Xylanases Provides Insight into the Xylanase Functionality in Bread Making. Journal of Agricultural and Food Chemistry, 2011, 59, 9553-9562.	2.4	62

#	Article	IF	CITATIONS
163	Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures <i>in vitro</i> . Journal of Applied Microbiology, 2009, 106, 932-940.	1.4	61
164	Consumption of Breads Containing In Situ–Produced Arabinoxylan Oligosaccharides Alters Gastrointestinal Effects in Healthy Volunteers3. Journal of Nutrition, 2012, 142, 470-477.	1.3	61
165	Wheat (<i>Triticum aestivum</i> L. and <i>T. turgidum</i> L. ssp. <i>durum</i>) Kernel Hardness: I. Current View on the Role of Puroindolines and Polar Lipids. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 413-426.	5.9	61
166	Physical and Molecular Changes during the Storage of Cluten-Free Rice and Oat Bread. Journal of Agricultural and Food Chemistry, 2014, 62, 5682-5689.	2.4	61
167	Impact of annealing on the susceptibility of wheat, potato and pea starches to hydrolysis with pancreatin. Carbohydrate Research, 1997, 305, 193-207.	1.1	60
168	A lipase based approach for studying the role of wheat lipids in bread making. Food Chemistry, 2014, 156, 190-196.	4.2	60
169	Insight into the Distribution of Arabinoxylans, Endoxylanases, and Endoxylanase Inhibitors in Industrial Wheat Roller Mill Streams. Journal of Agrio Chemistry, 2006, 54, 8521-8529.	cultural and	d Fasod
170	Structural and thermal transitions during the conversion from native to granular cold-water swelling maize starch. Carbohydrate Polymers, 2014, 114, 196-205.	5.1	59
171	In Vitro Polymerization of Wheat Glutenin Subunits with Inorganic Oxidizing Agents. I. Comparison of Single-Step and Stepwise Oxidations of High Molecular Weight Glutenin Subunits. Cereal Chemistry, 2000, 77, 582-588.	1.1	58
172	Isolation and characterisation of rye starch. Journal of Cereal Science, 2004, 39, 85-90.	1.8	58
173	MALT DIASTATIC ACTIVITY. PART II. A MODIFIED EBC DIASTATIC POWER ASSAY FOR THE SELECTIVE ESTIMATION OFBET A-AMYLASE ACTIVITY, TIME AND TEMPERATURE DEPENDENCE OF THE RELEASE OF REDUCING SUGARS. Journal of the Institute of Brewing, 1987, 93, 296-301.	0.8	57
174	Impact of Maltodextrins and Antistaling Enzymes on the Differential Scanning Calorimetry Staling Endotherm of Baked Bread Doughs. Journal of Agricultural and Food Chemistry, 1999, 47, 737-741.	2.4	57
175	Presence of Amylose Crystallites in Parboiled Rice. Journal of Agricultural and Food Chemistry, 2009, 57, 3210-3216.	2.4	57
176	Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chemistry, 2012, 131, 111-118.	4.2	57
177	Wheat milling by-products and their impact on bread making. Food Chemistry, 2015, 187, 280-289.	4.2	57
178	Prebiotics, Fermentable Dietary Fiber, and Health Claims. Advances in Nutrition, 2016, 7, 1-4.	2.9	57
179	Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocolloids, 2018, 79, 352-370.	5.6	57
180	Conditions Governing Food Protein Amyloid Fibril Formation. Part II: Milk and Legume Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1277-1291.	5.9	57

#	Article	IF	CITATIONS
181	Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. Journal of Cereal Science, 2011, 54, 434-441.	1.8	56
182	Distribution of Minerals in Wheat Grains (<i>Triticum aestivum</i> L.) and in Roller Milling Fractions Affected by Pearling. Journal of Agricultural and Food Chemistry, 2015, 63, 1276-1285.	2.4	56
183	V-type crystal formation in starch by aqueous ethanol treatment: TheÂeffect of amylose degree of polymerization. Food Hydrocolloids, 2016, 61, 649-661.	5.6	56
184	Water-Extractable and Water-Unextractable Arabinoxylans Affect Gluten Agglomeration Behavior during Wheat Flour Glutenâ~'Starch Separation. Journal of Agricultural and Food Chemistry, 2004, 52, 7950-7956.	2.4	55
185	Fractionation and Reconstitution Experiments Provide Insight into the Role of Starch Gelatinization and Pasting Properties in Pasta Quality. Journal of Agricultural and Food Chemistry, 2000, 48, 3774-3778.	2.4	54
186	Structural Transformations during Gelatinization of Starches in Limited Water:Â Combined Wide- and Small-Angle X-ray Scattering Study. Biomacromolecules, 2006, 7, 1231-1238.	2.6	54
187	Biochemical and structural characterization of TLXI, the <i>Triticum aestivum</i> L. thaumatin-like xylanase inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 646-654.	2.5	54
188	Identification of Isopeptide Bonds in Heat-Treated Wheat Gluten Peptides. Journal of Agricultural and Food Chemistry, 2011, 59, 1236-1243.	2.4	54
189	Single run HPLC separation coupled to evaporative light scattering detection unravels wheat flour endogenous lipid redistribution during bread dough making. LWT - Food Science and Technology, 2013, 53, 426-433.	2.5	54
190	Dose-Response Effect of Arabinoxylooligosaccharides on Gastrointestinal Motility and on Colonic Bacterial Metabolism in Healthy Volunteers. Journal of the American College of Nutrition, 2008, 27, 512-518.	1.1	53
191	Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chemistry, 2010, 121, 719-723.	4.2	53
192	Structural Variation and Levels of Water-Extractable Arabinogalactan-Peptide in European Wheat Flours. Cereal Chemistry, 1998, 75, 815-819.	1.1	52
193	The impact of baking time and bread storage temperature on bread crumb properties. Food Chemistry, 2013, 141, 3301-3308.	4.2	52
194	Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 2016, 52, 69-77.	5.6	52
195	Structural Features of Arabinoxylans Extracted with Water at Different Temperatures from Two Rye Flours of Diverse Breadmaking Quality. Journal of Agricultural and Food Chemistry, 2003, 51, 4404-4416.	2.4	51
196	Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). European Journal of Nutrition, 2010, 49, 127-132.	1.8	51
197	The Structure and Thermal Stability of Amylose–Lipid Complexes: A Case Study on Amylose–Glycerol Monostearate. Crystal Growth and Design, 2014, 14, 3221-3233.	1.4	51
198	Prediction of heat-induced polymerization of different globular food proteins in mixtures with wheat gluten. Food Chemistry, 2017, 221, 1158-1167.	4.2	51

#	Article	IF	CITATIONS
199	Fractionation and Reconstitution Experiments Provide Insight into the Role of Gluten and Starch Interactions in Pasta Quality. Journal of Agricultural and Food Chemistry, 2000, 48, 3767-3773.	2.4	50
200	Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase. Applied Microbiology and Biotechnology, 2007, 75, 1309-1317.	1.7	50
201	Effects of Wheat Bran Extract Containing Arabinoxylan Oligosaccharides on Gastrointestinal Parameters in Healthy Preadolescent Children. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58, 647-653.	0.9	50
202	The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 2019, 25, 98-103.	4.1	50
203	Manley's technology of biscuits, crackers and cookies. , 2011, , .		50
204	Affinity Chromatography with Immobilised Endoxylanases Separates TAXI- and XIP-type Endoxylanase Inhibitors from Wheat (Triticum aestivum L.). Journal of Cereal Science, 2002, 36, 367-375.	1.8	49
205	Hydrophobins, beer foaming and gushing. Cerevisia, 2011, 35, 85-101.	0.4	49
206	Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Applied Microbiology and Biotechnology, 2011, 92, 1179-1185.	1.7	49
207	Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. Plant and Cell Physiology, 2013, 54, 2047-2057.	1.5	49
208	The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 2018, 264, 367-376.	4.2	49
209	Simultaneous Isolation of Wheat High Molecular Weight and Low Molecular Weight Glutenin Subunits. Journal of Cereal Science, 1998, 28, 25-32.	1.8	47
210	Potato Phosphorylase Catalyzed Synthesis of Amyloseâ^'Lipid Complexes. Biomacromolecules, 2005, 6, 2622-2629.	2.6	47
211	Recombinant Expression and Characterization of a Reducing-End Xylose-Releasing Exo-Oligoxylanase from Bifidobacterium adolescentis. Applied and Environmental Microbiology, 2007, 73, 5374-5377.	1.4	47
212	Study on the effects of wheat bran incorporation on water mobility and biopolymer behavior during bread making and storage using time-domain 1 H NMR relaxometry. Food Chemistry, 2017, 236, 76-86.	4.2	47
213	Ingredient Functionality During Foamâ€Type Cake Making: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1550-1562.	5.9	47
214	Complex melting of semi-crystalline chicory (Cichorium intybus L.) root inulin. Carbohydrate Research, 1998, 310, 65-75.	1.1	46
215	Molecular identification of wheat endoxylanase inhibitor TAXI-I1, member of a new class of plant proteins. FEBS Letters, 2003, 540, 259-263.	1.3	46
216	Impact of Inhibition Sensitivity on Endoxylanase Functionality in Wheat Flour Breadmaking. Journal of Agricultural and Food Chemistry, 2004, 52, 4296-4302.	2.4	46

#	Article	IF	CITATIONS
217	Study of nonenzymic browning in α-amino acid and γ-aminobutyric acid/sugar model systems. Food Chemistry, 2008, 111, 738-744.	4.2	46
218	Factors Affecting the Visco-Amylograph and Rapid Visco-Analyzer Evaluation of the Impact of Annealing on Starch Pasting Properties. Starch/Staerke, 1996, 48, 266-270.	1.1	45
219	Purification, characterization and structural analysis of an abundant β-1,3-glucanase from banana fruit. FEBS Journal, 2000, 267, 1188-1195.	0.2	45
220	Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydrate Polymers, 2005, 62, 205-213.	5.1	45
221	Crystallographic and activityâ€based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins: Structure, Function and Bioinformatics, 2009, 77, 395-403.	1.5	45
222	Maximizing the Concentrations of Wheat Grain Fructans in Bread by Exploring Strategies To Prevent Their Yeast (Saccharomyces cerevisiae)-Mediated Degradation. Journal of Agricultural and Food Chemistry, 2013, 61, 1397-1404.	2.4	45
223	Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids, 2016, 57, 122-131.	5.6	45
224	Physical Behavior of Durum Wheat Starch (Triticum durum) during Industrial Pasta Processing. Journal of Agricultural and Food Chemistry, 1998, 46, 2499-2503.	2.4	44
225	Debranning of wheat prior to milling reduces xylanase but not xylanase inhibitor activities in wholemeal and flour. Journal of Cereal Science, 2004, 39, 363-369.	1.8	44
226	Wheat-Kernel-Associated Endoxylanases Consist of a Majority of Microbial and a Minority of Wheat Endogenous Endoxylanases. Journal of Agricultural and Food Chemistry, 2006, 54, 4028-4034.	2.4	44
227	Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates. Food Chemistry, 2011, 127, 1653-1658.	4.2	44
228	Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chemistry, 2013, 139, 120-128.	4.2	44
229	Wheat starch swelling, gelatinization and pasting: Effects of enzymatic modification of wheat endogenous lipids. LWT - Food Science and Technology, 2015, 63, 361-366.	2.5	44
230	What makes starch from potato (<i>Solanum tuberosum</i> L.) tubers unique: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2588-2612.	5.9	44
231	On the Presence and Activities of Proteolytic Enzymes in Vital Wheat Gluten. Journal of Cereal Science, 1997, 26, 183-193.	1.8	43
232	Purification and Partial Characterization of an Endoxylanase Inhibitor from Barley. Cereal Chemistry, 2001, 78, 453-457.	1.1	43
233	Substrate selectivity and inhibitor sensitivity affect xylanase functionality in wheat flour gluten–starch separation. Journal of Cereal Science, 2004, 40, 41-49.	1.8	43
234	Enrichment of Higher Molecular Weight Fractions in Inulin. Journal of Agricultural and Food Chemistry, 2004, 52, 3780-3783.	2.4	43

#	Article	IF	CITATIONS
235	Sugar-Snap Cookie Dough Setting: The Impact of Sucrose on Gluten Functionality. Journal of Agricultural and Food Chemistry, 2009, 57, 7814-7818.	2.4	43
236	Hydrolysis of amylopectin by amylolytic enzymes: structural analysis of the residual amylopectin population. Carbohydrate Research, 2010, 345, 235-242.	1.1	43
237	Molecular and Morphological Aspects of Annealing-Induced Stabilization of Starch Crystallites. Biomacromolecules, 2012, 13, 1361-1370.	2.6	43
238	Importance of Gluten and Starch for Structural and Textural Properties of Crumb from Fresh and Stored Bread. Food Biophysics, 2012, 7, 173-181.	1.4	43
239	Conditions Governing Food Protein Amyloid Fibril Formation—Part I: Egg and Cereal Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1256-1276.	5.9	43
240	XIP-type endoxylanase inhibitors in different cereals. Journal of Cereal Science, 2003, 38, 317-324.	1.8	42
241	Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydrate Research, 2005, 340, 1319-1327.	1.1	42
242	Impact of thermostable amylases during bread making on wheat bread crumb structure and texture. Food Research International, 2008, 41, 819-827.	2.9	42
243	Variability in Xylanase and Xylanase Inhibition Activities in Different Cereals in the HEALTHGRAIN Diversity Screen and Contribution of Environment and Genotype to This Variability in Common Wheat. Journal of Agricultural and Food Chemistry, 2010, 58, 9362-9371.	2.4	42
244	The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. Journal of Food Composition and Analysis, 2019, 83, 103277.	1.9	42
245	Impact of egg white and soy proteins on structure formation and crumb firming in gluten-free breads. Food Hydrocolloids, 2019, 95, 406-417.	5.6	42
246	Characterisation of Starch from Durum Wheat (Triticum durum). Starch/Staerke, 1999, 51, 73-80.	1.1	41
247	Impact of Xylanases with Different Substrate Selectivity on Glutenâ^'Starch Separation of Wheat Flour. Journal of Agricultural and Food Chemistry, 2003, 51, 7338-7345.	2.4	41
248	Relative activity of two endoxylanases towards water-unextractable arabinoxylans in wheat bran. Journal of Cereal Science, 2004, 39, 181-186.	1.8	41
249	Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1751-1769.	5.9	41
250	Factors Governing Levels and Composition of the Sodium Dodecyl Sulphate-Unextractable Glutenin Polymers During Straight Dough Breadmaking. Journal of Cereal Science, 1999, 29, 129-138.	1.8	40
251	Impact of redox agents on the physico-chemistry of wheat gluten proteins during hydrothermal treatment. Journal of Cereal Science, 2006, 44, 49-53.	1.8	40
252	Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydrate Research, 2010, 345, 397-401.	1.1	40

#	Article	IF	CITATIONS
253	Accumulated Evidence Substantiates a Role for Three Classes of Wheat Xylanase Inhibitors in Plant Defense. Critical Reviews in Plant Sciences, 2010, 29, 244-264.	2.7	40
254	Inactive Fluorescently Labeled Xylanase as a Novel Probe for Microscopic Analysis of Arabinoxylan Containing Cereal Cell Walls. Journal of Agricultural and Food Chemistry, 2011, 59, 6369-6375.	2.4	40
255	In situ production of \hat{I}^3 -aminobutyric acid in breakfast cereals. Food Chemistry, 2011, 129, 395-401.	4.2	40
256	Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat flours. LWT - Food Science and Technology, 2012, 47, 56-63.	2.5	40
257	Air–water interfacial properties of enzymatic wheat gluten hydrolyzates determine their foaming behavior. Food Hydrocolloids, 2016, 55, 155-162.	5.6	40
258	Study of the role of bran water binding and the steric hindrance by bran in straight dough bread making. Food Chemistry, 2018, 253, 262-268.	4.2	40
259	Evidence for the presence of arabinoxylan hydrolysing enzymes in European wheat flours. Journal of Cereal Science, 1995, 22, 139-145.	1.8	39
260	Proteolytic Enzymes in Germinating Rye Grains. Cereal Chemistry, 2002, 79, 423-428.	1.1	39
261	Production of tailor made short chain amylose–lipid complexes using varying reaction conditions. Carbohydrate Polymers, 2009, 78, 854-861.	5.1	39
262	The Kinetics of β-Elimination of Cystine and the Formation of Lanthionine in Gliadin. Journal of Agricultural and Food Chemistry, 2010, 58, 10761-10767.	2.4	39
263	Relating the structural, air-water interfacial and foaming properties of wheat (Triticum aestivum L.) gliadin and maize (Zea mays L.) zein based nanoparticle suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 249-259.	2.3	39
264	Temperature Impacts the Multiple Attack Action of Amylases. Biomacromolecules, 2007, 8, 765-772.	2.6	38
265	Kinetics of Heat-Induced Polymerization of Gliadin. Journal of Agricultural and Food Chemistry, 2011, 59, 2034-2039.	2.4	38
266	Redox agents and N-ethylmaleimide affect the extractability of gluten proteins during fresh pasta processing. Food Chemistry, 2011, 127, 905-911.	4.2	38
267	Impact of Amylases on Biopolymer Dynamics during Storage of Straight-Dough Wheat Bread. Journal of Agricultural and Food Chemistry, 2013, 61, 6525-6532.	2.4	38
268	Ethanol at Levels Produced by <i>Saccharomyces cerevisiae</i> during Wheat Dough Fermentation Has a Strong Impact on Dough Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 9326-9335.	2.4	38
269	Proteolytic Activities in Dormant Rye (Secale cerealeL.) Grain. Journal of Agricultural and Food Chemistry, 1999, 47, 3572-3578.	2.4	37
270	Ball Milling Improves Extractability and Affects Molecular Properties of Psyllium (<i>Plantago) Tj ETQq0 0 0 rgBT /</i>	Overlock 2	10 Tf 50 67 1 37

11306-11311.

#	Article	IF	CITATIONS
271	Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXIâ€IA and TAXIâ€IIA. FEBS Journal, 2009, 276, 3916-3927.	2.2	37
272	Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 977-985.	1.1	37
273	Heat-Induced Cross-Linking and Degradation of Wheat Gluten, Serum Albumin, and Mixtures Thereof. Journal of Agricultural and Food Chemistry, 2012, 60, 10133-10140.	2.4	37
274	Ferulic Acid Content and Appearance Determine the Antioxidant Capacity of Arabinoxylanoligosaccharides. Journal of Agricultural and Food Chemistry, 2013, 61, 10173-10182.	2.4	37
275	Effect of molding conditions and moisture content on the mechanical properties of compression molded glassy, wheat gluten bioplastics. Industrial Crops and Products, 2013, 44, 480-487.	2.5	37
276	The range of dietary fibre ingredients and a comparison of their technical functionality. , 2013, , 96-119.		37
277	Structure, chemical composition and enzymatic activities of pearlings and bran obtained from pearled wheat (Triticum aestivum L.) by roller milling. Journal of Cereal Science, 2015, 62, 66-72.	1.8	37
278	Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. British Journal of Nutrition, 2015, 113, 225-238.	1.2	37
279	Impact of Wheat Bran Hydration Properties As Affected by Toasting and Degree of Milling on Optimal Dough Development in Bread Making. Journal of Agricultural and Food Chemistry, 2016, 64, 3636-3644.	2.4	37
280	The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb. Food Chemistry, 2018, 242, 68-74.	4.2	37
281	Amino Acid Sequence of Wheat Flour Arabinogalactan-Peptide, Identical to Part of Grain Softness Protein GSP-1, Leads to Improved Structural Model. Cereal Chemistry, 2002, 79, 329-331.	1.1	36
282	Milling Performance of North European Hull-less Barleys and Characterization of Resultant Millstreams. Cereal Chemistry, 2003, 80, 667-673.	1.1	36
283	Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Protein Engineering, Design and Selection, 2009, 22, 587-596.	1.0	36
284	Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chemistry, 2013, 141, 3960-3966.	4.2	36
285	Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Scientific Reports, 2013, 3, 2279.	1.6	36
286	Protein network formation during pound cake making: The role of egg white proteins and wheat flour gliadins. Food Hydrocolloids, 2016, 61, 409-414.	5.6	36
287	The Impact of Hydro-Priming and Osmo-Priming on Seedling Characteristics, Plant Hormone Concentrations, Activity of Selected Hydrolytic Enzymes, and Cell Wall and Phytate Hydrolysis in Sprouted Wheat (<i>Triticum aestivum</i> L.). ACS Omega, 2019, 4, 22089-22100.	1.6	36
288	Effect of hydrothermal treatment on the gelatinisation properties of potato starch as measured by differential scanning calorimetry. Journal of Theoretical Biology, 1996, 47, 1229-1246.	0.8	35

#	Article	IF	CITATIONS
289	Isolation and Characterization of Water-Extractable Arabinoxylan from Hull-less Barley Flours. Cereal Chemistry, 2004, 81, 576-581.	1.1	35
290	Variation in the levels of the different xylanase inhibitors in grain and flour of 20 French wheat cultivars. Journal of Cereal Science, 2005, 41, 375-379.	1.8	35
291	Purification and characterization of a XIP-type endoxylanase inhibitor from Rice (Oryza sativa). Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 95-101.	2.5	35
292	Evidence for the Involvement of Arabinoxylan and Xylanases in Refrigerated Dough Syruping. Journal of Agricultural and Food Chemistry, 2005, 53, 7623-7629.	2.4	35
293	A reassessment of the electrophoretic mobility of high molecular weight glutenin subunits of wheat. Journal of Cereal Science, 2012, 56, 726-732.	1.8	35
294	A novel method for hydrophobin extraction using CO2 foam fractionation system. Industrial Crops and Products, 2013, 43, 372-377.	2.5	35
295	AN ENZYMATIC ASSAY FOR THE DETERMINATION OF ACETALDEHYDE IN BEERS. Journal of the Institute of Brewing, 1982, 88, 384-386.	0.8	34
296	Identification and Characterization of a Novel Arabinoxylanase from Wheat Flour. Plant Physiology, 1997, 115, 1619-1627.	2.3	34
297	A screening method for endo-β-1,4-xylanase substrate selectivity. Analytical Biochemistry, 2003, 319, 73-77.	1.1	34
298	TAXI Type Endoxylanase Inhibitors in Different Cereals. Journal of Agricultural and Food Chemistry, 2003, 51, 3770-3775.	2.4	34
299	Model Approach to Starch Functionality in Bread Making. Journal of Agricultural and Food Chemistry, 2008, 56, 6423-6431.	2.4	34
300	Arabinoxylan oligosaccharides (AXOS) as a potential sucrose replacer in sugar-snap cookies. LWT - Food Science and Technology, 2011, 44, 725-728.	2.5	34
301	Storage of parbaked bread affects shelf life of fully baked end product: A 1H NMR study. Food Chemistry, 2014, 165, 149-156.	4.2	34
302	LC-MS analysis reveals the presence of graminan- and neo-type fructans in wheat grains. Journal of Cereal Science, 2015, 61, 133-138.	1.8	34
303	Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocolloids, 2018, 77, 176-186.	5.6	34
304	Processing Induced Changes in Food Proteins: Amyloid Formation during Boiling of Hen Egg White. Biomacromolecules, 2020, 21, 2218-2228.	2.6	34
305	Fractionation of maltodextrins by ethanol. Journal of Chromatography A, 1998, 803, 103-109.	1.8	33
306	Endoxylanase Inhibition Activity in Different European Wheat Cultivars and Milling Fractions. Cereal Chemistry, 2002, 79, 613-616.	1.1	33

#	Article	IF	CITATIONS
307	Reduction of xylanase activity in flour by debranning retards syruping in refrigerated doughs. Journal of Cereal Science, 2004, 39, 371-377.	1.8	32
308	Non-contact ultrasound characterization of bread crumb: Application of the Biot–Allard model. Food Research International, 2006, 39, 1067-1075.	2.9	32
309	Impact of Wheat Flour-Associated Endoxylanases on Arabinoxylan in Dough after Mixing and Resting. Journal of Agricultural and Food Chemistry, 2007, 55, 7149-7155.	2.4	32
310	Impact of Fat on Dough and Cookie Properties of Sugar‣nap Cookies. Cereal Chemistry, 2010, 87, 226-230.	1.1	32
311	Bioâ€Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids. ChemSusChem, 2015, 8, 345-352.	3.6	32
312	Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: A focus on gas cell stabilization mechanisms. Food Chemistry, 2015, 172, 613-621.	4.2	32
313	Endoxylanases in Durum Wheat Semolina Processing:Â Solubilization of Arabinoxylans, Action of Endogenous Inhibitors, and Effects on Rheological Properties. Journal of Agricultural and Food Chemistry, 2000, 48, 2017-2022.	2.4	31
314	Heterogeneity in the Fine Structure of Alkali-Extractable Arabinoxylans Isolated from Two Rye Flours with High and Low Breadmaking Quality and Their Coexistence with Other Cell Wall Components. Journal of Agricultural and Food Chemistry, 2004, 52, 2671-2680.	2.4	31
315	Residual amylopectin structures of amylase-treated wheat starch slurries reflect amylase mode of action. Food Hydrocolloids, 2009, 23, 153-164.	5.6	31
316	The Bread Dough Stability Improving Effect of Pyranose Oxidase from Trametes multicolor and Glucose Oxidase from Aspergillus niger: Unraveling the Molecular Mechanism. Journal of Agricultural and Food Chemistry, 2013, 61, 7848-7854.	2.4	31
317	Pasting Profiles and Solubility of Native and Cross-Linked Corn Starch inDimethylsulfoxide-Water Mixtures. Journal of Cereal Science, 1995, 22, 251-257.	1.8	30
318	Activity of Arabinoxylan Hydrolyzing Enzymes during Mashing with Barley Malt or Barley Malt and Unmalted Wheat. Journal of Agricultural and Food Chemistry, 1998, 46, 4836-4841.	2.4	30
319	Variation in the Degree ofd-Xylose Substitution in Water-Extractable European Durum Wheat (TriticumdurumDesf.) Semolina Arabinoxylans. Journal of Agricultural and Food Chemistry, 1999, 47, 1813-1816.	2.4	30
320	His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases. FEBS Journal, 2005, 272, 5872-5882.	2.2	30
321	Variability in the Structure of Rye Flour Alkali-Extractable Arabinoxylans. Journal of Agricultural and Food Chemistry, 2007, 55, 1985-1992.	2.4	30
322	Fusarium graminearum xylanases show different functional stabilities, substrate specificities and inhibition sensitivities. Enzyme and Microbial Technology, 2009, 44, 189-195.	1.6	30
323	Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Applied Microbiology and Biotechnology, 2010, 87, 2125-2135.	1.7	30
324	Wheat Bran AX Properties and Choice of Xylanase Affect Enzymic Production of Wheat Branâ€Derived Arabinoxylanâ€Oligosaccharides. Cereal Chemistry, 2010, 87, 283-291.	1.1	30

#	Article	IF	CITATIONS
325	Secondary substrate binding strongly affects activity and binding affinity of <i>Bacillus subtilis</i> and <i>Aspergillus niger</i> GH11 xylanases. FEBS Journal, 2011, 278, 1098-1111.	2.2	30
326	Starch isolation method impacts soft wheat (Triticum aestivum L. cv. Claire) starch puroindoline and lipid levels as well as its functional properties. Journal of Cereal Science, 2012, 56, 464-469.	1.8	30
327	Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry, 2012, 131, 1485-1492.	4.2	30
328	Moisture Distribution during Conventional or Electrical Resistance Oven Baking of Bread Dough and Subsequent Storage. Journal of Agricultural and Food Chemistry, 2014, 62, 6445-6453.	2.4	30
329	Storage induced conversion of ovalbumin into S-ovalbumin in eggs impacts the properties of pound cake and its batter. Food Hydrocolloids, 2015, 49, 208-215.	5.6	30
330	Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study. Food Chemistry, 2016, 192, 586-595.	4.2	30
331	Development of an infusion method for encapsulating ascorbyl palmitate in V-type granular cold-water swelling starch. Carbohydrate Polymers, 2017, 165, 229-237.	5.1	30
332	Synthesis of condensed tannins. Part 13. The first 2,3-trans-3,4-cis-procyanidins: sequence of units in a â€ ⁻ trimer' of mixed stereochemistry. Journal of the Chemical Society Perkin Transactions 1, 1985, , 669-676.	0.9	29
333	Specificity of a wheat gluten aspartic proteinase. BBA - Proteins and Proteomics, 1998, 1387, 317-324.	2.1	29
334	Purification of TAXI-like Endoxylanase Inhibitors from Wheat (Triticum Aestivum L.) Whole Meal Reveals a Family of Iso-forms. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 61-68.	2.5	29
335	Insight into variability of apparent endoxylanase and endoxylanase inhibitor levels in wheat kernels. Journal of the Science of Food and Agriculture, 2006, 86, 1610-1617.	1.7	29
336	Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination. Plant Physiology and Biochemistry, 2010, 48, 90-97.	2.8	29
337	Flour from wheat cultivars of varying hardness produces semi-sweet biscuits with varying textural and structural properties. LWT - Food Science and Technology, 2013, 53, 452-457.	2.5	29
338	Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough. Food Chemistry, 2013, 141, 4179-4185.	4.2	29
339	Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems. Current Opinion in Food Science, 2019, 25, 19-27.	4.1	29
340	FLAVOUR AND HAZE STABILITY DIFFERENCES IN UNHOPPED AND HOPPED ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE AND WITH REGULAR MALT. Journal of the Institute of Brewing, 1984, 90, 67-72.	0.8	28
341	Distribution of Carbohydrates in Gluten Fractions Isolated from European Wheats (Triticum) Tj ETQq1 1 0.784314	rgBT /Ov 2:4	erlock 10 28
	Influence of Botanical Source and Processing on Formation of Resistant Starch Type III. Cereal		

³⁴² Influence of Botanical Source and Processing on Formation of Resistant Starch Type III. Cerea Chemistry, 1998, 75, 802-804. 1.1 28

#	Article	IF	CITATIONS
343	2â€Ð DIGE reveals changes in wheat xylanase inhibitor protein families due to <i>Fusarium graminearum</i> Δ <i>Tri5</i> infection and grain development. Proteomics, 2010, 10, 2303-2319.	1.3	28
344	Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids, 2012, 42, 2429-2438.	1.2	28
345	Dynamics of Î ³ -aminobutyric acid in wheat flour bread making. Food Chemistry, 2012, 130, 896-901.	4.2	28
346	Effect of Wheat Grain Steaming and Washing on Lipase Activity in Whole Grain Flour. Cereal Chemistry, 2014, 91, 321-326.	1.1	28
347	Milling breakage susceptibility and mechanical properties of parboiled brown rice kernels. LWT - Food Science and Technology, 2014, 59, 369-375.	2.5	28
348	THE REACTIONS BETWEEN POLYPHENOLS AND ALDEHYDES AND THE INFLUENCE OF ACETALDEHYDE ON HAZE FORMATION IN BEER. Journal of the Institute of Brewing, 1982, 88, 234-243.	0.8	27
349	Molecular identification and chromosomal localization of genes encoding Triticum aestivum xylanase inhibitor I-like proteins in cereals. Theoretical and Applied Genetics, 2004, 109, 112-121.	1.8	27
350	Mutational Analysis of Endoxylanases XylA and XylB from the Phytopathogen Fusarium graminearum Reveals Comprehensive Insights into Their Inhibitor Insensitivity. Applied and Environmental Microbiology, 2007, 73, 4602-4608.	1.4	27
351	Unprocessed barley aleurone endo-β-1,4-xylanase X-l is an active enzyme. Biochemical and Biophysical Research Communications, 2007, 356, 799-804.	1.0	27
352	Fractionation and Characterization of Brewers' Spent Grain Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2009, 57, 5563-5570.	2.4	27
353	Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates. Colloids and Surfaces B: Biointerfaces, 2017, 151, 295-303.	2.5	27
354	Wheat (Triticum aestivum L.) lipid species distribution in the different stages of straight dough bread making. Food Research International, 2018, 112, 299-311.	2.9	27
355	Differences in endosperm cell wall integrity in wheat (<i>Triticum aestivum</i> L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic <i>in vitro</i> digestibility. Food and Function, 2019, 10, 4674-4684.	2.1	27
356	The role of non-starch polysaccharides in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Hydrocolloids, 2020, 105, 105771.	5.6	27
357	Contribution of Wheat Endogenous and Wheat Kernel Associated Microbial Endoxylanases to Changes in the Arabinoxylan Population during Breadmaking. Journal of Agricultural and Food Chemistry, 2008, 56, 2246-2253.	2.4	26
358	Xylanase Inhibitors Bind to Nonstarch Polysaccharides. Journal of Agricultural and Food Chemistry, 2008, 56, 564-570.	2.4	26
359	Structural and physicochemical characterisation of rye starch. Carbohydrate Research, 2011, 346, 2727-2735.	1.1	26
360	Glucose and pyranose oxidase improve bread dough stability. Journal of Cereal Science, 2012, 55, 380-384.	1.8	26

#	Article	IF	CITATIONS
361	Impact of Acid and Alkaline Pretreatments on the Molecular Network of Wheat Gluten and on the Mechanical Properties of Compression-Molded Glassy Wheat Gluten Bioplastics. Journal of Agricultural and Food Chemistry, 2013, 61, 9393-9400.	2.4	26
362	Study of the intrinsic properties of wheat bran and pearlings obtained by sequential debranning and their role in bran-enriched bread making. Journal of Cereal Science, 2016, 71, 78-85.	1.8	26
363	The Role of Wheat and Egg Constituents in the Formation of a Covalent and Non ovalent Protein Network in Fresh and Cooked Egg Noodles. Journal of Food Science, 2017, 82, 24-35.	1.5	26
364	Relating the composition and air/water interfacial properties of wheat, rye, barley, and oat dough liquor. Food Chemistry, 2018, 264, 126-134.	4.2	26
365	Enzymatically Hydrolyzed Wheat Gluten as a Foaming Agent in Food: Incorporation in a Meringue Recipe as a Proofâ€ofâ€Concept. Journal of Food Science, 2018, 83, 2119-2126.	1.5	26
366	Nuclear Magnetic Resonance and Methylation Analysis-Derived Structural Features of Water-Extractable Arabinoxylans from Barley (Hordeum vulgare L.) Malts. Journal of Agricultural and Food Chemistry, 1997, 45, 2914-2918.	2.4	25
367	Effects of Increased High Molecular Weight Glutenin Subunits Content of Flour on Dough Mixing Behavior and Breadmaking. Journal of Agricultural and Food Chemistry, 1998, 46, 4830-4835.	2.4	25
368	A Second Aspartic Proteinase Associated with Wheat Gluten. Journal of Cereal Science, 2000, 32, 31-42.	1.8	25
369	The Significance of Arabinogalactan-Peptide for Wheat Flour Bread-Making. Journal of Cereal Science, 2000, 32, 147-157.	1.8	25
370	High-level expression, purification, and characterization of recombinant wheat xylanase inhibitor TAXI-I secreted by the yeast Pichia pastoris. Protein Expression and Purification, 2004, 37, 39-46.	0.6	25
371	Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chemistry, 2010, 123, 331-337.	4.2	25
372	Extractability and Chromatographic Characterization of Wheat (<i>Triticum aestivum</i> L.) Bran Protein. Journal of Food Science, 2015, 80, C967-74.	1.5	25
373	Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids, 2016, 48, 959-971.	1.2	25
374	Lipases in wheat flour bread making: Importance of an appropriate balance between wheat endogenous lipids and their enzymatically released hydrolysis products. Food Chemistry, 2019, 298, 125002.	4.2	25
375	The major constituents of rye (<i>Secale cereale</i> L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chemistry, 2020, 97, 739-754.	1.1	25
376	A Family of â€~TAXI'-like Endoxylanase Inhibitors in Rye. Journal of Cereal Science, 2002, 36, 177-185.	1.8	24
377	Occurrence of Arabinoxylo-Oligosaccharides and Arabinogalactan Peptides in Beer. Journal of the American Society of Brewing Chemists, 2009, 67, 112-117.	0.8	24
378	Impact of processing conditions on the extractability and molecular weight distribution of proteins in parboiled brown rice. Journal of Cereal Science, 2013, 58, 8-14.	1.8	24

#	Article	IF	CITATIONS
379	Controlling wheat gluten cross-linking for high temperature processing. Industrial Crops and Products, 2015, 72, 119-124.	2.5	24
380	Dry heat treatment affects wheat bran surface properties and hydration kinetics. Food Chemistry, 2016, 203, 513-520.	4.2	24
381	Molecular Oxygen and Reactive Oxygen Species in Bread-making Processes: Scarce, but Nevertheless Important. Critical Reviews in Food Science and Nutrition, 2016, 56, 722-736.	5.4	24
382	Influence of process parameters on yield and composition of gluten fractions obtained in a laboratory scale dough batter procedure. Journal of Cereal Science, 2004, 39, 29-36.	1.8	23
383	Molecular identification of wheat endoxylanase inhibitor TAXI-II and the determinants of its inhibition specificity. Biochemical and Biophysical Research Communications, 2005, 335, 512-522.	1.0	23
384	Dynamic Light Scattering (DLS) as a Tool to Detect CO2-Hydrophobin Structures and Study the Primary Gushing Potential of Beer. Journal of the American Society of Brewing Chemists, 2011, 69, 144-149.	0.8	23
385	Combined Modeling and Biophysical Characterisation of CO ₂ Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. Journal of the American Society of Brewing Chemists, 2012, 70, 249-256.	0.8	23
386	Study of biopolymer mobility and water dynamics in wheat bran using time-domain 1H NMR relaxometry. Food Chemistry, 2017, 236, 68-75.	4.2	23
387	The impact of fermentation on the distribution of cadmium in cacao beans. Food Research International, 2020, 127, 108743.	2.9	23
388	Food protein network formation and gelation induced by conductive or microwave heating: A focus on hen egg white. Innovative Food Science and Emerging Technologies, 2020, 66, 102484.	2.7	23
389	Impact of genotype, crop age and planting season on the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) Flour. Journal of the Science of Food and Agriculture, 1995, 68, 167-174.	1.7	22
390	In Vitro Polymerization of Wheat Glutenin Subunits with Inorganic Oxidizing Agents. II. Stepwise Oxidation of Low Molecular Weight Glutenin Subunits and a Mixture of High and Low Molecular Weight Glutenin Subunits. Cereal Chemistry, 2000, 77, 589-594.	1.1	22
391	Characterisation of the Colloidal Haze in Commercial and Pilot Scale Belgian White Beers. Journal of the Institute of Brewing, 2000, 106, 221-228.	0.8	22
392	Significance of LMW-GS and HMW-GS for Dough Extensibility: «Addition» versus «Incorporation» Protocols. Journal of Cereal Science, 2001, 33, 253-260.	1.8	22
393	Fractionation of starch hydrolysates into dextrins with narrow molecular mass distribution and their detection by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A, 2003, 992, 75-83.	1.8	22
394	Drying model for cylindrical pasta shapes using desorption isotherms. Journal of Food Engineering, 2008, 86, 414-421.	2.7	22
395	Influence of germination time and temperature on the properties of rye malt and rye malt based worts. Journal of Cereal Science, 2010, 52, 72-79.	1.8	22
396	In situ SAXS under shear unveils the gelation of aqueous starch suspensions and the impact of added amylose–lipid complexes. Carbohydrate Polymers, 2011, 84, 1141-1150.	5.1	22

#	Article	IF	CITATIONS
397	High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects. Molecular Nutrition and Food Research, 2014, 58, 2206-2218.	1.5	22
398	Understanding the air-water interfacial behavior of suspensions of wheat gliadin nanoparticles. Food Hydrocolloids, 2020, 102, 105638.	5.6	22
399	Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5965-5991.	5.9	22
400	STRUCTURE ELUCIDATION OF THREE DIMERIC PROANTHOCYANIDINS ISOLATED FROM A COMMERCIAL BELGIAN PILSNER BEER. Journal of the Institute of Brewing, 1984, 90, 153-161.	0.8	21
401	Impact of genotype and crop age on the breadmaking and physico-chemical properties of flour produced from cassava (Manihot esculenta crantz) planted in the dry season. Journal of the Science of Food and Agriculture, 1994, 66, 193-202.	1.7	21
402	Pilot-Scale Isolation of Water-Extractable Arabinoxylans from Rye. Cereal Chemistry, 1999, 76, 1-2.	1.1	21
403	Influence of Arabinoxylans and Endoxylanases on Pasta Processing and Quality. Production of High-Quality Pasta with Increased Levels of Soluble Fiber. Cereal Chemistry, 2001, 78, 721-729.	1.1	21
404	Contribution of Wheat and Wheat Protein Fractions to the Colloidal Haze of Wheat Beers. Journal of the American Society of Brewing Chemists, 2001, 59, 135-140.	0.8	21
405	Simple ion chromatographic method for the determination of chlormequat residues in pears. Journal of Chromatography A, 2001, 920, 255-259.	1.8	21
406	Refrigerated Dough Syruping in Relation to the Arabinoxylan Population. Journal of Agricultural and Food Chemistry, 2003, 51, 4119-4125.	2.4	21
407	The bread-making functionalities of two Aspergillus niger endoxylanases are strongly dictated by their inhibitor sensitivities. Enzyme and Microbial Technology, 2005, 36, 417-425.	1.6	21
408	Targeted molecular engineering of a family 11 endoxylanase to decrease its sensitivity towards Triticum aestivum endoxylanase inhibitor types. Journal of Biotechnology, 2007, 130, 95-105.	1.9	21
409	The impact of redox agents on sugar-snap cookie making. Journal of Cereal Science, 2010, 52, 192-199.	1.8	21
410	Analysis of Storage and Structural Carbohydrates in Developing Wheat (<i>Triticum aestivum</i> L.) Grains Using Quantitative Analysis and Microscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 9251-9259.	2.4	21
411	The extent of maize starch crystal melting as a critical factor in the isolation of amylose via aqueous leaching. Food Hydrocolloids, 2016, 61, 36-47.	5.6	21
412	The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles. Journal of Cereal Science, 2017, 75, 234-242.	1.8	21
413	Arabinoxylans and endoxylanases in refrigerated dough syruping. Journal of the Science of Food and Agriculture, 2006, 86, 1587-1595.	1.7	20
414	Variability of polymorphic families of three types of xylanase inhibitors in the wheat grain proteome. Proteomics, 2008, 8, 1692-1705.	1.3	20

#	Article	IF	CITATIONS
415	Baking Gradients Cause Heterogeneity in Starch and Proteins in Pound Cake. Cereal Chemistry, 2010, 87, 475-480.	1.1	20
416	Monitoring Molecular Oxygen Depletion in Wheat Flour Dough Using Erythrosin B Phosphorescence: A Biophysical Approach. Food Biophysics, 2012, 7, 138-144.	1.4	20
417	Hydrolysis of β-limit dextrins by α-amylases from porcine pancreas, Bacillus subtilis, Pseudomonas saccharophila and Bacillus stearothermophilus. Food Hydrocolloids, 2012, 26, 231-239.	5.6	20
418	Crosslinks in wheat gluten films with hexagonal close-packed protein structures. Industrial Crops and Products, 2013, 51, 229-235.	2.5	20
419	Purification of wheat grain fructans from wheat bran. Journal of Cereal Science, 2015, 65, 57-59.	1.8	20
420	Amyloid-like aggregation of ovalbumin: Effect of disulfide reduction and other egg white proteins. Food Hydrocolloids, 2016, 61, 914-922.	5.6	20
421	Electrical resistance oven baking as a tool to study crumb structure formation in gluten-free bread. Food Research International, 2019, 116, 925-931.	2.9	20
422	Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR. Food Research International, 2019, 119, 675-682.	2.9	20
423	Impact of wheat endogenous lipids on the quality of fresh bread: Key terms, concepts, and underlying mechanisms. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3715-3754.	5.9	20
424	Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions. Food Hydrocolloids, 2021, 111, 106327.	5.6	20
425	Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chemistry, 2021, 362, 130203.	4.2	20
426	THE INTRINSIC INFLUENCE OF CATECHINS AND PROCYANIDINS ON BEER HAZE FORMATION. Journal of the Institute of Brewing, 1984, 90, 381-384.	0.8	19
427	UNMALTED CEREAL PRODUCTS FOR BEER BREWING. PART I. THE USE OF HIGH PERCENTAGES OF EXTRUDED OR REGULAR CORN STARCH AND SORGHUM. Journal of the Institute of Brewing, 1989, 95, 271-276.	0.8	19
428	Evidence for the Non-Glycoprotein Nature of High Molecular Weight Glutenin Subunits of Wheat. Journal of Cereal Science, 1996, 24, 227-239.	1.8	19
429	Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. Journal of Cereal Science, 2006, 44, 59-67.	1.8	19
430	Influence of amylases on the rheological and molecular properties of partially damaged wheat starch. Journal of the Science of Food and Agriculture, 2006, 86, 1662-1669.	1.7	19
431	Effects of fungicide treatment, N-fertilisation and harvest date on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47, 190-200.	1.8	19
432	Impact of Heat Treatment on Wheat Flour Solvent Retention Capacity (SRC) Profiles. Cereal Chemistry, 2013, 90, 608-610.	1.1	19

#	Article	IF	CITATIONS
433	Direct evidence for the non-additive gelatinization in binary starch blends: A case study on potato starch mixed with rice or maize starches. Food Hydrocolloids, 2015, 50, 137-144.	5.6	19
434	Protein network formation during pound cake baking: The role of egg yolk and its fractions. Food Hydrocolloids, 2017, 63, 226-232.	5.6	19
435	Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry, 2019, 295, 110-119.	4.2	19
436	Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns. Journal of Biotechnology, 2010, 145, 160-167.	1.9	18
437	Flour Sodium Dodecyl Sulfate (SDS)-Extractable Protein Level as a Cookie Flour Quality Indicator. Journal of Agricultural and Food Chemistry, 2010, 58, 353-360.	2.4	18
438	Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties. Food Chemistry, 2013, 139, 1113-1120.	4.2	18
439	Impact of Wheat Bran Derived Arabinoxylanoligosaccharides and Associated Ferulic Acid on Dough and Bread Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 7190-7199.	2.4	18
440	Changes in wheat (Triticum aestivum L.) flour pasting characteristics as a result of storage and their underlying mechanisms. Journal of Cereal Science, 2015, 65, 81-87.	1.8	18
441	Impact of extraction and elution media on non-size effects in size exclusion chromatography of proteins. Journal of Chromatography A, 2015, 1415, 100-107.	1.8	18
442	Ingredient Functionality in Multilayered Dough-margarine Systems and the Resultant Pastry Products: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 2101-2114.	5.4	18
443	Air-water interfacial properties of enzymatically hydrolyzed wheat gluten in the presence of sucrose. Food Hydrocolloids, 2017, 73, 284-294.	5.6	18
444	Stabilization of the air-liquid interface in sponge cake batter by surface-active proteins and lipids: A foaming protocol based approach. Food Hydrocolloids, 2020, 101, 105548.	5.6	18
445	Heating Wheat Gluten Promotes the Formation of Amyloid-like Fibrils. ACS Omega, 2021, 6, 1823-1833.	1.6	18
446	Behavior ofTriticum durumDesf. Arabinoxylans and Arabinogalactan Peptides during Industrial Pasta Processing. Journal of Agricultural and Food Chemistry, 2001, 49, 1783-1789.	2.4	17
447	Immunoblot Quantification of Three Classes of Proteinaceous Xylanase Inhibitors in Different Wheat (Triticum aestivum) Cultivars and Milling Fractions. Journal of Agricultural and Food Chemistry, 2009, 57, 1029-1035.	2.4	17
448	The three classes of wheat xylanase-inhibiting proteins accumulate in an analogous way during wheat ear development and germination. Journal of Plant Physiology, 2009, 166, 1253-1262.	1.6	17
449	Impact of Potassium Bromate and Potassium Iodate in a Pound Cake System. Journal of Agricultural and Food Chemistry, 2010, 58, 6465-6471.	2.4	17
450	Foaming properties of tryptic gliadin hydrolysate peptide fractions. Food Chemistry, 2011, 128, 606-612.	4.2	17

#	Article	IF	CITATIONS
451	The impact of pearling as a treatment prior to wheat roller milling on the texture and structure of bran-rich breakfast flakes. LWT - Food Science and Technology, 2015, 62, 668-674.	2.5	17
452	A lipase based approach to understand the role of wheat endogenous lipids in bread crumb firmness evolution during storage. LWT - Food Science and Technology, 2015, 64, 874-880.	2.5	17
453	Redox agents and N -ethylmaleimide affect protein polymerization during laboratory scale dry pasta production and cooking. Food Chemistry, 2016, 196, 646-653.	4.2	17
454	Impact of casein and egg white proteins on the structure of wheat glutenâ€based proteinâ€rich food. Journal of the Science of Food and Agriculture, 2016, 96, 757-763.	1.7	17
455	Lipases as Processing Aids in the Separation of Wheat Flour into Cluten and Starch: Impact on the Lipid Population, Gluten Agglomeration, and Yield. Journal of Agricultural and Food Chemistry, 2017, 65, 1932-1940.	2.4	17
456	Wheat (Triticum aestivum L.) flour free lipid fractions negatively impact the quality of sponge cake. Food Chemistry, 2019, 271, 401-409.	4.2	17
457	Impact of mineral ions on the release of starch and gel forming capacity of potato flakes in relation to water dynamics and oil uptake during the production of snacks made thereof. Food Research International, 2019, 122, 419-431.	2.9	17
458	Ohmic versus conventional heating for studying molecular changes during pound cake baking. Journal of Cereal Science, 2019, 89, 102708.	1.8	17
459	Amylose molecular fine structure dictates water–oil dynamics during deep-frying and the caloric density of potato crisps. Nature Food, 2020, 1, 736-745.	6.2	17
460	The role of lipids in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Chemistry, 2020, 319, 126565.	4.2	17
461	Gas cell stabilization by aqueousâ€phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3881-3917.	5.9	17
462	Effects of Low Molecular Weight Carbohydrates on Farinograph Characteristics and Staling Endotherms of Wheat Flour-Water Doughs. Cereal Chemistry, 1999, 76, 227-230.	1.1	16
463	Enzymes in Breadmaking. , 0, , 337-364.		16
464	Engineering molecular recognition of endoxylanase enzymes and their inhibitors through phage display. Journal of Molecular Recognition, 2007, 20, 103-112.	1.1	16
465	Fermentation affects the composition and foaming properties of the aqueous phase of dough from soft wheat flour. Food Hydrocolloids, 2014, 37, 221-228.	5.6	16
466	Removal of disulfide cross-links from wheat gluten and the effect thereof on the mechanical properties of rigid gluten bioplastic. European Polymer Journal, 2015, 68, 573-584.	2.6	16
467	Preparation of cross-linked maize (Zea mays L.) starch in different reaction media. Carbohydrate Polymers, 2015, 124, 302-310.	5.1	16
468	Encapsulation of the antioxidant ascorbyl palmitate in V-type granular cold-water swelling starch affects the properties of both. Carbohydrate Polymers, 2017, 165, 402-409.	5.1	16

#	Article	IF	CITATIONS
469	Amylose and amylopectin functionality during storage of bread prepared from flour of wheat containing unique starches. Food Chemistry, 2020, 320, 126609.	4.2	16
470	Hydrothermal Treatments Cause Wheat Gluten-Derived Peptides to Form Amyloid-like Fibrils. Journal of Agricultural and Food Chemistry, 2021, 69, 1963-1974.	2.4	16
471	TRIMERIC AND OLIGOMERIC FLAVANOIDS IN BEER: A JOINT APPLICATION OF SEPHADEX LH-20 AND REVERSED-PHASE GRADIENT ELUTION HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of the Institute of Brewing, 1981, 87, 391-393.	0.8	15
472	DIRECT SYNTHESIS OF THE BARLEY PROANTHOCYANIDINS PRODELPHINIDIN B3, PRODELPHINIDIN C2 AND TWO TRIMERIC PROANTHOCYANIDINS WITH A MIXED PRODELPHINIDIN-PROCYANIDIN STEREOCHEMISTRY. Journal of the Institute of Brewing, 1986, 92, 244-249.	0.8	15
473	Combined Effects of Endoxylanases and Reduced Water Levels in Pasta Production. Cereal Chemistry, 2004, 81, 361-368.	1.1	15
474	A quantitative portrait of three xylanase inhibiting protein families in different wheat cultivars using 2D-DIGE and multivariate statistical tools. Journal of Proteomics, 2009, 72, 484-500.	1.2	15
475	Cereal brans as dietary fibre ingredients. , 2013, , 170-192.		15
476	Soaking Conditions During Brown Rice Parboiling Impact the Level of Breakageâ€ S usceptible Rice Kernels. Cereal Chemistry, 2014, 91, 554-559.	1.1	15
477	Methodologies for producing amylose: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 407-417.	5.4	15
478	Impact of physical and enzymatic cell wall opening on the release of pre-gelatinized starch and viscosity forming potential of potato flakes. Carbohydrate Polymers, 2018, 194, 401-410.	5.1	15
479	Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. International Journal of Food Science and Technology, 2020, 55, 891-898.	1.3	15
480	Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 30
481	Drying mode and hydrothermal treatment conditions govern the formation of amyloid-like protein fibrils in solutions of dried hen egg white. Food Hydrocolloids, 2021, 112, 106276.	5.6	15
482	Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Willd.) protein. Food Hydrocolloids, 2021, 115, 106611.	5.6	15
483	Crystal structure of the noncompetitive xylanase inhibitor TLXI, member of the small thaumatinâ€like protein family. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2391-2394.	1.5	14
484	Both Substrate Hydrolysis and Secondary Substrate Binding Determine Xylanase Mobility as Assessed by FRAP. Journal of Physical Chemistry B, 2011, 115, 4810-4817.	1.2	14
485	Polymerization Reactions of Wheat Gluten: The Pretzel Case. Cereal Foods World, 2012, 57, 203-208.	0.7	14
486	Extractability and chromatographic separation of rye (Secale cereale L.) flour proteins. Journal of Cereal Science, 2017, 73, 68-75.	1.8	14

#	Article	IF	CITATIONS
487	Thermo-reversible inhibition makes aqualysin 1 from Thermus aquaticus a potent tool for studying the contribution of the wheat gluten network to the crumb texture of fresh bread. Food Chemistry, 2018, 264, 118-125.	4.2	14
488	Beyond Whole Grain: The European HEALTHGRAIN Project Aims at Healthier Cereal Foods. Cereal Foods World, 2008, , .	0.7	14
489	Studies on Barley Starchy Endosperm Cell Wall Degradation by Rhizopus VII. Journal of Cereal Science, 2003, 37, 81-90.	1.8	13
490	Colorimetric determination of dehydroalanine in wheat gluten. Journal of Cereal Science, 2011, 54, 148-150.	1.8	13
491	Impact of Starch Gelatinization and Kernel Fissuring on the Milling Breakage Susceptibility of Parboiled Brown Rice. Cereal Chemistry, 2013, 90, 490-496.	1.1	13
492	The Effects of Fresh Eggs, Egg White, and Egg Yolk, Separately and in Combination with Salt, on Mixogram Properties. Cereal Chemistry, 2013, 90, 269-272.	1.1	13
493	Variability in Arabinoxylan, Xylanase Activity, and Xylanase Inhibitor Levels in Hard Spring Wheat. Cereal Chemistry, 2013, 90, 240-248.	1.1	13
494	Modification of the Secondary Binding Site of Xylanases Illustrates the Impact of Substrate Selectivity on Bread Making. Journal of Agricultural and Food Chemistry, 2016, 64, 5400-5409.	2.4	13
495	Exploring the Relationship between Structural and Air–Water Interfacial Properties of Wheat (<i>Triticum aestivum</i> L.) Gluten Hydrolysates in a Food System Relevant pH Range. Journal of Agricultural and Food Chemistry, 2017, 65, 1263-1271.	2.4	13
496	The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread. Journal of Agricultural and Food Chemistry, 2017, 65, 10074-10083.	2.4	13
497	Linear and Non-linear Rheology of Bread Doughs Made from Blends of Wheat (Triticum aestivum L.) and Rye (Secale cereale L.) Flour. Food and Bioprocess Technology, 2020, 13, 159-171.	2.6	13
498	Fibre-rich and wholegrain foods. , 2013, , .		13
499	Protein Composition and Agglomeration Tendency of Gluten Isolated from European Wheats (TriticumaestivumL.) in a Batter System. Journal of Agricultural and Food Chemistry, 1998, 46, 1344-1349.	2.4	12
500	Solubilisation and Degradation of Wheat Gluten Proteins by Barley Malt Proteolytic Enzymes. Journal of the Institute of Brewing, 2002, 108, 348-354.	0.8	12
501	Characterization of the Carbohydrate Part of Arabinogalactan Peptides in Triticum durum desf. Semolina. Cereal Chemistry, 2002, 79, 322-325.	1.1	12
502	Glucuronoarabinoxylan structure in the walls of Aechmea leaf chlorenchyma cells is related to wall strength. Phytochemistry, 2008, 69, 2307-2311.	1.4	12
503	The effect of cross-linking additives on the structure and properties of glassy wheat gluten material. Industrial Crops and Products, 2016, 81, 38-48.	2.5	12

Pearling Affects the Lipid Content and Composition and Lipase Activity Levels of Wheat (Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $\frac{12}{12}$

#	Article	IF	CITATIONS
505	Impact of ethanol on the air-water interfacial properties of enzymatically hydrolyzed wheat gluten. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 659-667.	2.3	12
506	A response surface analysis of the aqueous leaching of amylose from maize starch. Food Hydrocolloids, 2017, 63, 265-272.	5.6	12
507	Steeping and germination of wheat (Triticum aestivum L.). I. Unlocking the impact of phytate and cell wall hydrolysis on bio-accessibility of iron and zinc elements. Journal of Cereal Science, 2019, 90, 102847.	1.8	12
508	Transformations and functional role of starch during potato crisp making: A review. Journal of Food Science, 2020, 85, 4118-4129.	1.5	12
509	Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. LWT - Food Science and Technology, 2021, 143, 111079.	2.5	12
510	The role of arabinoxylan in determining the non-linear and linear rheology of bread doughs made from blends of wheat (Triticum aestivum L.) and rye (Secale cereale L.) flour. Food Hydrocolloids, 2021, 120, 106990.	5.6	12
511	Crystallization and preliminary X-ray diffraction study of two complexes of a TAXI-type xylanase inhibitor with glycoside hydrolase family 11 xylanases fromAspergillus nigerandBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 555-557.	2.5	11
512	Enzymic Degradability of Hull-less Barley Flour Alkali-Solubilized Arabinoxylan Fractions by Endoxylanases. Journal of Agricultural and Food Chemistry, 2005, 53, 7243-7250.	2.4	11
513	Proteinaceous Xylanase Inhibitors: Structure, Function and Evolution. Current Enzyme Inhibition, 2006, 2, 29-35.	0.3	11
514	Characterization of Kafirins in Algerian Sorghum Cultivars. Cereal Chemistry, 2009, 86, 487-491.	1.1	11
515	The secondary substrate binding site of the Pseudoalteromonas haloplanktis GH8 xylanase is relevant for activity on insoluble but not soluble substrates. Applied Microbiology and Biotechnology, 2011, 92, 539-549.	1.7	11
516	Importance of crosslinking and disulfide bridge reduction for the mechanical properties of rigid wheat gluten bioplastics compression molded with thiol and/or disulfide functionalized additives. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
517	FLAVOUR AND HAZE STABILITY DIFFERENCES DUE TO HOP AND MALT TANNINS IN ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE AND WITH REGULAR MALT. Journal of the Institute of Brewing, 1985, 91, 302-305.	0.8	10
518	Heat-induced Changes in Sodium Dodecyl Sulphate-sedimentation Volume and Functionality of Vital Wheat Gluten. Journal of Cereal Science, 1997, 26, 177-181.	1.8	10
519	Moisture stress during growth affects the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) flour. Journal of the Science of Food and Agriculture, 1998, 76, 233-238.	1.7	10
520	In Situ Production of Prebiotic AXOS by Hyperthermophilic Xylanase B from <i>Thermotoga maritima</i> in Highâ€Quality Bread. Cereal Chemistry, 2011, 88, 124-129.	1.1	10
521	Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase. Analytical Biochemistry, 2012, 420, 90-92.	1.1	10
522	Importance of Thiol-Functionalized Molecules for the Structure and Properties of Compression-Molded Glassy Wheat Gluten Bioplastics. Journal of Agricultural and Food Chemistry, 2013, 61, 10516-10524.	2.4	10

#	Article	IF	CITATIONS
523	The role of gluten proteins in production and quality of a yeast leavened sugar and fat rich wheat based food model system. Food Research International, 2014, 62, 991-997.	2.9	10
524	The impact of redox agents on further dough development, relaxation and elastic recoil during lamination and fermentation of multi-layered pastry dough. Journal of Cereal Science, 2017, 75, 84-91.	1.8	10
525	Amylolysis as a tool to control amylose chain length and to tailor gel formation during potato-based crisp making. Food Hydrocolloids, 2020, 103, 105658.	5.6	10
526	Impact of heat and enzymatic treatment on ovalbumin amyloid-like fibril formation and enzyme-induced gelation. Food Hydrocolloids, 2022, 131, 107784.	5.6	10
527	Purification, properties and N-terminal amino acid sequence of a wheat gluten aspartic proteinase. Journal of Cereal Science, 1998, 28, 223-232.	1.8	9
528	Adsorption Studies of Interaction Between Water-Extractable Nonstarch Polysaccharides and Prolamins in Cereals. Cereal Chemistry, 2000, 77, 679-684.	1.1	9
529	Degradation of Starchy Endosperm Cell Walls in Nongerminating Sterilized Barley by Fungi. Journal of Agricultural and Food Chemistry, 2001, 49, 975-981.	2.4	9
530	Extension Properties of Wheat Flour Dough Fortified with Characterised Wheat Gluten Fractions. Journal of Cereal Science, 2003, 37, 151-156.	1.8	9
531	Ambiguous Impact of Wheat Cluten Proteins on the Colloidal Haze of Wheat Beers. Journal of the American Society of Brewing Chemists, 2003, 61, 63-68.	0.8	9
532	Phage display based identification of novel stabilizing mutations in glycosyl hydrolase family 11 B. subtilis endoxylanase XynA. Biochemical and Biophysical Research Communications, 2008, 368, 74-80.	1.0	9
533	QUANTIFICATION OF ARABINOXYLANS AND THEIR DEGREE OF BRANCHING USING GAS CHROMATOGRAPHY. , 2009, , 177-189.		9
534	Kernel Components of Technological Value. , 2012, , 85-124.		9
535	Impact of pyranose oxidase from Trametes multicolor, glucose oxidase from Aspergillus niger and hydrogen peroxide on protein agglomeration in wheat flour gluten–starch separation. Food Chemistry, 2014, 148, 235-239.	4.2	9
536	Wheat (Triticum aestivum L.) puroindoline functionality in bread making and its impact on bread quality. Journal of Cereal Science, 2014, 60, 114-121.	1.8	9
537	Ultrasonic Characterization of Amyloid-Like Ovalbumin Aggregation. ACS Omega, 2017, 2, 4612-4620.	1.6	9
538	Impact of chlorine treatment on properties of wheat flour and its components in the presence of sucrose. Food Chemistry, 2019, 274, 434-443.	4.2	9
539	Microbial transglutaminase induced modification of wheat gliadin based nanoparticles and its impact on their air-water interfacial properties. Food Hydrocolloids, 2022, 127, 107471.	5.6	9
540	FLAVOUR AND HAZE STABILITY DIFFERENCES DUE TO HOP TANNINS IN ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE MALT. Journal of the Institute of Brewing, 1985, 91, 88-92.	0.8	8

7

#	Article	IF	CITATIONS
541	Quantitative and Qualitative Study of Arabinogalactan-Peptide during Bread Making. Journal of Agricultural and Food Chemistry, 1998, 46, 5026-5030.	2.4	8
542	Improvement of Malt Modification by Use ofRhizopusVII as Starter Culture. Journal of Agricultural and Food Chemistry, 2001, 49, 3718-3724.	2.4	8
543	Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis. Enzyme and Microbial Technology, 2007, 41, 85-91.	1.6	8
544	Use of enzymes in the production of cereal-based functional foods and food ingredients. , 2008, , 237-265.		8
545	His22 of TLXI plays a critical role in the inhibition of glycoside hydrolase family 11 xylanases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 38-46.	2.5	8
546	Liquid chromatography/mass spectrometry analysis of branched fructans produced <i>in vitro</i> with ¹³ C″abeled substrates. Rapid Communications in Mass Spectrometry, 2014, 28, 2191-2200.	0.7	8
547	Incubation of Isolated Wheat Starch with Proteolytic or Lipolytic Enzymes and Different Extraction Media Reveals a Tight Interaction Between Puroindolines and Lipids at Its Granule Surface. Cereal Chemistry, 2014, 91, 240-246.	1.1	8
548	¹⁵ N‣abeling of Egg Proteins for Studying Protein Network Formation During Pound Cake Making. Cereal Chemistry, 2017, 94, 485-490.	1.1	8
549	Impact of water-extractable components from different cereals on the quality of oat bread. Journal of Cereal Science, 2018, 79, 134-140.	1.8	8
550	Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods, 2021, 10, 428.	1.9	8
551	Use of Amylomaltase to Steer the Functional and Nutritional Properties of Wheat Starch. Foods, 2021, 10, 303.	1.9	8
552	Colloidal stability of oil-in-water emulsions prepared from hen egg white submitted to dry and/or wet heating to induce amyloid-like fibril formation. Food Hydrocolloids, 2022, 125, 107450.	5.6	8
553	Isolation of quercetin, myricetin, and their respective dihydro-compounds by Sephadex LH-20 chromatography. Journal of Chromatography A, 1985, 324, 495-497.	1.8	7
554	Indirect Enzyme–Antibody Sandwich Enzyme-Linked Immunosorbent Assay for Quantification of TAXI and XIP Type Xylanase Inhibitors in Wheat and Other Cereals. Journal of Agricultural and Food Chemistry, 2007, 55, 7682-7688.	2.4	7
555	Sorghum (Sorghum bicolor L. Moench) contains a XIP-type xylanase inhibitor but none of the TAXI- and TLXI-types. Journal of Cereal Science, 2008, 48, 203-212.	1.8	7
556	Wheat flour and vital wheat gluten as biscuit ingredients. , 2011, , 109-133.		7
557	Fibre in extruded products. , 2013, , 256-272.		7

558 Fibre-enriched meat products. , 2013, , 329-347.

#	Article	IF	CITATIONS
559	Impact of Puroindolines on Semisweet Biscuit Quality: A Fractionation–Reconstitution Approach. Cereal Chemistry, 2013, 90, 564-571.	1.1	7
560	Emulsifying and Foaming Properties of Okara Protein Hydrolysates. Cereal Chemistry, 2016, 93, 71-76.	1.1	7
561	Impact of lipases with different substrate specificity in wheat flour separation on the properties of the resultant gluten. Journal of Cereal Science, 2017, 77, 291-296.	1.8	7
562	Effect of adding a reactive plasticizer on the mechanical, thermal, and morphology properties of nylon toughened wheat gluten materials. Journal of Applied Polymer Science, 2018, 135, 45931.	1.3	7
563	Intact and Damaged Wheat Starch and Amylase Functionality During Multilayered Fermented Pastry Making. Journal of Food Science, 2018, 83, 2489-2499.	1.5	7
564	Impact of aqualysin 1 peptidase from Thermus aquaticus on molecular scale changes in the wheat gluten network during bread baking. Food Chemistry, 2019, 295, 599-606.	4.2	7
565	Characterization of white flour produced from roasted wheats differing in hardness and protein content. Cereal Chemistry, 2020, 97, 339-348.	1.1	7
566	The role and impact on quality of exogenous and endogenous lipids during sponge cake making. Trends in Food Science and Technology, 2021, 114, 158-166.	7.8	7
567	Heat-induced denaturation and aggregation of protein in quinoa (Chenopodium quinoa Willd.) seeds and whole meal. Food Chemistry, 2022, 372, 131330.	4.2	7
568	Combined monitoring of UV absorbance and fluorescence intensity as a diagnostic criterion in reversed-phase high-performance liquid chromatographic separations of natural phenolic acids. Journal of Chromatography A, 1989, 467, 149-157.	1.8	6
569	Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. Journal of Cereal Science, 2010, 51, 326-336.	1.8	6
570	Fibre-enriched beverages. , 2013, , 369-388.		6
571	Health aspects of dietary fibre. , 2013, , 61-75.		6
572	A Curative Method for Primary Gushing of Beer and Carbonated Beverages: Characterization and Application of Antifoam Based on Hop Oils. Journal of the American Society of Brewing Chemists, 2014, , .	0.8	6
573	The primary structure of wheat glutenin subunit 1Dx2 revealed by electrospray ionization mass spectrometry. Journal of Cereal Science, 2014, 60, 131-137.	1.8	6
574	Wheat gluten/LDPE based thermoplastic vulcanizates containing LDPE-g-MA as compatibilizer. Industrial Crops and Products, 2015, 74, 824-838.	2.5	6
575	Thin film drainage dynamics of wheat and rye dough liquors and oat batter liquor. Food Hydrocolloids, 2021, 116, 106624.	5.6	6
576	The impact of incorporating coarse wheat farina containing intact endosperm cells in a bread recipe on bread characteristics and starch digestibility. Journal of Cereal Science, 2021, 102, 103333.	1.8	6

#	Article	IF	CITATIONS
577	Crystallization and melting of inulin crystals. A small angle X-ray scattering approach (SAXS). Polimery, 2011, 56, 645-651.	0.4	6
578	MALT DIASTATIC ACTIVITY. PART I. THE EBC DETERMINATION OF DIASTATIC POWER: THE UNDERESTIMATION OF THE RELEASE OF REDUCING SUGARS BY IODOMETRIC TITRATION AND THE CHROMOGEN p-HYDROXYBENZOIC ACID HYDRAZIDE AS ALTERNATIVE METHOD. Journal of the Institute of Brewing, 1987, 93, 121-124.	0.8	5
579	Partial Purification of a Water-Extractable Rye (Secale cereale) Protein Capable of Improving the Quality of Wheat Bread. Cereal Chemistry, 1998, 75, 403-407.	1.1	5
580	Crystallization and preliminary X-ray analysis of an arabinoxylan arabinofuranohydrolase fromBacillus subtilis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 692-694.	0.7	5
581	W1382 The Bifidogenic Potential of Arabinoxylo-Oligosaccharides in Healthy Volunteers Depends On the Degree of Polymerisation. Gastroenterology, 2008, 134, A-692.	0.6	5
582	Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases. Enzyme and Microbial Technology, 2011, 49, 305-311.	1.6	5
583	Effect of the mashing process on the performance of a lipophilic hop extract to reduce the primary gushing of beer. Cerevisia, 2013, 38, 71-76.	0.4	5
584	Improving the content and composition of dietary fibre in wheat. , 2013, , 153-169.		5
585	Effect of aqueous and alcoholic shear treatments on the properties of rigid plastics from wheat gluten. Industrial Crops and Products, 2015, 77, 146-155.	2.5	5
586	The role of gluten proteins in production and quality of a yeast leavened sugar and fat rich wheat based food model system – 2. Impact of redox agents. Food Research International, 2015, 67, 169-174.	2.9	5
587	The effect of arabinoxylooligosaccharides on gastric sensoryâ€motor function and nutrient tolerance in man. Neurogastroenterology and Motility, 2016, 28, 1194-1203.	1.6	5
588	Concepts and experimental protocols towards a molecular level understanding of the mechanical properties of glassy, cross-linked proteins: Application to wheat gluten bioplastics. European Polymer Journal, 2017, 88, 231-245.	2.6	5
589	¹ H Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopic Analysis of Water-Extractable Arabinoxylan in Wheat (<i>Triticum aestivum</i> L.) Flour. Journal of Agricultural and Food Chemistry, 2021, 69, 3912-3922.	2.4	5
590	The Role of Intact and Disintegrated Egg Yolk Low-Density Lipoproteins during Sponge Cake Making and Their Impact on Starch and Protein Mediated Structure Setting. Foods, 2021, 10, 107.	1.9	5
591	Principles of Cereal Science and Technology Authors Provide Insight into the Current State of Cereal Processing. Cereal Foods World, 2010, , .	0.7	5
592	In vitro Polymerisation of High and Low Molecular Weight Glutenin Subunits with Molecular Oxygen. Journal of Cereal Science, 2003, 37, 223-229.	1.8	4
593	Effect of arabinoxylo-oligosaccharides on proximal gastrointestinal motility and digestion in healthy volunteers. European E-journal of Clinical Nutrition and Metabolism, 2008, 3, e220-e225.	0.4	4
594	Algerian Pearl Millet (Pennisetum glaucum L.) Contains XIP but Not TAXI and TLXI Type Xylanase Inhibitors. Journal of Agricultural and Food Chemistry, 2009, 57, 5542-5548.	2.4	4

#	Article	IF	CITATIONS
595	Fractionation of tryptic gliadin hydrolysates based on proline levels. Journal of Cereal Science, 2010, 52, 275-281.	1.8	4
596	Wheat Gluten Amino Acid Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Methods in Molecular Biology, 2012, 828, 329-337.	0.4	4
597	Determination of the xylan backbone distribution of arabinoxylan-oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 2013, 2, 84-91.	1.5	4
598	Definitions, regulations and health claims associated with dietary fibre and wholegrain foods. , 2013, , 3-24.		4
599	Consumption and consumer challenges of wholegrain foods. , 2013, , 120-149.		4
600	Fibre-enriched snack foods. , 2013, , 389-406.		4
601	Vegetable, fruit and potato fibres. , 2013, , 193-207.		4
602	Comparison of maize and wheat starch chain reactivity in relation to uniform versus surface oriented starch granule derivatization patterns. Food Hydrocolloids, 2016, 61, 858-867.	5.6	4
603	Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. Journal of Cereal Science, 2019, 90, 102843.	1.8	4
604	The role of exogenous lipids in starch and protein mediated sponge cake structure setting during baking. Food Research International, 2020, 137, 109551.	2.9	4
605	Free wheat flour lipids decrease air-liquid interface stability in sponge cake batter. Food Research International, 2021, 140, 110007.	2.9	4
606	An Ohmic heating study of the functionality of leavening acids in cream cake systems. LWT - Food Science and Technology, 2021, 152, 112277.	2.5	4
607	Malt and Hop Flavanoids in Pilsner Beer. Modern Methods of Plant Analysis, 1988, , 225-240.	0.1	4
608	Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification. LWT - Food Science and Technology, 2022, 157, 113077.	2.5	4
609	PROTEIN PRECIPITATION DURING WORT BOILING: QUALITY ASPECTS OF DIMINISHED WORT BOILING TIMES OF BREWS PREPARED FROM PROANTHOCYANIDIN-FREE OR REGULAR RAW MATERIALS. Journal of the Institute of Brewing, 1988, 94, 371-374.	0.8	3
610	Rheological Method for Evaluating Endoproteolytic Enzyme Activity. Cereal Chemistry, 1999, 76, 195-197.	1.1	3
611	Research Note: Endoxylanases and Arabinoxylans in Gluten Isolated in a Batter System. Journal of Cereal Science, 2001, 33, 53-57.	1.8	3
612	Effects of Endoxylanase Addition on Pasta Processing with Short Mixing Time. Cereal Chemistry, 2002, 79, 798-800.	1,1	3

#	Article	IF	CITATIONS
613	Crystallization and preliminary X-ray diffraction study of a wheat (Triticum aestivumL.) TAXI-type endoxylanase inhibitor. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 744-746.	2.5	3
614	Quantification of Wheat TAXI and XIP Type Xylanase Inhibitors: A Comparison of Analytical Techniques. Cereal Chemistry, 2008, 85, 586-590.	1.1	3
615	T2026 A Dietary Intervention With Arabinoxylan Oligosaccharides Reduces Colonic Protein Fermentation in Healthy Subjects: Results From Faecal Metabolite Fingerprint Analysis. Gastroenterology, 2010, 138, S-616.	0.6	3
616	Mutational analysis of wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase shows the role of six amino acids in the catalytic mechanism. Applied Microbiology and Biotechnology, 2011, 90, 173-180.	1.7	3
617	Companion animal nutrition as affected by dietary fibre inclusion. , 2013, , 407-420.		3
618	Fibre-enriched and whole wheat pasta. , 2013, , 273-290.		3
619	Fibre-enriched and wholegrain breads. , 2013, , 211-235.		3
620	Wheat Gluten Amino Acid Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Methods in Molecular Biology, 2019, 2030, 381-394.	0.4	3
621	The impact of cyclodextrins on the in vitro digestion of native and gelatinised starch and starch present in a sugar-snap cookie. LWT - Food Science and Technology, 2022, 165, 113748.	2.5	3
622	Effect of the Coenzymes NAD(P)(H) in Straightâ€Đough Breadmaking on Protein Properties and Loaf Volume. Cereal Chemistry, 2010, 87, 420-427.	1.1	2
623	Fibre-enriched seafood. , 2013, , 348-368.		2
624	Dietary fibre analysis in foods. , 2013, , 25-60.		2
625	Wholegrain foods and health. , 2013, , 76-95.		2
626	Pyranose Oxidase from <i>Trametes multicolor</i> Impacts Dough and Bread Microstructure. Cereal Chemistry, 2014, 91, 414-417.	1.1	2
627	TD NMR Relaxation Studies of Cereal Products. , 2016, , 1-18.		2
628	Water electrolyte promoted oxidation of functional thiol groups. Food Chemistry, 2016, 197, 1235-1239.	4.2	2
629	The effect of arabinoxylooligosaccharides on upper gastroduodenal motility and hunger ratings in humans. Neurogastroenterology and Motility, 2018, 30, e13306.	1.6	2
630	Do puroindolines affect the impact of enzymatic lipid hydrolysis on loaf volume in bread making?. Food Chemistry, 2019, 301, 125273.	4.2	2

#	Article	IF	CITATIONS
631	¹³ C-DOSY-TOSY NMR Correlation for In Situ Analysis of Structure, Size Distribution, and Dynamics of Prebiotic Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 3250-3259.	2.4	2
632	Premilling pearling for producing wheat fractions with distinct digestibility and fermentability. Cereal Chemistry, 2021, 98, 759-773.	1.1	2
633	Rye Constituents and their Impact on Rye Processing. , 0, , 567-592.		2
634	More of the GrainProgress in the HEALTHGRAIN Project for Healthy Cereal Foods. Cereal Foods World, 2010, , .	0.7	2
635	Bioavailability and Health Impact of Ingested Amyloidâ€like Protein Fibrils and their Link with Inflammatory Status: A Need for More Research?. Molecular Nutrition and Food Research, 2022, , 2101032.	1.5	2
636	Reassessment of the generic features of starch gelatinization: An advanced SAXS study on maize and potato starch. Food Hydrocolloids, 2022, 133, 107941.	5.6	2
637	A mass spectrometric criterion for determining the B- and E-ring hydroxylation pattern in dimeric biflavanoids. Journal of the Chemical Society Chemical Communications, 1983, , 1195.	2.0	1
638	THE EFFECTS OF GAMMA-IRRADIATION OF PILSNER BEER. Journal of the Institute of Brewing, 1986, 92, 591-593.	0.8	1
639	W1383 The Effect of Two Different Doses of Arabinoxylo-Oligosaccharides and Oligofructose Enriched Inulin On the Colonic Ammonia Metabolism in Healthy Volunteers. Gastroenterology, 2008, 134, A-693.	0.6	1
640	The first characterised wheat (Triticum aestivum L.) member of the nudix hydrolase family shows specificity for NAD(P)(H) and FAD. Journal of Cereal Science, 2010, 51, 319-325.	1.8	1
641	Functional xylanase inhibition activity of two molecular forms of recombinant TAXI-IA. Journal of Cereal Science, 2010, 52, 516-519.	1.8	1
642	Study of grain cell wall structures by microscopic analysis with four different staining techniques. Journal of Cereal Science, 2011, , .	1.8	1
643	Crystallization and preliminary X-ray analysis of a cold-active endo-β-1,4-D-xylanase from glycoside hydrolase family 8. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 150-152.	0.7	1
644	Fibre-enriched dairy products. , 2013, , 311-328.		1
645	Soluble and insoluble fibre in infant nutrition. , 2013, , 421-449.		1
646	Reaction pattern differences impact physical properties of starches derivatized to the same extent in a model cross-linking system. Carbohydrate Polymers, 2017, 174, 772-779.	5.1	1
647	Partial purification of components in rye water extractables which improve the quality of oat bread. Journal of Cereal Science, 2018, 79, 141-147.	1.8	1
648	Impact of Mineral Ions and Their Concentrations on Pasting and Gelation of Potato, Rice, and Maize Starches and Blends Thereof. Starch/Staerke, 2021, 73, 2000110.	1.1	1

#	Article	IF	CITATIONS
649	How Yeast Impacts the Effect of Ascorbic Acid on Wheat Flour Dough Extensional Rheology. Food Biophysics, 2021, 16, 406-414.	1.4	1
650	Detection of ovalbumin amyloid-like fibrils at the oil-water interface in oil-in-water emulsions by spinning disk confocal microscopy. Food Structure, 2021, 29, 100207.	2.3	1
651	Induction of Maize Starch Gelatinization and Dissolution at Low Temperature by the Hydrotrope Sodium Salicylate. Biomacromolecules, 0, , .	2.6	1
652	Comparison of Unifactorial and Mixture Approaches for Optimization of Mixing Time and Flour and Water Contents in Breadmaking Formulas. Cereal Chemistry, 1999, 76, 487-490.	1.1	0
653	Research Note: Wheat Gluten Contains a Thioredoxin-Dependent Peroxide Reductase. Journal of Cereal Science, 2000, 32, 43-44.	1.8	0
654	The Effect of Larch Arabinogalactan on Mixing Characteristics of Wheat Flour Dough. , 2000, , 293-293.		0
655	Barleyβ-Glucan and Wheat Arabinoxylan Soluble Fiber Technologies for Health-Promoting Bread Products. , 0, , 157-176.		0
656	Mechanism of Gliadin-Glutenin Linking During Bread Baking. , 2008, , 74-77.		0
657	Performance of resistant starches in baking: a case study on fibre-rich and wholegrain muffins. , 2013, , 236-255.		0
658	Fibre–enriched and whole wheat noodles. , 2013, , 291-308.		0
659	AACC International: A Winning Combination of Academia, Government, and Industry. Cereal Foods World, 2014, 59, 3-3.	0.7	0
660	The Face of AACC International's Future: Preparing for the Next 100 Years. Cereal Foods World, 2014, 59, 271-271.	0.7	0
661	The Rheo Extrusion Meter, a New Device for Measuring Wheat Flour Baking Absorption and Dough Consistency: Principle and Applications. Cereal Chemistry, 2015, 92, 154-160.	1.1	0
662	TD NMR Relaxation Studies of Cereal Products. , 2018, , 1431-1448.		0
663	Heatâ€sensitive inhibition of aqualysin 1 by protein containing wheat, maize, and barley extracts. Cereal Chemistry, 2020, 97, 1204-1215.	1.1	0
664	Impact of wheat gluten on the denaturation of egg white and whey proteins. Cereal Chemistry, 0, , .	1.1	0
665	Quantitative and Qualitative Study of Arabinogalactan-Peptide During Bread Making. , 2000, , 292-293.		0
666	Structural analysis of a newly identified class of plant protective microbial glycoside hydrolase inhibitors. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s214-s214.	0.3	0

#	Article	IF	CITATIONS
667	Detecting the structural determinants of glycosyl hydrolase family 11 xylanase inhibition. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c197-c197.	0.3	0
668	Critical Factors Governing Gluten Protein Agglomeration on a Micro-scale. Special Publication - Royal Society of Chemistry, 2007, , 292-295.	0.0	0
669	Wheat Flour Associated Xylanases Affect the AX Population in Dough. , 2008, , 33-36.		0
670	ENZYMES IN THE PRODUCTION OF FUNCTIONAL FOOD INGREDIENTS—THE ARABINOXYLAN CASE. , 2009, , 129-140.		0
671	Reduced-Immunogenicity Wheat Now Coming to Age. , 2021, , 15-42.		0
672	Release of ¹⁴ Câ€labeled carbon dioxide from ascorbic acid during straight dough wheat bread making. Cereal Chemistry, 0, , .	1.1	0
673	Oxidation of high and low molecular weight glutenin subunits isolated from wheat. Special Publication - Royal Society of Chemistry, 0, , 223-226.	0.0	0
674	Degradation of wheat and rye storage proteins by rye proteolytic enzymes. Special Publication - Royal Society of Chemistry, 0, , 283-286.	0.0	0
675	Significance of high and low molecular weight glutenin subunits for dough extensibility. Special Publication - Royal Society of Chemistry, 0, , 460-463.	0.0	0