Mariko Takeda-Morishita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859515/publications.pdf

Version: 2024-02-01

35 906 18 30 papers citations h-index g-index

35 35 35 931 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Therapeutic effects of anti-amyloid β antibody after intravenous injection and efficient nose-to-brain delivery in Alzheimer's disease mouse model. Drug Delivery and Translational Research, 2022, , 1.	5.8	2
2	The Effects of Andrographolide on the Enhancement of Chondrogenesis and Osteogenesis in Human Suprapatellar Fat Pad Derived Mesenchymal Stem Cells. Molecules, 2021, 26, 1831.	3.8	9
3	The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint. International Journal of Pharmaceutics, 2021, 602, 120618.	5.2	18
4	Investigation of the Transport Pathways Associated with Enhanced Brain Delivery of Peptide Drugs by Intranasal Coadministration with Penetratin. Pharmaceutics, 2021, 13, 1745.	4.5	11
5	Systemic and brain delivery of leptin via intranasal coadministration with cell-penetrating peptides and its therapeutic potential for obesity. Journal of Controlled Release, 2020, 319, 397-406.	9.9	25
6	Effects of intestinal luminal contents and the importance of microfold cells on the ability of cell-penetrating peptides to enhance epithelial permeation of insulin. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 155, 77-87.	4.3	10
7	Evaluation of Cell-Penetrating Peptides as Versatile, Effective Absorption Enhancers: Relation to Molecular Weight and Inherent Epithelial Drug Permeability. Pharmaceutical Research, 2020, 37, 182.	3.5	1
8	The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach. Molecules, 2020, 25, 5877.	3.8	5
9	Optimization of the method for analyzing endocytosis of fluorescently tagged molecules: Impact of incubation in the cell culture medium and cell surface wash with glycine-hydrochloric acid buffer. Journal of Controlled Release, 2019, 310, 127-140.	9.9	11
10	Strategy for Peptide Drug Delivery via Nose-to-Brain Transport Pathways: Challenges to Pharmacotherapy for Dementia. Drug Delivery System, 2019, 34, 360-367.	0.0	O
11	Noncovalent Strategy with Cell-Penetrating Peptides to Facilitate the Brain Delivery of Insulin through the Blood–Brain Barrier. Biological and Pharmaceutical Bulletin, 2018, 41, 546-554.	1.4	20
12	Exploration of the Key Factors for Optimizing the <i>in Vivo</i> Oral Delivery of Insulin by Using a Noncovalent Strategy with Cell-Penetrating Peptides. Biological and Pharmaceutical Bulletin, 2018, 41, 239-246.	1.4	12
13	Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Scientific Reports, 2018, 8, 17641.	3.3	36
14	Hydrophobic Amino Acid Tryptophan Shows Promise as a Potential Absorption Enhancer for Oral Delivery of Biopharmaceuticals. Pharmaceutics, 2018, 10, 182.	4.5	17
15	Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse. Molecular Pharmaceutics, 2017, 14, 916-927.	4.6	45
16	Potential of single cationic amino acid molecule "Arginine―for stimulating oral absorption of insulin. International Journal of Pharmaceutics, 2017, 521, 176-183.	5.2	17
17	Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules. Journal of Pharmaceutical Sciences, 2017, 106, 2904-2908.	3.3	1
18	Complexation hydrogels as potential carriers in oral vaccine delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 138-142.	4.3	31

#	Article	IF	CITATIONS
19	Cell-Penetrating Peptide Penetratin as a Potential Tool for Developing Effective Nasal Vaccination Systems. Journal of Pharmaceutical Sciences, 2016, 105, 2014-2017.	3.3	19
20	Dependence of Intestinal Absorption Profile of Insulin on Carrier Morphology Composed of \hat{l}^2 -Cyclodextrin-Grafted Chitosan. Molecular Pharmaceutics, 2016, 13, 4034-4042.	4.6	18
21	Recent trends on clinical development of needle-free GLP-1 and insulin delivery systems. Drug Delivery System, 2016, 31, 440-449.	0.0	O
22	Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. International Journal of Pharmaceutics, 2016, 510, 304-310.	5.2	29
23	Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy. Molecular Pharmaceutics, 2016, 13, 1004-1011.	4.6	41
24	Applicability and Limitations of Cell-Penetrating Peptides in Noncovalent Mucosal Drug or Carrier Delivery Systems. Journal of Pharmaceutical Sciences, 2016, 105, 747-753.	3.3	19
25	Safety of the Cell-Penetrating Peptide Penetratin as an Oral Absorption Enhancer. Biological and Pharmaceutical Bulletin, 2015, 38, 144-146.	1.4	17
26	Effects of Cremophor EL on the absorption of orally administered saquinavir and fexofenadine in healthy subjects. Drug Metabolism and Pharmacokinetics, 2015, 30, 221-226.	2.2	21
27	Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 42-51.	4.3	25
28	Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4264-E4271.	7.1	39
29	Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane. AAPS Journal, 2015, 17, 1427-1437.	4.4	29
30	Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. Journal of Controlled Release, 2015, 197, 105-110.	9.9	81
31	In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. Journal of Controlled Release, 2014, 189, 19-24.	9.9	127
32	Mechanistic Study of the Uptake/Permeation of Cell-Penetrating Peptides Across a Caco-2 Monolayer and Their Stimulatory Effect on Epithelial Insulin Transport. Journal of Pharmaceutical Sciences, 2013, 102, 3998-4008.	3.3	61
33	Determination of the Optimal Cell-Penetrating Peptide Sequence for Intestinal Insulin Delivery Based on Molecular Orbital Analysis with Self-Organizing Maps. Journal of Pharmaceutical Sciences, 2013, 102, 469-479.	3.3	44
34	One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 736-743.	4.3	58
35	Cell-penetrating Peptide-biodrug Strategy for Oral and Nasal Delivery: Review of Recent Findings. Journal of Experimental and Clinical Medicine, 2012, 4, 198-202.	0.2	7